
Cob: A Consensus Layer Enabling Sustainable
Sharding-Based Consensus Protocols
Andrea Flamini1,∗,†, Riccardo Longo1,† and Alessio Meneghetti1,†

1Department of Mathematics, University of Trento
via Sommarive, 14 - 38123 Povo (Trento), Italy

Abstract
In this paper we explore a context of application of Cob, a recently introduced Byzantine Fault Tolerant
consensus protocol. Cob proves to be a leaderless consensus protocol which carries out the consensus
process in parallel on each component of a list of events to be observed and recorded.

We show how Cob can be used to define a consensus layer for scalable and sustainable blockchains.
This layer is used to design consensus protocols based on sharding as a mean to achieve scalability,
and on the fragmentation of time in time-slots, which get assigned to nodes that are instructed to create
new blocks, as a mean to reduce the amount of computation and communication necessary for the
maintenance of the distributed ledger.

We explain why Cob is a viable candidate to implement such consensus layer through the introduction
of an auxiliary blockchain that we name Synchronization Chain.

Keywords
Cob, blockchain, consensus, sharding, time-slot, synchronization

1. Introduction

A blockchain is a distributed ledger which allows a network of nodes to record transactions in
a trusted and immutable manner. The network is generally composed of independent parties
which cooperate to the maintenance of the ledger without the influence of a central authority.
Clearly, since a blockchain is a distributed system, one of the most important problems is the
consensus. Every blockchain is provided with a consensus algorithm which allows the network
of nodes to agree on the information to record into the ledger, even in presence of malicious
or faulty nodes. Since consensus protocols can be quite intensive under the computational
or communication point of view (e.g. proof of work or Byzantine fault tolerant protocols,
respectively), the number of transaction that can be recorded in the ledger per second in average
is low if compared with the centralized counterparts. Therefore, the same negative comparison
can be done regarding the costs applied to the users in terms of fees (e.g Bitcoin [13] vs Visa).
This causes blockchain platforms to be incapable to grow and manage an increasing number

DLT 2022: 4th Distributed Ledger Technology Workshop, June 20, 2022, Rome, Italy
∗Corresponding author.
†
These authors contributed equally.
Envelope-Open andrea.flamini.1995@gmail.com (A. Flamini); riccardolongomath@gmail.com (R. Longo);
alessio.meneghetti@unitn.it (A. Meneghetti)
Orcid 0000-0002-3872-7251 (A. Flamini); 0000-0002-8739-3091 (R. Longo); 0000-0002-5159-7252 (A. Meneghetti)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

77

of requests, a property which is referred to as scalability. In particular, we say that a platform
scales if it can easily adapt to changes in the number of users that decide to join in, as well as in
the number of transaction requests that such users perform.

1.1. Preliminaries

We now introduce two techniques which are adopted to solve the problem of intensity of
computations/communications, and the problem of scalability.

1.1.1. Reduction of computations or communications

Some consensus protocols, such as EOS [4], Quadrans [1] or Takamaka [3] divide the epochs
in smaller time units which we call time-slots. Before the new epoch begins, a redistribution
mechanism assigns each time-slot to a node in the network. These nodes are in charge of the
creation of a block and if one of them does not manage to broadcast its block in time (i.e. before
the end of the time-slot), then its block gets discarded by the network. In this approach, the
network first reaches a consensus on the way the time-slots must be redistributed and, after that,
only the node in charge during a time-slot can produce and advertise a new block. This drastically
reduces the computational consumption derived by the classical protocols based on proof of
work such as Bitcoin [13] which requires that the nodes execute intensive computations without
any break. Similarly, this approach reduces the burden of communications between nodes given
by Byzantine fault tolerant (BFT) protocols such as Algorand [2] or HoneyBadgerBFT [12].

However, the subdivision of an epoch in preassigned time-slots, although it brings several
benefits in term of energetic efficiency and platform stability, it also brings one important issue:
every node in the network must have access to a common clock which specifies the beginning
and the end of a time-slot, an essential tool to determine whether the node in charge created
the block in time or not. The problem of accessing a common clock could be avoided by using
same speed clocks and an event which triggers the end of a time-slot and the beginning of a
new one1. But, even with a common clock, there would still be the problem that a message
does not reach every node in the network in the very same instant of time. Therefore, a block
may be received in time by some nodes, and the same block may be received late by some other
nodes if it is broadcast near the end of the time-slot. In fact, in a distributed system where
the messages are broadcast via gossip, the time in which a node 𝑛 receives a message does not
provide very precise information about the time the other nodes have seen such message. Let 𝜆
be the message propagation time, assuming a common clock exists and 𝑇 is the time when 𝑛
has received the block, then, if the communication happens via gossip (which is typical in the
context of permissionless blockchain networks), the other nodes will receive (or have received)
the block in the time interval [𝑇 − 𝜆, 𝑇 + 𝜆]. The node 𝑛 does not know much more than this.

This observation opens the door to a series of vulnerabilities of the system which may allow
an attacker to discard blocks legitimately created and diffused by an honest node. In fact, if
there is not a third party who certifies the legitimate creation and diffusion of a block, the only

1Some consensus protocols such as Algorand [2] assume that the nodes in the network are provided with same speed
clocks and each node resets its clock every time a certificate for the new block is received. Since Algorand assumes
that the certificate propagation time is below a parameter 𝜆, the delay between two nodes is upper-bounded by 𝜆.

78

feedback the network receives regarding the timing of diffusion consists only of the opinion of
the nodes in charge in the following time-slots.

In Section 3 we will explain how Cob, a novel BFT consensus protocol, can substitute the third
party which attests which blocks have been legitimately created in time by the right node. This
protocol is executed by the network of nodes and is a leaderless consensus protocol, therefore the
only way for a block to get certified and accepted, is to be received in time by a great majority
of the nodes in the network. This is exactly what we expect to happen when a node behaves
honestly, and makes it impossible for an attacker to pretend that such block was not diffused in
time.

Moreover, the publication of the certificates that attest that a block have been created in time
can be used as the triggering event which officially ends the current time-slot and starts the
new one. This approach to the declaration of the beginning of a new period of time is similar to
the one adopted by Algorand [2] to declare the beginning of the next round.

A legitimate question might be why not to use a BFT protocol to reach consensus directly
on the new block instead of reaching consensus on a certificate which proves the legitimacy
of the newly created block. The quick answer to this question is that reaching consensus on
a certificate will let us prove the legitimacy of multiple blocks simultaneously, and delegate
expensive and/or difficult checks on the individual blocks, as it will become more clear in the
following sections.

1.1.2. Improving the scalability

In order to solve the scalability issues of blockchain platforms, many approaches have been
proposed over the years. Some of them are the block size increase, the use of off-chain state
channels, segregated witness (SegWit)[9], the use of directed acyclic graphs as in [14] and sharding.
Among these, sharding seems to be the most promising [8, 15], a description of the main
platforms adopting this technique is presented in [10].

The term sharding comes from database management, where it identifies a particular type
of database partitioning, that consists in dividing large databases into smaller parts, called
shards. Shards are more manageable in terms of server hosting and other aspects of database
maintenance, and allow to have faster query time by diversifying the responsibility of a database
structure. Similarly, when we talk about sharding in the context of blockchain platform design,
we refer to an architecture which divides the “usual” chain of blocks into multiple chains called
shards, which are managed in parallel by different groups of nodes. This improves throughput,
since many transactions can be simultaneously validated, allowing blockchains to effectively
scale for a huge number of users. Although sharding is promising, it faces many challenges
that the community must efficiently and securely solve. For example, one should note that,
if a network is divided in shards, for an adversary it is potentially easier to take control of a
single shard compared with the whole network. In fact, its impact in terms of ratio of nodes it
controls grows linearly with the number of shards the network adopts to record transactions.
Another challenge the protocol designers must deal with is the inter-shard communication:
nodes working on different shards might be in possess of or access to different data sources.
Therefore, the protocol designer must assure that transactions elaborated by different shards

79

are consistent despite the fragmentation of the transaction insertion process.
Since sharding aims to maximise the scalability of a platform depending on the underlying

network of nodes (with great focus on preserving the security requirements), and the network
conditions can suddenly evolve2, it is good practice to regularly update the configuration of
the system (i.e. the actors and parameters involved). Each period of time in which the system
configuration is updated is referred to as epoch.

In order to better comprehend what sharding is, we briefly describe some of the main
components of a consensus protocol for a blockchain implementing sharding. We refer to the
surveys [15, 8] for more details about blockchain sharding.

1. Identity establishment and shard formation: this process aims to identify the single nodes
who take part to the protocol execution and (randomly) assign them to a specific shard.
This process should prevent Sybil attacks from being successfully performed by malicious
entities who manage to create multiple identities.

2. Intra-shard consensus Each node within a shard must execute a consensus protocol to
reach agreement on the transactions to be recorded in the fragment of ledger which is
under that shard’s control. Here, we make a distinction between two possible approaches
to intra-shard consensus: weak and strong consistency. According to the definition in [8],
weak (or eventual) consistency means that different nodes might end up having different
views of a blockchain, which leads to forks, therefore a certain number of blocks at the
end of the blockchain need to be truncated to obtain stable transactions. Contrarily,
strong consistency means that after the generation of a valid block, every non-faulty node
shares the same view and therefore no forks can happen.

3. Cross-shard transaction processing: it is essential that the transactions processed by the
shards are consistent not only within the shard they belong to, but also across the whole
system. Therefore, for cross-shard transactions, which are transactions which involve
information processed by more than a shard, a network must adopt some mechanism
which allows synchronization and reconciliation of transactions processed by different
groups.

4. Epoch reconfiguration: in order to guarantee the security of the shards, they may need to
be reconfigured, requiring both reconfiguration rules (to let the platform respond to the
network evolution) and possibly a randomness source.

In Section 3 we will explain why Cob can be adopted to deal with the epoch reconfiguration
and can contribute to the cross-shard transaction processing in a sharding-based consensus
protocol.

1.2. Contribution

Cob [6] is a novel BFT protocol (i.e. a strong consistency protocol) which is an evolution of
the MBA protocol [7]. MBA is defined for complete synchronous networks, therefore it can

2The network evolution refers to: a) new nodes who decide to join the network or nodes that decide to leave it, b)
nodes who decide to actively partake to the consensus process and others which decide to be passive and only have
access to the information recorded into the ledger, c) nodes which become faulty over time (or, more importantly,
an attacker corrupts some of them whenever it believes it is profitable).

80

be executed only by small networks with few dozens of nodes, while Cob can be executed
by incomplete gossiping networks that can have millions of nodes, a property that makes it
suitable for networks of permissionless blockchains. The aim of Cob is to allow a network of
nodes to reach consensus on a list of time-stamps of events that are expected to happen in a
time interval, we will explain why it can be adopted in the design of consensus protocols for
blockchains implementing sharding.

In this context, Cob can be used to let the network make multiple decisions simultaneously,
for example decisions about which shards have correctly performed their job, or decisions
about the evaluation of parameters which characterize the protocol epochs on the basis of the
network conditions. We will emphasize the advantages that Cob brings to the organization of
the workload that must be executed by the shards and show some performance evaluations
regarding a Cob execution under the framework we will describe.

Outline In Section 2 we provide a high-level but comprehensive description of Cob, which
is fully presented in [6]. In particular we underline the properties that Cob satisfies and the
assumptions it relies on. In Section 2.2 we describe its workflow and building blocks, namely
the Multidimensional Graded Consensus and Multidimensional Binary Byzantine Agreement
[7, 6].

In Section 3 we describe how Cob can be used to create a framework for the design of
sustainable and scalable blockchain platforms. Scalability is obtained by using the sharding
technique, sustainability is obtained by dividing time in time-slots, duringwhich some prescribed
nodes are expected to create blocks of processed transactions. In Section 3.3 we propose a
solution to put in practice the principles previously presented.

Finally, in Section 4 we compare the performance of Cob and Algorand as consensus protocols
for the solution presented in Section 3.3. The comparison is centered into quantifying the amount
of data broadcast in the network by the nodes.

2. The consensus protocol Cob

In this section we provide a high-level description of Cob, a novel consensus protocol which
efficiently solves the following problem:

Problem 2.1. Given a set of events which a network of nodes can observe, how can the nodes
reach consensus on some relevant information about such events?

The problem above is discussed in [7, 6] by considering the presence of malicious nodes in
the network, and this leads to the identification of two properties that such a consensus protocol
must satisfy in order to maximise the amount of agreed-upon meaningful data.

1. The consensus protocol must be leaderless, which means that there is no single node
proposing a protocol output and the other nodes decide whether to accept it or not, but
rather several nodes must collectively construct the output list. The reason behind this
is that a leader, if honest, would propose a list of relevant information which is heavily
influenced by its own point of view (which in some cases might lead to incorrect decisions),

81

and if the leader is malicious, it may easily perform censorship attacks refusing to include
some information in the list, or deliberately include invalid information. In both cases,
if the network does not agree even with one component proposed by the leader, it will
reject the leader’s proposal, and this process is repeated until a leader proposes a list
which gets accepted by a majority of the network. Note that this might not even happen,
in fact, if there is a wide disagreement among the nodes about one or more components,
there might not exist a list which is accepted by such majority.

2. The consensus process must be carried out in parallel and independently on each compo-
nent of the list, so that disagreement on a single component does not affect the consensus
on the others. In this regard, if a specific component can not be agreed upon on any
meaningful value due to a wide disagreement among the nodes of the network, then the
network must be able to identify this network condition and manage to reach consensus
on a default value that we identify with ⊥.

In [7] there is a simple example which helps to understand why these two properties have
such a great impact on the way consensus is achieved. In [7] it is also presented a predecessor
of Cob as a solution to Problem 2.1 for a relatively small network of a fixed number 𝑛 of nodes,
under some strong communication assumptions, considering an attacker that controls less than
1
3 of the nodes. In particular it is assumed a strongly-synchronous communication model and a
complete network, where every node could instantaneously send a message to every other node.
These assumptions are not practical and dramatically reduce the number of application contexts.
In fact, under the complete and synchronous network (CS network) model, the communications
between nodes happen instantaneously, via direct channels, every time a common clock (i.e.
shared by all the network participants) ticks the beginning of a new protocol step. Since it is
assumed that the network is complete, it is essential, for sake of efficiency, that the network is
composed of a small number of nodes (which does not exceed the hundreds). The evolution of
Cob presented in [6] overcomes these shortages, and can be adopted by wide networks of nodes
(even with millions of participants), making it way more practical and its adoption suitable for
the network of permissionless blockchains. From now on, when we refer to the protocol Cob
we refer to the second definition [6], unless explicitly specified.

2.1. Cob: network and communication assumptions

Since in complete networks the number of messages exchanged through the network grows
exponentially with the number of network participants, for practical applications it is more
convenient to consider a network model which differs from the CS network, such as the
Asynchronous Gossiping Network (AG network)3 presented by Micali in Algorand [2].

In this model messages are broadcast in the network in a gossiping fashion: a procedure
characteristic of peer-to-peer communications where messages pass from one node to its
neighbours and so on until they reach every node. In gossiping networks the network relies on

3Algorand describes the environment in which it is defined as asynchronous. This is because the communications
between nodes happen via gossip and the protocol steps, which for a single user are non-overlapping time intervals,
for different users may overlap due to lack of clock synchronization. However, since Algorand assumes that there is
a predetermined upper-bound to the time required by a message to reach (almost) every node, and therefore there
is an upper-bound to the delay between different nodes, Algorand can not be considered an asynchronous protocol.

82

each member to pass messages along to its neighbours, therefore it is reasonable to envisage the
network as an incomplete, connected and non-directed graph. We assume that a message sent
by an honest node reaches every honest node within a time limit that depends on the size of the
message itself. Since malicious nodes can behave arbitrarily, the previous assumption means
that they cannot be cut vertices in the network graph, that is the graph remains connected even
without the edges connected to malicious nodes. We will also require that the ratio of malicious
or faulty nodes is less than 1

3 .

2.1.1. Timing assumptions

In an AG network there does not exist a common clock (as in the case of CS network), but it
is assumed that all network participants are provided with Same-Speed Clocks [2]. In other
words, it is assumed that each network participant has its own clock and that the clocks all
have the same speed, even if they are not synchronized in any way. However, it is assumed that
there is an upper-bound 𝜆 on the time required by a node to diffuse in the network a ”short”
message. Therefore, this assumption implies that the non-synchronized clocks can reach a sort
of synchronization in the following way: suppose that a node communicates to the other nodes,
via a short message 𝑀, the beginning of a new protocol execution. This node will immediately
reset its private clock to 0, as the broadcast of 𝑀 begins, and the other nodes will do the same
once they are reached by 𝑀. Since the message 𝑀 reaches every node in the network within
time 𝜆, every node will reset to 0 their own private clock in the absolute time interval [0,𝜆]
(where 0 is the absolute time when the first node broadcasts 𝑀), causing the delay between
different nodes to be upper-bounded by the parameter 𝜆. Afterwards the time discrepancies do
not vary because of the same-speed nature of the clocks.

We have explained how an AG network addresses the goal of designing a practical model
which, on one hand it does not require a node to send a message to every single node every time
it wants to share some information with the whole network, but on the other hand it forces the
nodes to maintain their private same speed clocks slightly asynchronous (with the delay which
is upper-bounded by a constant value 𝜆).

2.1.2. Sortition mechanism

Another relevant aspect regarding the design of Cob is the following: since the nodes in the
network which adopts Cob as consensus protocol can be as wide as needed, it is essential that
not every node in the network broadcasts a message at the end of every step. This would clearly
cause a network overload. In order to address this problem, Cob uses a sortition mechanism
which instructs some nodes to be active during a given protocol step (i.e. to broadcast a message)
while assigning to the other nodes a passive role (i.e. just collect and help broadcast the messages
of the players). In order to better clear up this distinction, from now on, in a specific step, we
will call players only the nodes selected to be active and broadcast their message, while a generic
node of the network will be referred to as a user.

83

2.2. High level description of Cob

We now provide a high level description of the protocol. We first describe two protocols
which are the building blocks of Cob and we explain how they achieve the core properties
mentioned at the beginning of this section: the fact that Cob is leaderless, and that the consensus
process is carried out in parallel on the components of the list. The first component is the
Multidimensional Graded Consensus (MGC) and the second one is the Multidimensional Binary
Byzantine Agreement (MBBA). Both protocols are an extension to the multidimensional case
of protocols presented by Micali and adopted in Algorand [2], namely the Graded Consensus
protocol [5] and the Binary Byzantine Agreement protocol [11].

2.2.1. Cob’s building blocks

The MGC is a 3 steps protocol which starts once the network observes the events they want
to time-stamp and requires the players (i.e. the users who are elected to be active in a given
step) of the first step to broadcast their list of observed values created during the observation
phase. Once the 3 steps are executed, each node 𝑛 in the network privately builds a list v(𝑛) of
relevant information about the observed events (note that the lists can eventually be different
for different nodes). Together with the list of relevant information, each node 𝑛 computes a
grade 𝑔(𝑛)𝑖 ∈ {0, 1, 2} associated to each component 𝑖 of the list, which represents the confidence
that such value is well spread around the network, according to the information received. In
particular, a grade of 0 represents a high disagreement in the network; 1 represents a state of
uncertainty given by an intermediate number of messages advertising the corresponding value;
2 guarantees the node which computed the grade that every honest nodes has recorded the
same value in that component.

Distinct nodes might have saved different lists of relevant information, and they might have
also recorded different grades, based on the messages received in the steps of MGC Protocol.
However, it is proven that, for each component, the difference between the grades of honest
nodes is ∣ 𝑔(𝑛)𝑖 − 𝑔(𝑚)𝑖 ∣≤ 1 and it is also proven that, if 𝑔(𝑛)𝑖 ≥ 1 for each honest node, then
the relevant information recorded in the 𝑖-th component is the same for every honest node.
This implies that if some honest node sets 𝑔(𝑛)𝑖 = 2 then the relevant information saved by the
nodes in the 𝑖-th component is the same for every node. This is a remarkable information, but
we recall that the protocol is executed by nodes that do not trust each other. Therefore, it is
necessary to find a way to let the nodes who are certain that a relevant information is shared
by all the honest nodes convince the nodes who are not certain about it. For this purpose the
network executes the protocol MBBA: a 3 steps loop which allows the nodes in the network to
reach agreement on a list of bits with the same dimension of v(𝑛). The scope of this protocol
execution is to detect the components of the list of relevant information v(𝑛) which are the same
for every honest node. In particular, after the MGC protocol execution, each node will build
a list of bits setting each component to: 0 if it is assured that all the nodes are in agreement
on that specific component (i.e. the associated grade is 2), 1 otherwise. Now the network is
ready to perform the MBBA protocol, since every node has its own private initial list of bits. In
[7, 6] it is proven that the MBBA is a Byzantine Agreement protocol, which allows a network of
nodes provided with an initial list of bits to reach consensus on a shared list of bits b. In the

84

context of Cob, the private initial list will be computed from the output of MGC, but at the end
of the MBBA execution, the nodes will reach consensus on b, which allows every node 𝑛 to
compute the list of relevant information (the output of Cob) on which the honest nodes can
be in agreement. This list v is built in the following way: for every honest node 𝑛 v𝑖 = v(𝑛)𝑖 if
b𝑖 = 0 otherwise v𝑖 = ⊥, which means that such component is left blank.

In [6, 7] it is proven that Combining MGC with MBBA it is possible to solve Problem 2.1.
We omit the formal definition, and just summarize the main protocol steps of Cob using the
building blocks previously described. For a detailed description of the protocol we refer to [6].

Protocol 1 Cob

• Observation Phase For every user 𝑢 in the network:

– 𝑢 observes the events E = (𝐸1, … , 𝐸𝑚) that must be time-stamped;
– 𝑢 locally records the observed values o(u) = (𝑜(𝑢)1 , … , 𝑜(𝑢)𝑚).

• Multidimensional Graded Consensus For every user 𝑢 in the network:

– 𝑢 starts the execution of MGC with input the list o(u);
– 𝑢 takes part actively to a step of MGC only if it is elected as a player via the random sortition

mechanism adopted by Cob;
– output 1 of MGC: 𝑢 locally saves the list of values u = (Θ𝑢

1, … , Θ𝑢
𝑚), given by MGC;

– output 2 of MGC: from the list of grades gu = (𝑔𝑢1 , … , 𝑔𝑢𝑚) given by MGC, 𝑢 obtains a list of
bits vu,0 = (𝑣 𝑢,01 , … , 𝑣 𝑢,0𝑚), where ∀𝑖 ∈ {1, … , 𝑚}, 𝑣 𝑢,0𝑖 = 0 ⟺ 𝑔𝑢𝑖 = 2, and 𝑣 𝑢,0𝑖 = 1 otherwise.

• Multidimensional Binary Byzantine Agreement For every user 𝑢 in the network:

– 𝑢 starts the execution of MBBA with input the list of bits vu,0;
– 𝑢 takes part actively to a step of MBBA only if it is elected as a player;
– output of MBBA: 𝑢 builds a certificate for vu = (𝑣 𝑢1 , … , 𝑣 𝑢𝑚) = v = (𝑣1, … , 𝑣𝑚), which is the

same for every honest user in the network.4

• Cob Output Determination Being v the output of MBBA and u the first output of MGC computed
by the user 𝑢, 𝑢 computes the output of Cob outu = (Θ̄𝑢

1, … , Θ̄𝑢
𝑚), where ∀𝑖 ∈ {1, … , 𝑚}, Θ̄𝑢

𝑖 = Θ𝑢
𝑖 if

𝑣𝑖 = 0 and Θ̄𝑢
𝑖 = ⊥ if 𝑣𝑖 = 1. 5

We underline the fact that the way MBBA is used in Cob is the same way BBA is used in
Algorand: the goal is to decide whether to reject or accept a candidate piece of information
(for Algorand a block, for Cob an observed value or a relevant information about a give event).
However, MGC is used in a very different way: while GC in Algorand is used to determine
the leader of a given protocol run, MGC in Cob is used to collect the opinion of several nodes
advertising the list of values they have observed6.
4What the network is actually doing during the MBBA execution is identifying the components of the vectors u

which are the same for every honest user 𝑢. In particular if agreement on a component 𝑐 of v (the list of bits) is
reached on 0, i.e. 𝑣𝑐 = 0, then this means that the honest users share the same value Θ𝑢

𝑐 and they will preserve it,
otherwise, if agreement has been achieved on 1, i.e. 𝑣𝑐 = 1, this means that the network could not be convinced that
the honest nodes share the same value Θ𝑢

𝑐 .
5It is proven that for each pair of honest users 𝑢1, 𝑢2, outu1 = outu2 holds.
6Algorand is a leader-based consensus protocol for a blockchain used to exchange cryptocurrency, therefore it
tolerates that some blocks may be created by malicious nodes and contain no transactions. In fact, in many
applications it is not necessary that a transaction request is immediately included in the newly created block, what
is essential is that eventually an honest node will create a block which includes the pending transaction request.

85

3. Applicability of Cob

In this section we will explain how Cob can be used to regulate a scalable and sustainable
blockchain. As we explained in Section 1.1, an approach which can be used to reduce the
amount of computation or communication necessary to the maintenance of a blockchain is
the subdivision of time into preassigned time-slots. This concept clearly can be combined to
sharding in order to increase the scalability of a blockchain platform. What we obtain is a
sharding-based blockchain in which for each shard the network assigns a time-slot to a specific
node. Therefore, if the number of shards in a given epoch is 𝑚, then there must be 𝑚 nodes,
one for each shard, who are expected to publish a block within the end of the time-slot. But
let us proceed step by step in the description of how Cob can be used to achieve this protocol
structure.

3.1. Cob and time fragmentation

First, we explain how Cob can be adapted to the certification of block creation. As we have
mentioned in Section 2, Cob is a leaderless consensus protocol which has been designed to let a
network of nodes reach consensus on the description of a set of events which are expected to
happen in a time interval. If we can consider a standard blockchain (a single shard) which is
maintained with the use of preassigned time-slots, then there is a single event that the network
observes during every time-slot: the creation of a block performed by the node in charge. Note
that the fact that Cob carries out the consensus in parallel on each component of the list of
events observed is not relevant now (since we are considering only one event), but it will become
relevant in Section 3.2.

If the following statements hold:

1. nodes are provided with same speed clocks;
2. it is possible to upper-bound the diffusion time of a message of fixed weight;
3. the nodes agree on 𝑡, the duration of a time-slot;
4. the network agrees on a list 𝐿 which assigns each time-slot o a given node;

then we can describe a protocol which manages the definition of time-slots and guarantees that
an attacker can not pretend it has received late a legitimately created block.

In Section 3.2 we will explain how to obtain the last two items of the list, namely the duration
𝑡 of the time-slots and the list 𝐿; for what concerns the first two items, they are commonly
adopted assumption in distributed protocol definitions. Assuming that each network member is
in possess of the information above, the protocol could work in the following way:

Protocol 2 Time-slot

• Synchronization setup: the network executes an instance of Cob to decide when to start; as
soon as the network creates a certificate for the message start, the actual protocol can begin.
Since the upper-bound for the diffusion time of the certificate is 𝜆, the delay between any two
honest nodes is less than 𝜆.

• Block creation: the node in charge, according to the list 𝐿 builds a block of transactions and
before time 𝑡 − 2𝜆 broadcasts this block.

86

• Timing evaluation: the nodes of the network start executing Cob when their own private clock
signs time 𝑡, and try to reach consensus on the digest of the newly created block.7

• Certificate creation and start of a new time-slot: each player marks the end of the
current time-slot and the beginning of the new one as soon at the reception of a certificate for the
newly created block (produced by the network via Cob). The nodes reset their same-speed clocks
(the delay is given by the diffusion time of a certificate, which is again 𝜆).
Return to Block creation.

In Protocol 2 it is shown that, assuming the existence of a list 𝐿, which assigns each time-slot
to a node, this iterative protocol guarantees that if the right node creates and broadcasts a block
in time, the network can certificate the correctness of the creation process.

Up to now, the network has not evaluated the transactions included into the block, however,
this can be done right after timing verification. Assuming that 𝐿, the consensus protocol, and
the semantic rules which define which transactions can be included into the ledger are public
knowledge, the only aspect that can bring the nodes to disagreement is whether the legitimate
node has created its block in time. The disagreement may be caused by the delay between nodes
and the time of diffusion of messages. Once this information is agreed upon through Cob, every
honest node will be able to determine if the transactions are invalid (therefore the block will
not be taken into account) or the block can be preserved.

3.2. Cob for time-slot assignation and sharding consensus

As emphasized in Section 1.1.2, a key concept in the design of blockchains implementing sharding
is the epoch: a time interval in which the system configuration (i.e. protocol parameters and
nodes partaking the consensus process) is fixed [8]. Once the epoch ends, the actors executing the
consensus protocol may be substituted and, if the network has evolved, the protocol parameters
can be updated accordingly.

While explaining how Cob can be useful in the implementation of architectures based on
sharding, we will follow the guidelines described in Section 3.1, maintaining the division of time
in preassigned time-slots for each shard. We remind that our goal is to propose a consensus
layer which may help in the creation of sustainable and scalable blockchain platforms. The
first adjustment that must be done regards the list 𝐿 which deals with the time-slot assignation,
which must cover the time-slots of an epoch and then must be updated for the following one.
Since in the sharding case there is more than one chain of blocks, the list 𝐿, together with the
time-slot, must specify the shard on which a node must append its block.

Cob can be very useful in the definition of a sharding based architecture mostly by periodically
making a freeze frame representing the network status and defining the next epoch configuration.
Since Cob is a strong consistency protocol, once the frame describing the network status is
published, the network will consider those information final, and act accordingly. For instance,
Cob can be used to let the network determine the protocol parameters of an epoch on the basis
of the information previously broadcast by the nodes. Examples of protocol parameters that
must be agreed upon to define an epoch are the following:
7Note that if the creator of the block has broadcast it before 𝑡 − 2𝜆 (according to its own time reference), then every
node has received the block within time 𝑡 (again, according to their own time reference), since 𝜆 upper-bounds the
time for the message diffusion, and also the delay between two nodes.

87

1. the number of shards;
2. the number of time slots;
3. the duration of the time-slots;
4. the list 𝐿 of nodes in charge of the creation of a block in a given time-slot and a given

shard.

Note that these parameters must be determined according to the information observed during
the previous epochs, and the consensus protocol must make explicit some deterministic rules
to let the network easily reach consensus on the values. In fact we recall that consensus can
be reached if there exist, at the beginning of the protocol, a sufficiently large agreement on
the values proposed by the single nodes: then the consensus protocol makes this agreement
explicit, reliable and final. Therefore, the evaluation of the epoch parameters can be seen as a
description of events observed during the previous epochs. For example, the number of shards
active during an epoch could depend on the number of nodes that apply for becoming block
creators in the following epoch: the higher the number of candidates, the higher the number of
shards. This means that each protocol parameter can be seen as a description of events observed
in a given time interval, therefore they can be determined executing an instance of Cob.

It is necessary to clarify the fact that some parameters depend on other parameters, for
example the list 𝐿 depends on the number of shards and the number of time-slots. In this case
it is sufficient to validate the list 𝐿 to consequently implicitly fix the number of shards and the
number of time-slots.

3.3. The Synchronization Chain based on Cob

Now that we have explained how Cob can be useful in the creation of a sustainable and scalable
blockchain, the next question is: how can we build a framework which is agnostic of the
underlying sharding consensus components (i.e. intra-shard consensus, cross-shard transaction
processing, and shard formation), and put into practice the ideas described in Section 3.2 and
Section 3.1?

This can be done introducing another independent chain, which we call Synchronization
Chain, which is maintained by the network and has two main scopes:

• synchronize the work of the nodes who work in different shards: the Synchronization Chain
dictates the beginning and the end of the time-slots and hash-links the blocks that have
been legitimately created in time. This can be done in the following way: after every
time-slot, the nodes working at the maintenance of the Synchronization Chain reach
consensus on the set of blocks which have been created (by the nodes prescribed by 𝐿)
and broadcast in time during that time-slot. The consensus is reached on the digest of
these blocks, therefore a block of the Synchronization Chain contains the list of blocks
created in time for each shard, and when this block gets published, the network starts the
new time-slot and knows which blocks have passed the first validation (which is only
about timing and legitimacy);

• deal with epoch reconfiguration: the block of the Synchronization Chain created in the
last time-slot of each epoch, together with the hash pointers to the blocks of the shards
mentioned above, contains the parameters of the following epoch. The consensus protocol

88

must specify how the parameter must be valued, and must specify how the nodes must
create the list 𝐿. The nodes maintaining the Synchronization Chain, follow these rules
to compute the parameters, and produce this larger block during the last time-slot of
an epoch. With this information the network activates the next epoch and the new
time-slots.

Table 1
A block of Synchronization Chain created in a time-slot of epoch ℎ.

HEADER

𝐻(𝑆ℎ,𝑖−1) hash-pointer to previous Synchronization Block

DATA

𝐻(𝐵𝑠
ℎ,𝑖)

𝐻(𝐵1
ℎ,𝑖) hash-pointers to the blocks created

⋮ during 𝑖-th time-slot of epoch ℎ on shard 𝑠
𝐻(𝐵𝑚

ℎ,𝑖)

EPOCH DATA (only in blocks created after the last time-slot of
epoch ℎ)

parameters value of parameters for following epochs

List 𝐿 list of nodes that will create blocks in the assigned
shards in the next epoch

In this context, Cob is well-suited to be used as the consensus protocol for the Synchronization
Chain. In fact, besides being leaderless, a property which guarantees the authenticity of the
data agreed upon, it efficiently carries out the consensus process in parallel on each component
of the list of events, which is essential in this kind of applications, as emphasized in Section 2.
Since the agreement on some components of the list of observed events might be reached
on ⊥, the blockchain consensus protocol must determine some default values for the epoch
parameters. That is, there should be a rule which decides the value of the parameters to be
used when agreement is reached on ⊥. For example, the configuration of the previous epoch
could be maintained, otherwise the network could adopt some fixed configuration. This design
choice depends on the application context.

The protocol that describes the use of the Synchronization Chain can be summarized in the
following way:

Protocol 3 Synchronization Chain

• Epoch reconfiguration and timing evaluation: the network executes an instance of Cob
to decide the new epoch parameters, and the blocks created in time during the current time-slot.
As soon as the network reaches agreement, the block of the Synchronization Chain is published,
advertising the parameters and the digest of the blocks created in time. The new epoch begins.
Go to Certificate creation and start of a new time-slot.

89

• Timing evaluation: the nodes of the network start executing Cob when their own private clock
signs time 𝑡, trying to reach consensus on the digest of the newly created blocks, one for each
shard.
Go to Certificate creation and start of a new time-slot.

• Block creation: the nodes in charge, according to the list 𝐿 published at the end of Epoch
reconfiguration and timing evaluation, build a block of transactions and before time 𝑡 − 2𝜆
broadcast their block.
If the current time-slot is the last of the epoch, go to Epoch reconfiguration and timing
evaluation, otherwise go to Timing evaluation.

• Certificate creation and start of a new time-slot: as soon as a player receives a cer-
tificate for the newly created blocks (produced by the network using Cob), it marks the end of the
current time-slot, and the beginning of the new time-slot. Therefore the nodes can reset their
same-speed clocks (which will be delayed by at most by the diffusion time of a certificate, namely
𝜆) and return to Block creation.

Since Cob is a consensus protocol with strong consistency, the information included in the
blocks of the Synchronization Chain are final. Moreover, thanks to the fact that Cob is leaderless,
the evaluated fields are trustworthy. Therefore, the Synchronization Chain can be seen as a
trusted third party who communicates the outcome configuration for the following epoch based
on the information the network has collected during the current (but possibly also previous
epochs).

The intra-shard consensus protocol can be weak, which allows lower communication con-
sumption, however, due to to the Synchronization Chain’s timing evaluation, there is a strong
consistency consensus on the legitimately created blocks. This simplifies Cross-shard trans-
action processing, since the nodes working in different shards know which transactions can
potentially become final.

4. Performance analysis

We can now take the performance analysis of Cob included in [6] and apply it to the use case
discussed here. The analysis is focused on comparing the amount of data broadcast in the
network during a instance of Cob executed on a list with ℓ components with the amount of
data broadcast in an execution of ℓ instances of Algorand to reach Consensus on each relevant
information regarding the observed events.

In order to provide a comparison which fits the use case of the Synchronization Chain
described in Section 3.3, we must identify a reasonable number of parameters necessary to
perform the epoch reconfiguration, then we can vary the number of shards and time-slots to
determine the number of elements in the list 𝐿.

Once this is done, we can quantify the weight of messages broadcast at the end of the last
time-slot of each epoch, when the epoch reconfiguration is performed, and the weight of
messages of all the other time-slots, when the network must notify only the blocks created
within the end of the current time-slot. For sake of simplicity we will assume the number of
time-slots during an epoch is fixed, so that we can vary only the number of shards.

The number of components Nc𝑒 that must be agreed upon in the last time-slot of epoch 𝑒
can be parameterized as follows: Nc𝑒 = 𝛼 + 𝛽Ns𝑒+1 + Ns𝑒 where Ns𝑥 is the number of shards in

90

Figure 1: Amount of data broadcast in the
network (in MB) using Algorand or Cob during
the last time-slot of each epoch, in terms of the
number of shards.
Linear scale in the x-axis and logarithmic
scale in the y-axis.

Figure 2: Amount of data broadcast in the
network (in MB) using Algorand or Cob during
any time-slot of each epoch but the last one,
in terms of the number of shards.
Linear scale in the x-axis and logarithmic
scale in the y-axis.

epoch 𝑥, 𝛼 is the number of parameters defining the general configuration of the platform, and
𝛽 is the number of parameters specifying some properties of each shard of the next epoch (e.g.
the nodes designated to work on a given time-slot).

Let us fix the number of time-slots for epoch to 10, and choose the parameters 𝛼 = 20 and
𝛽 = 10 + 1 (these values are chosen in the same order of magnitude as the ones relative to the
blockchain Quadrans [1], where 10 of the 𝛽 parameters characterizing the shards are the nodes
assigned to a given time-slot, for each shard). For what concerns the regular time-slot, the
number of components that must be agreed upon is simply Ns𝑒, i.e. the number of blocks that
should be created (note that this number is considered also in the last time-slot).

The results of the comparison are presented in Figure 1 and Figure 2, and are based on the
performance analysis included in [6] for the values of parameters 𝛼 and 𝛽 mentioned above.
For sake of simplicity we also assumed Ns𝑒 = Ns𝑒+1, i.e the number of components in the last
time-slot is 20 + 12Ns𝑒+1.

5. Conclusions

In this paper it is shown how the consensus protocol Cob, presented in [7, 6], can be useful
for designing sustainable sharding-based consensus protocols for blockchains, as suggested in
the original papers [7, 6]. The key concept is the following: in an architecture that pre-assigns
time-slots to nodes, the node assigned to a given time-slot in a shard is common knowledge,
and the network is in agreement about this. The same holds for the quality evaluation of the
transactions included in the blocks: every honest node can determine whether a given block
contains valid transactions according to the chain of blocks to which it is connected. In fact,
the consensus protocol must define how the ledger can evolve and, given a static status of the
ledger, which transactions can be appended. The only thing which remains subjective for each
node is the moment in which a message is received. Someone might have received it in time,
someone else might have received it late. These messages may be blocks of transactions or data

91

useful for the epoch reconfiguration, anyways, it is essential for the network to have a clear
image of the status of the evolving system (the blockchain), in particular when the system is
maintained by several groups working in parallel, which is the case of a blockchain that uses
sharding to scale. We propose a solution to this problem using Cob, so that consensus can be
reached on these subjective data (the network decides on the basis of what the majority of the
nodes have observed) and every node in the network can have the same view on how the ledger
is evolving.

Acknowledgments

The publication was created with the co-financing of the European Union - FSE-REACT-EU,
PON Research and Innovation 2014-2020 DM1062 / 2021. The authors are members of the
INdAM Research group GNSAGA. The first author acknowledges support from Eustema S.p.A.
through the PhD scholarship.

References

[1] Michele Battagliola, Andrea Flamini, Riccardo Longo, Alessio Meneghetti, and Massimil-
iano Sala. Quadrans blockchain, 2021.

[2] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theoretical
Computer Science, 777:155–183, 2019.

[3] Takamaka enterprise blockchain. Company oriented blockchain. takamaka.io/whitepaper,
2020.

[4] D. Larimer et al. Eos.io technical white paper v2. https://github.com/EOSIO/
Documentation/blob/master/TechnicalWhitePaper.md, 2017.

[5] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous
byzantine agreement. SIAM Journal on Computing, 26(4):873–933, 1997.

[6] Andrea Flamini, Riccardo Longo, and Alessio Meneghetti. Cob: a leaderless protocol for
parallel byzantine agreement in incomplete networks. Distributed and Parallel Databases,
2022.

[7] Andrea Flamini, Riccardo Longo, and Alessio Meneghetti. Multidimensional byzantine
agreement in a synchronous setting. Applicable Algebra in Engineering, Communication
and Computing, pages 1–19, 2022.

[8] Yizhong Liu, Jianwei Liu, Marcos Antonio Vaz Salles, Zongyang Zhang, Tong Li, Bin
Hu, Fritz Henglein, and Rongxing Lu. Building blocks of sharding blockchain systems:
Concepts, approaches, and open problems. CoRR, abs/2102.13364, 2021.

[9] Eric Lombrozo, Johnson Lau, and Pieter Wuille. Segregated witness (consensus layer).
Bitcoin Core Develop. Team, Tech. Rep. BIP, 141, 2015.

[10] Alessio Meneghetti, Tommaso Parise, Massimiliano Sala, and Daniele Taufer. A survey
on efficient parallelization of blockchain-based smart contracts. Annals of Emerging
Technologies in Computing (AETiC), 3(5), 2019.

[11] Silvio Micali. Byzantine agreement, made trivial, 2016.
[12] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger

92

of bft protocols. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 31–42, 2016.

[13] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized Business
Review, 2008.

[14] Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar. Spectre: A fast and scalable
cryptocurrency protocol. Cryptology ePrint Archive, Report 2016/1159, 2016. https:
//ia.cr/2016/1159.

[15] Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han. Sok: Sharding on blockchain. In
Proceedings of the 1st ACM Conference on Advances in Financial Technologies, pages 41–61,
2019.

93

	Analysis of a Blockchain Protocol Based on LDPC Codes Massimo Battaglioni, Paolo Santini, Giulia Rafaiani, Franco Chiaraluce and Marco Baldi
	Evaluating Blockchain Systems: A Comprehensive Study of Security and Dependability Attributes Stefano De Angelis, Gilberto Zanfino, Leonardo Aniello, Federico Lombardi and Vladimiro Sassone
	A Study on Diem Distributed Ledger Technology Giuseppe Antonio Pierro and Roberto Tonelli
	DELTA Distributed Elastic Log Text Analyser Pierluigi Di Pilla, Remo Pareschi, Francesco Salzano and Federico Zappone
	A Provably-Unforgeable Threshold Schnorr Signature With an Offline Recovery Party Michele Battagliola, Alessio Galli, Riccardo Longo and Alessio Meneghetti
	Cob: A Consensus Layer Enabling Sustainable Sharding-Based Consensus Protocols Andrea Flamini, Riccardo Longo and Alessio Meneghetti
	Olive Oil as Case Study for the *-Chain Platform Stefano Bistarelli, Francesco Faloci, Paolo Mori and Carlo Taticchi
	AgriChain: Blockchain Syntactic and Semantic Validation for Reducing Information Asymmetry in Agri-Food Pierluigi Gallo, Federico Daidone, Filippo Sgroi and Mirko Avantaggiato
	On-Chain Global Maintenance Services Alessandro Bellini, Antonio Bonifacio, Salvatore Esposito De Falco, Simone Naldini, Francesco Pacileo, Diego Pennino, Maurizio Pizzonia, Domenico Sardanelli, Andrea Vitaletti, Pietro Vito and Marco Zecchini
	Blockchain-Based Tracking of the Supply Chain of the Italian Craft Beer Sector Lorenzo Ariemma, Niccolò De Carlo, Diego Pennino, Maurizio Pizzonia, Andrea Vitaletti and Marco Zecchini

