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Preface

This book contains the contributions which were selected for publication at the
fourth edition of the Distributed Ledger Technology Workshop (DLT 2022),
which has been held in conjunction with ITASEC22 in Rome, Italy, on June 20,
2022. This event follows the first three editions of the workshop held at Perugia
in 2018, at Pisa in 2019 and at Ancona in 2020, respectively, and represents the
annual meeting of the Italian DLT group.

The last years have witnessed an impressive and increasing interest around
Distributed Ledger Technology. A huge number of application fields, including
finance, academics, IoT, industries, just to mention some of the most popular
ones, are experiencing the advantages of reliable and unalterable information
storage and exchange without any trusted third party. This large interest makes
discussion on open problems more pressing, like, for example, regarding privacy,
scalable and low-latency architectures, interoperability, off-chain solutions, legal
aspects, etc. Intersections of blockchains with other technological trends, like,
AI, big data, IoT, Industry 4.0, are further interesting discussion topics.

The primary goal of DLT2022 was to foster discussion and cross-fertilisation
of ideas among experts in different fields related to DLTs, and thus advance
the international state-of-the-art. Similarly to the previous editions, the DLT
2022 workshop solicited two kinds of contributions: research papers and oral
communications. Both types of contribution entailed an oral presentation at
the workshop, but only the former ones are reported in this book. In particular,
the workshop accepted 10 research papers and 6 oral contributions.

We would like to express our thanks to the authors who submitted their pa-
pers to the workshop, and to the members of the Technical Program Committee
for their valuable work in evaluating the submitted papers.

June 2022
Maurizio Pizzonia
Andrea Vitaletti
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Roberto Zunino, Università degli Studi di Trento
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Analysis of a Blockchain Protocol Based on LDPC
Codes
Massimo Battaglioni1,*, Paolo Santini1, Giulia Rafaiani1, Franco Chiaraluce1 and
Marco Baldi1

1Department of Information Engineering, Università Politecnica delle Marche, Ancona, 60131, Italy

Abstract
In a blockchain Data Availability Attack (DAA), a malicious node publishes a block header but withholds
part of the block, which contains invalid transactions. Honest full nodes, which can download and
store the full ledger, are aware that some data are not available but they have no formal way to prove it
to light nodes, i.e., nodes that have limited resources and are not able to access the whole blockchain
data. A common solution to counter these attacks exploits linear error correcting codes to encode the
block content. A recent protocol, called SPAR, employs coded Merkle trees and low-density parity-check
codes to counter DAAs. In this paper, we show that the protocol is less secure than claimed, owing to a
redefinition of the adversarial success probability. As a consequence we show that, for some realistic
choices of the parameters, the total amount of data downloaded by light nodes is larger than that
obtainable with competing solutions.

Keywords
Blockchain, data availability attacks, LDPC codes, SPAR protocol

1. Introduction

A blockchain can be seen as an ordered list of blocks, each containing a set of transactions
occurred among the participants of a peer-to-peer network. The recent discovery of Data
Availability Attacks (DAAs) represents a new threat against blockchain security. Since the
DAA introduction in [2], there has been a growing research interest in finding efficient coun-
termeasures to this type of attacks, possibly leading to new blockchain models with improved
scalability and security (e.g., [13, 8, 1, 5]).

In fact, scalability, which is related to the ability of supporting large transaction rates, repre-
sents one of the main issues in most existing blockchains [14]. The straightforward solution of
increasing the block size raises a series of further concerns. In fact, the larger the block size
the smaller the number of nodes able to download the full blockchain and, indeed, to partici-
pate in the network as full nodes, verifying the validity of new blocks and of every contained
transaction. More peers would rather participate in the network as light nodes, which, due to
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their limited resources, store only a squeezed version of the blockchain [10] and, consequently,
cannot autonomously verify the validity of transactions.

Light nodes aim at downloading as less data as possible. For instance, they may store only
the block headers, which unambiguously identify the content of the blocks. However, in a
setting with relatively few full nodes, collusion among them is more probable; this makes light
nodes more susceptible to DAAs. In fact, the aim of a DAA is to make at least one light node
accept a block which has not been fully disclosed to the network. This can happen if and only if
honest full nodes are prevented from preparing fraud proofs, i.e., demonstrations that the block
is invalid [13, 3].

One of the most promising countermeasures to DAAs consists in encoding the blocks through
some error correcting code. Encoding introduces redundancy and distributes the information
of each transaction across all the codeword symbols, so that recovering a small portion of
an encoded block may be enough to retrieve the entirety of its contents through decoding.
This strategy, combined with a sampling process in which light nodes ask for fragments of
an encoded block and then gossip them to the connected full nodes, ensures that malicious
block producers are forced to reveal enough pieces of the invalid block [3]. An alternative
to transactions encoding is to change the protocol in such a way that a group of light nodes
can collaboratively (among themselves) and autonomously (from full nodes) verify blocks [5].
Another option is to decouple the consensus rules from the transaction validity rules [1, 4].

In a recent paper [13], Yu et al. proposed SPAR, a blockchain protocol which uses Low-Density
Parity-Check (LDPC) codes to counter DAAs; LDPC codes for this specific application have
then been studied in [8, 9]. SPAR comes as an improvement of the protocol in [3], the latter
using two-dimensional Reed-Solomon codes, whose parameters have been optimized in [12].
The authors of SPAR study the protection against DAAs in case the adversary aims to prevent
honest full nodes from successfully decoding the block, which is a strict requirement to settle a
proper fraud proof. In [13], this situation is investigated assuming the adversary operates by
withholding pieces of the encoded block; under a coding theory perspective, this gets modeled
as a transmission over an erasure channel. They conclude that, unless the adversary is able
to find stopping sets (which is an NP-hard problem [6]), SPAR guarantees that the success
probability of a DAA is sufficiently small even when light nodes download a small amount of
data besides the block header. As a consequence, SPAR claims improvements in all the relevant
metrics [13, Table 1].

Our contribution In this paper we study the security of the SPAR protocol. Namely, we
recompute the adversarial success probability with the consideration that deceiving at least a
single light node is a success for the attacker, which is the same scenario considered in [3]. This
yields a sampling cost that is much larger than the expected one, thus penalizing the light nodes
participating in the network. Moreover, we show that the total amount of data that light nodes
have to download (header size plus sampling cost) is actually larger than that of competing
solutions such as [3].

Paper organization The paper is organized as follows. In Section 2 we describe the notation
and some background. In Section 3 we introduce a general framework to study DAAs. In Section
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4 we provide some numerical results. Finally, in Section 5 we draw some conclusions.

2. Notation and background

In this section we establish the notation used throughout the paper, and recall some background
notions.

2.1. Mathematical notation

Given two integers 𝑎 and 𝑏, we use [𝑎, 𝑏] to indicate the set of integers 𝑥 such that 𝑎 ≤ 𝑥 ≤ 𝑏.
For a set 𝐴, we use |𝐴| to denote its cardinality. We denote with F𝑞 the finite field with 𝑞
elements. Given a vector v, we use supp(v) to denote its support, i.e., the set containing the
positions of its non-zero entries and 𝑤H(v) to denote its Hamming weight, that is, the size of
its support. Given an integer 𝑙 and a set 𝐴, 𝐴𝑙 is the set of vectors of length 𝑙 taking entries
in 𝐴. Given a matrix M, 𝑚𝑖,𝑗 denotes its entry at row 𝑖 and column 𝑗, M𝑖,: denotes the 𝑖-th
row, and M:,𝑗 denotes the 𝑗-th column. Given a set 𝐴, M:,𝐴 (respectively, M𝐴,:) represents the
matrix formed by the columns (respectively, rows) of M indexed by 𝐴.

We denote by Concat the string concatenation function and by 𝐻𝑏(·) the binary entropy
function. Moreover, we denote by Hash a cryptographic hash function, with codomain 𝐷. Given
some vector a, we use 𝒯 (a) to denote a generic hash tree structure constructed from a and
using Hash as underlying function. The root of the tree is denoted as 𝒯 .Root(a); it generically
takes values in 𝐷𝑡 and is a one-way function. With analogous notation, by 𝒯 .Proof(a, 𝑖) we
refer to the proof that the 𝑖-th entry of a is a leaf in the base layer of the tree. Notice that, when
Hash is properly chosen, then for any pair of strings a ̸= a′ we have 𝒯 .Root(a) ̸= 𝒯 .Root(a′)
and, for any index 𝑖, 𝒯 .Proof(a, 𝑖) ̸= 𝒯 .Proof(a′, 𝑖) with overwhelming probability (say, not
lower than 1− 2−256 for modern hash functions); therefore, for the sake of simplicity, in the
following we assume the absence of root and proof collisions.

2.2. LDPC codes

LDPC codes are a family of linear codes characterized by parity-check matrices having a
relatively small number of non-zero entries compared to the number of zeros. Namely, if an
LDPC H ∈ F𝑟×𝑛

𝑞 has full rank 𝑟 < 𝑛 and row and column weight in the order of log(𝑛) and
log(𝑟), respectively, then it defines an LDPC code with length 𝑛 and dimension 𝑘 = 𝑛 − 𝑟,
with code rate 𝑅 = 𝑘

𝑛 . If all the rows (columns, respectively) of H have the same Hamming
weight, we denote it as 𝑤 (𝑣, respectively). The associated code is 𝒞 =

{︀
c ∈ F𝑛

𝑞

⃒⃒
cH⊤ = 0

}︀
,

where ⊤ denotes transposition. The rows of the parity-check matrix define the code parity-check
equations, that is,

𝑛∑︁

𝑗=1

𝑐𝑗ℎ𝑖,𝑗 = 0, ∀𝑖 ∈ [1, 𝑟], ∀c ∈ 𝒞. (1)

Equivalently, any code can be represented in terms of a generator matrix G ∈ F𝑘×𝑛
𝑞 , which

forms a basis for 𝒞.
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In an Erasure Channel (EC), some of the codeword symbols are replaced with the erasure
symbol 𝜖. To this end, we express the action of an EC as c+ e′, where c is the input sequence
and e′ ∈ {0, 𝜖}𝑛, with 𝜖 such that, conventionally, 𝜖+ 𝑎 = 𝜖, ∀𝑎 ∈ F𝑞 . A decoding algorithm
for the EC aims to obtain a codeword by substituting each erasure with an element from F𝑞 . In
the case of LDPC codes, the most common decoder used over the EC is the peeling decoder [7].
This algorithm works by expressing (1) as a linear system, where the unknowns are exactly the
erased symbols. Due to the sparsity of H, with large probability the linear system will include
several univariate equations, i.e., containing only one erasure. Each of these equations can be
solved to compute the corresponding unknown, which is then substituted into all the other
equations. This procedure is iterated until all the unknowns are found or, at some point, the
linear system does not contain any univariate equation, i.e., all the unsolved equations contain
at least two unknowns. In the former case we have a decoding success, while in the latter case
we have a failure, due to a stopping set [11], i.e., a set of symbols participating to parity-check
equations that contain at least two unknowns each. If all the symbols forming a stopping set are
erased, peeling decoding fails. The stopping ratio 𝛽 of an LDPC code is defined as the minimum
stopping set size divided by 𝑛.

2.3. Components of the SPAR protocol

SPAR is based on a novel hash tree called Coded Merkle Tree (CMT), combined with an ad-hoc
hash-aware peeling decoder.

Coded Merkle Tree A CMT is a hash tree which is constructed from ℓ linear codes
{𝒞(1), · · · , 𝒞(ℓ)} over F𝑞; the 𝑖-th code has length 𝑛𝑖 and dimension 𝑘𝑖. Each code 𝒞(𝑖) is
defined by the systematic generator matrix G(𝑖) = [I𝑘𝑖 |A𝑖], with A𝑖 ∈ F𝑘𝑖×(𝑛𝑖−𝑘𝑖)

𝑞 and I𝑘𝑖
being the identity matrix of size 𝑘𝑖. The CMT uses an integer 𝑏 which must be a divisor of all
codelength values 𝑛1, · · · , 𝑛ℓ. Furthermore, one needs to have partitions for the sets [1, 𝑛𝑖],

for 𝑖 ∈ [1, ℓ− 1]. Namely, we have 𝒮𝑖 =
{︁
𝑆
(𝑖)
1 , · · · , 𝑆(𝑖)

𝑘𝑖+1

}︁
which is a partition of [1, 𝑛𝑖], such

that the 𝑆
(𝑖)
𝑗 are all disjoint and each one contains 𝑏 elements, since 𝑘𝑖+1 = 𝑛𝑖/𝑏. Starting from

c ∈ 𝒞(1), we build the associated CMT 𝒯 ′(c) as follows:

1. set 𝑖 = 1;
2. for 𝑗 ∈ {1, · · · , 𝑘𝑖+1}, set

𝑢𝑗 = Concat
(︁
Hash

(︁
c
(i)
z1

)︁
, · · · ,Hash

(︁
c
(i)
zb

)︁)︁
,

with {𝑧1, · · · , 𝑧𝑏} = 𝑆
(𝑖)
𝑗 ;

3. encode u = [𝑢1, · · · , 𝑢𝑘𝑖+1
] as1 c = uG(𝑖+1);

4. if 𝑖 < ℓ− 1, increase 𝑖 and restart from step 2), otherwise set 𝒯 ′.Root(c) = u.

1Notice that, when LDPC codes are considered, encoding is conveniently performed using the parity-check matrix
rather than the generator matrix. This implementation detail does not affect the conclusions of our analysis but,
considering encoding with the parity-check matrix, we would unnecessarily burden the notation. Therefore, we
stick to encoding with the generator matrix.
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Hash-aware peeling decoder A hash-aware peeling decoder, described in [13, Section 4.3],
is an algorithm that decodes a set of ℓ words which are expected to constitute a CMT. Namely,
let {x(1), · · · ,x(ℓ)}, where x(𝑖) ∈ {F𝑞 ∪ {𝜖}}𝑛𝑖 , be the words to be decoded. The hash-aware
peeling decoder works in a top-down fashion and, at every iteration, uses the peeling decoder
strategy (i.e., recover erasures that participate in univariate parity-check equations) for any
layer of the CMT. Additionally, the hash-aware peeling decoder verifies the consistency between
symbols of connected layers of the tree via hash functions, whilst the symbols are recovered.
Decoding fails whenever a stopping set or a failed parity-check equation is met, just like the
conventional peeling decoder. Furthermore, the hash-aware peeling decoder fails in case check
consistency fails for some layer. Finally, an undetected error is met (but not recognized by the
decoder) if the decoded sequence is a codeword, but not the original one.

3. A general framework to study DAAs

In this section we present a general framework to study DAAs, and then apply it to the SPAR
protocol. For brevity, we only give the fundamentals of the model; for further details concerning
DAAs, we refer the interested reader to [13, 3].

3.1. A general model for DAAs

We consider a game in which an adversary A exchanges messages with 𝑚 players P 1, · · · ,P 𝑚,
who cannot communicate among themselves. Each player has access to an oracle O , who can
only perform polynomial time operations. Every list of transactions is seen as a vector u ∈ F𝑘

𝑞 .
We assume that the following information is publicly available:

- a validity function 𝑓 : F𝑘
𝑞 ↦→ {False,True}, which depends on the blockchain rules and

on its current status;
- a 𝑘-dimensional code 𝒞 ⊆ F𝑛

𝑞 with generator matrix G;
- two hash trees 𝒯 , 𝒯 ′ (the former is constructed upon the uncoded data u, while the latter

is constructed upon the codeword c = uG).

The game proceeds as follows:

1. A chooses u ∈ F𝑘
𝑞 such that 𝑓(u) = False and a vector c̃ ∈ F𝑛

𝑞 ;
2. A challenges the players with (ℎ𝑢, ℎ𝑐), where ℎ𝑢 = 𝒯 .Root(u), ℎ𝑐 = 𝒯 ′.Root(c̃);
3. each player 𝒫𝑖 selects 𝐽𝑖 ⊆ [1, 𝑛] with size 𝑠;
4. A receives 𝑈 =

⋃︀𝑚
𝑖=1 𝐽𝑖;

5. to reply to a query containing the index 𝑖, A must send {𝑐̃𝑖, 𝒯 .Proof(c̃, 𝑖)}; A is free to
choose which queries to reply and which ones to ignore;

6. if a player does not receive a valid reply for any of his queries, then he discards (ℎ𝑢, ℎ𝑐);
7. the players gossip all the valid answers to O , that aims to produce a proof for one of the

following facts:
a) ∃c̃ ̸∈ 𝒞, such that 𝒯 ′.Root(c̃) = ℎ𝑐;
b) ∃c̃ ∈ 𝒞 such that 𝒯 ′.Root(c̃) = ℎ𝑐, c̃ = ũG and 𝒯 .Root(ũ) ̸= ℎ𝑢;
c) ∃c̃ ∈ 𝒞 such that 𝒯 ′.Root(c̃) = ℎ𝑐, c̃ = ũG, 𝒯 .Root(ũ) = ℎ𝑢 and 𝑓(ũ) = False.
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Let us also define two properties.

Property 1. Soundness: if a player accepts (ℎ𝑢, ℎ𝑐), then O will be able to recover c̃ (and ũ)
within a finite maximum delay.

Property 2. Agreement: if a player accepts (ℎ𝑢, ℎ𝑐), then all the other players will accept (ℎ𝑢, ℎ𝑐)
within a finite maximum delay.

Clearly, if A wins the game, which happens with probability 𝛾, soundness and agreement
are caused to fail. We denote by 𝛾 the Adversarial Success Probability (ASP), i.e., the probability
that A wins a random execution of the game.

It can be easily seen that, in our model, the players P 1, · · · ,P 𝑚 correspond to the light nodes
connected to a malicious node modeled by A . The oracle O instead represents the fact that we
assume any light node must be connected to at least one honest full node wishing to broadcast
fraud proofs. We remark that the hypotheses and properties that underlie our model are the
same under which DAAs have been studied in the literature [13, 3, 8, 12]. Finally, our model
does not fix any hash tree, nor code family; thus, it can be used to study several blockchain
networks. We now proceed by describing how SPAR adapts to such a model, but it can be easily
seen that also the protocol proposed in [3] fits into the model.

3.2. DAAs in the SPAR protocol

In SPAR, the CMT is instantiated using the code design procedure considered in [7], which
produces an ensemble of LDPC codes whose parity-check matrices have at most column weight
𝑣 and at most row weight 𝑤. As mentioned in Section 2.3, besides the CMT, SPAR requires the
use of another hash tree, denoted by 𝒯 and considered as a standard Merkle tree.

Let u ∈ F𝑘
𝑞 denote the list of transactions of a new block. Then, a correctly constructed

header contains ℎ𝑢 = 𝒯 .Root(u) and ℎ𝑐 = 𝒯 ′.Root(c), with c = uG(1). However, in case of
a DAA, the word c̃ = c+ e upon which ℎ𝑐 is constructed may be any vector picked from F𝑛

𝑞 .
The authors of SPAR study the protection of the protocol against DAAs; namely, they initially
consider the following two cases:

a) if c̃(𝑖) ̸∈ 𝒞(𝑖), then the proof consists in sending the value of all the symbols that participate
in a failed parity-check equation, except for one of them, together with their CMT proofs;
we refer to such a proof as parity-check equation incorrect-coding proof ;

b) if c̃ = c but 𝑓(u) = False, the adversary succeeds only if the samples received by the
oracle are not enough to allow the recovery of u from c̃ through decoding.

The scenario where the oracle finds a hash inconsistency is also considered, in which case O can
broadcast a fraud proof to the light nodes, called here hash inconsistency incorrect-coding proof.

The following bound for the ASP is derived [13, Theorem 1]:

𝛾 ≤ max
{︁
(1− 𝛼min)

𝑠 , 2max𝑖{𝐻𝑏(𝛼𝑖)𝑛𝑖+𝑚𝑠 log2(1−𝛼𝑖)}
}︁

(2)

where 𝛼𝑖 is the undecodable ratio of 𝒞(𝑖), that is, the minimum fraction of coded symbols
the adversary needs to make unavailable in order to prevent the oracle from full decoding,
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𝛼min = min𝑖(𝛼𝑖), and 𝑠 is the number of queries performed by each light node. Therefore, if
the oracle is not able to decode due to the presence of a stopping set, the adversarial success
probability computed in [13] is the probability that exactly one player receives an answer to all
its queries.

We argue here, instead, that a sufficient condition to break the soundness and agreement
as defined in [3, 13], and recalled in Section 3.1 is actually that at least one player accepts an
invalid block.

Proposition 1. In SPAR, an adversary cannot cause the soundness and agreement to fail with
probability

𝛾 ≤ min{1,max{1− [1− (1− 𝛼min)
𝑠]𝑚 , 𝑡2}}, (3)

where 𝑡2 = 2max𝑖{𝑏(𝛼𝑖)𝑛𝑖+𝑚𝑠 log(1−𝛼𝑖)}.

Proof. According to Property 1, the soundness fails if at least one player accepts the block header,
but the oracle will not be able to dispatch a fraud proof. The probability that exactly one player
accepts the challenge is lower than or equal to (1− 𝛼min)

𝑠 and, therefore, the probability that
exactly one player discards the challenge is larger than or equal to 1− (1−𝛼min)

𝑠. Considering
that there are 𝑚 players, the probability that all of them discard the block is larger than or
equal to [1− (1− 𝛼min)

𝑠]𝑚. So, finally, the probability that at least a player accepts the block
is lower than or equal to

1− [1− (1− 𝛼min)
𝑠]𝑚 .

The rest of the proof is as in [13, Theorem 1].

4. Numerical examples

Let us consider the code parameters proposed in [13] as a benchmark. It is shown in [13, Table
2] that the most favourable value of the stopping ratio of the constructed ensemble (𝛽*) is
obtained when 𝑤 = 8 and the code rate is 𝑅 = 1/4, from which 𝑣 = 6 easily follows. As in
[13] we consider two cases: a strong adversary (SA) able to find stopping sets and erase the
corresponding symbols, and a weak adversary (WA) unable to find them and hence forced to
erase random symbols. For the SA, the undecodable ratio is 𝛼* = 𝛽* = 12.4%; instead, in case
of WA we have 𝛼* = 47% [13]. According to [13, Table 2], when 𝑛 = 4096, the probability
that the code stopping ratio 𝛼 is smaller than the ensemble stopping ratio is relatively small
(3.2 · 10−4).

In Table 1 we report the upper bound (2) and the newly assessed upper bound (3) on the ASP,
for some values of 𝑠, considering 𝑛 = 4096 and 𝑚 = 1024; notice that the new value is never
smaller than the previously computed upper bound. Clearly, this may have severe security
consequences.

As obvious and expected, the upper bound on ASP is a decreasing function of the number of
samples 𝑠. So, once a target adversarial success probability is chosen, it is possible to compute
a lower bound for the value of 𝑠 each player needs to ask in order to stay below it, simply by
inverting (2) and (3). Considering the same parameters as above (𝑛 = 4096 and 𝑚 = 1024) we
obtain the results in Table 2.
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Table 1
Upper bound values from (2) and (3) for 𝑚 = 1024, 𝑛 = 4096.

𝑠
Upper bound on 𝛾 [13] New upper bound on 𝛾
WA (2) SA (2) WA (3) SA (3)

8 6.23 · 10−3 ≈ 1 ≈ 1 ≈ 1
35 2.24 · 10−10 9.72 · 10−3 2.29 · 10−7 ≈ 1
200 ≈ 0 3.17 · 10−12 ≈ 0 3.24 · 10−9

2000 ≈ 0 ≈ 0 ≈ 0 ≈ 0

Table 2
Values of 𝑠 (obtained by inverting (2) and (3)) for 𝑚 = 1024, 𝑛 = 4096 and different values of 𝛾.

𝛾
Lower bound on 𝑠 [13] New lower bound on 𝑠

WA SA WA SA

10−2 8 35 19 88
10−5 19 87 30 140
10−10 37 174 48 227

We notice that the actual number of samples asked by each node is much larger than expected,
resulting in a larger sampling cost 𝑆, which increases linearly with 𝑠 as follows [13]

𝑆 = 𝑠

(︂
𝐵

𝑘
+ [𝑦(𝑏− 1) + 𝑦𝑏(1−𝑅)] log𝑏𝑅

𝑘

𝑅𝑡

)︂
,

where 𝐵 is the block size, 𝑦 is the hash size and 𝑏, introduced in Section 2.3, is the number of
batched hashes in each layer. Finally, 𝑡 is the number of hashes in the root and determines the
header size 𝐻 = 𝑡ℓℋ, where ℓℋ = 256 is the binary length of the digests.

In Table 3, we assess the sampling cost 𝑆, normalized with respect to the block size 𝐵,
assuming 𝑚 = 1024, 𝑅 = 1/4, 𝑘 = 1024 symbols, 𝐵 = 1 MB, 𝑏 = 8, 𝑡 = 256 hashes and
some different values of the ASP 𝛾. A comparison with the optimized ASBK protocol [12],
named after the original authors’ initials, is also reported, for which we have considered the
same block size, and codes defined over a field of size 2256. As expected, the optimized ASBK
protocol results in smaller sampling costs than the SPAR protocol (this also held true for the
original ASBK protocol [13, Fig. 4]).

Table 3
Sampling cost 𝑆 normalized to the block size 𝐵 for 𝑚 = 1024, 𝑛 = 4096 and different values of 𝛾.

𝛾
Lower bound on 𝑆/𝐵 [13] New lower bound on 𝑆/𝐵 Lower bound on 𝑆/𝐵 [12]

WA SA WA SA -

10−2 0.0233 0.1019 0.0553 0.2563 0.0278
10−5 0.0533 0.2534 0.0874 0.4077 0.0358
10−10 0.1078 0.5068 0.1398 0.6611 0.0435

However, it should be noticed that SPAR has the advantage of relying on a fixed header
size whereas in ASBK the header size increases as the square root of the block size. Therefore,
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considering the same setting, in Tables 4, 5 and 6 we have compared the total amount of
downloaded data 𝐷 (sampling cost plus header size) using SPAR, to that obtained using the
optimized ASBK protocol, The tables also report the header size 𝐻 for the optimized ASBK
protocol, when 𝐵 = 1 MB, 𝐵 = 10 MB and 𝐵 = 100 MB, respectively. The header size for
SPAR does not depend on the block size and its value is 𝑡ℓℋ = 8.192 kB. Notice that this
amount of data must be downloaded by any light node during the regular course of the protocol,
independently of the malicious behaviour of some full nodes, possibly resulting in the additional
download of fraud proofs.

Table 4
Total amount of downloaded data normalized to the block size 𝐵 = 1 MB for 𝑚 = 1024, 𝑛 = 4096 and
different values of 𝛾.

𝛾
New lower bound on 𝐷/𝐵 Lower bound on 𝐷/𝐵 [12] 𝐻 [kB] [12]

WA SA - -

10−2 0.0635 0.2645 0.0454
20.41110−5 0.0956 0.4159 0.0544

10−10 0.148 0.6693 0.0639

Table 5
Total amount of downloaded data normalized to the block size 𝐵 = 10 MB for 𝑚 = 1024, 𝑛 = 4096
and different values of 𝛾.

𝛾
New lower bound on 𝐷/𝐵 Lower bound on 𝐷/𝐵 [12] 𝐻 [kB] [12]

WA SA - -

10−2 0.009 0.0386 0.0099
52.24410−5 0.0137 0.0609 0.0123

10−10 0.0214 0.0983 0.0154

Table 6
Total amount of downloaded data normalized to the block size 𝐵 = 100 MB for 𝑚 = 1024, 𝑛 = 4096
and different values of 𝛾.

𝛾
New lower bound on 𝐷/𝐵 Lower bound on 𝐷/𝐵 [12] 𝐻 [kB] [12]

WA SA - -

10−2 0.0012 0.0051 0.0022
158.0310−5 0.0018 0.008 0.0025

10−10 0.0028 0.013 0.0031

We observe that, for relatively small and moderate values of the block size, despite the larger
header size, the use of the ASBK protocol is preferable even if a weak adversary is taken into
account. Instead, when the block size is large, SPAR is very convenient in the presence of a
weak adversary, but still more costly than ASBK if the adversary is strong.
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5. Conclusion

By carefully analyzing the SPAR protocol we have shown that the actual sampling cost required
by the scheme, in order to achieve target security guarantees, is much larger than that initially
expected. Moreover, it is shown that, in many practical scenarios, the amount of data that light
nodes have to download is larger than that of other well-known schemes.
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Abstract
Blockchain is the enabling technology behind decentralised, fully peer-to-peer, systems. It distributes

trust across a network of autonomous entities without the need for centralised trusted authority. It is

therefore easier for an attacker to add malicious nodes that remain undetected. The absence of trust

results in a more vulnerable system, where adversaries may come both from the inside and outside. In

this context, security guarantees become crucial to ensure blockchains’ reliability and trust.

In this work, we propose a comprehensive evaluation of security attributes for blockchains. We refer

to the well-established concepts of security and dependability, broadly used in distributed systems, to

identify the most relevant properties for blockchains. Thus, we use such properties to evaluate five of

the most prominent, platforms, such as three permissionless blockchains -Bitcoin, Ethereum 2.0, and

Algorand- and two permissioned blockchains -Ethereum-private and Hyperledger Fabric. We assess

security over three dimensions, i.e. the consensus, infrastructure, and smart contracts.

Keywords
Blockchain, Security and Dependability, Consensus,

1. Introduction

Blockchain replaces traditional centralised infrastructures through a distributed network of

entities that collectively fulfill operations without the need of trusting each other. The ad-

vantages of decentralisation are threefold: no single point of failure, distributed trust, and a

system harder to compromise [40]. However, correctness and reliability are traded for complex

distributed computing procedures. The increased complexity and lack of trust lead to a more

vulnerable system due to a wider attack surface. For instance, in 2021 about US$ 1.3B got stolen

in decentralised finance applications [13] by exploiting code issues related to smart contracts -

programs deployed and executed on the blockchain.

Security is nowadays a paramount need for blockchains. In traditional distributed systems,

security is often paired with dependability. Those properties include a set of attributes that
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identify the reliability, availability, confidentiality, and integrity of a system during its execution

[6, 7]. In a blockchain context, where several parties exchange value via peer-to-peer trans-

actions, it is crucial ensuring that the system remains secure and dependable thus avoiding

problems like double-spending. However, blockchain systems entail several infrastructures

and architectural choices such as the use of either a permissionless or permissioned network,

the consensus protocol, and the use of smart-contracts for applications. As a result, assessing

the security of each component might be a challenging task. In literature, some effort has

been devoted to studying security in consensus protocols employed for blockchain systems

[11, 38, 41]. However, a fair comparison is elusive due to several contrasting assumptions.

Moreover, some works attempted to provide security evaluation of blockchains applications by

assessing exploited vulnerabilities of smart contracts [28, 5, 37], however, most of these studies

mainly focus on the Ethereum platform [43].

In this paper, we propose a comprehensive evaluation of blockchains’ security aspects. We

provide a refined definition of security and dependability referencing the traditional properties

of safety and liveness and the CIA Triad - confidentiality, integrity, and availability. Thus

we introduce two new properties, namely profiling and fairness. The former determines the

ability of a blockchain to authenticate participants and define access control rules. The latter

models the willingness of a system to be accessible by any participant and to process operations

democratically. We evaluate those properties with respect to three dimensions, namely consensus,
infrastructure and smart contracts. We consider five most prominent blockchain platforms,

namely Bitcoin [32], Ethereum 2.0 [20], Algorand [24] Hyperledger Fabric [3] and a private

instance of Ethereum, called Ethereum private [23]. Firstly, we study the architectural models of

these platforms. Then, we focus on the underlying consensus protocols, i.e. the mechanism

used by the network to democratically agree on the order operations. The proposed analysis

distinguishes three types of attack vectors targeting assets, i.e. ‘computing’ in PoW and ‘stake’

in PoS, or network nodes, i.e. the maximum number of subverted nodes that PoA and PBFT

can tolerate. Finally, we drift the analysis to the application layer built on top of the smart-

contracts capabilities of blockchains. We provide a detailed description of well-known code

issues affecting smart contracts and thus evaluate how each issue impacts security.

The rest of this paper is divided as follows. Section 2 introduces the blockchain platforms we

consider in our study and Section 3 describes their underlying consensus protocols, whereas

Section 4 presents a collection of smart contract code issues. Then, Section 5 defines the refined

security and dependability properties and the security analysis of those properties at consensus,

platform, and smart contract layers. Finally, Section 6 sums up the results.

2. Blockchain Platforms

In this section, we describe the blockchain platforms considered in our analysis, namely Bitcoin,

Ethereum, Algorand, Ethereum-private and Hyperledger Fabric. We briefly introduce the

architectures, yet an overview of their performance and security.

Bitcoin. Bitcoin [32] is the first, open-source, permissionless blockchain born for electronic

machine-to-machine payment without need of any central authority. Bitcoin transactions are

processed in a fully decentralised manner and their ordering is guaranteed by an underlying
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lottery-based (i.e. probabilistic) consensus mechanism, i.e., the PoW. Such a solution allows

a consistent, immutable, and therefore trustworthy, public ledger of transactions ever made.

However, in the lottery-based consensus model, valid blocks can get mined at the same time;

this makes it possible to fork the blockchain in multiple valid branches. To compromise a block

an attacker must control 51% of the computational power of the miners. Compromising more

than 6 blocks is considered computationally infeasible, therefore a block is considered final after

≈ 6 blocks. To avoid double spending and/or avoid spending tokens not owned, Bitcoin uses

the UTXO model, i.e., each transaction is composed of a list of unspent transactions indicating

the balance of accounts. Besides, the sender of a transaction is charged a mining fee whose

amount depends on the size of the transaction, i.e., the number of UTXO addresses used. To

ensure strong (eventual) integrity Bitcoin sacrifices performance, indeed the throughput is only

about 5 txn/s with a block confirmation period of about 10 minutes.

Ethereum. Ethereum [43] is the second main open-source blockchain project. The underlying

idea is to make the blockchain programmable through smart contracts, i.e., immutable pieces of

code deployed and executed autonomously on the so-called Ethereum Virtual Machine (EVM).

Smart contracts are developed in Solidity [19], a Turing-complete programming language.

The first version of Ethereum is based on the PoW consensus, like Bitcoin, but with a shorter

confirmation time (about 14 seconds) which increases the throughput to about 30 txn/sec.

This makes Ethereum more prone to forks than Bitcoin which are similarly solved with a

longest-chain rule. The PoW makes Ethereum vulnerable to 51% attacks, like Bitcoin, therefore

a block is considered final after 6 blocks. Ethereum does not employ a UTXO model to manage

transactions, but an account-based model, i.e., each account has its balance stored within the

state of the ledger. Each transaction is charged according to (i) gas price: the amount of ETH

(the Ethereum’s cryptocurrency) to be paid for each computational step; (ii) gas limit: a scalar

value representing the total amount of gas that can be consumed by the transactions in a block.

Ethereum 2.0. It is the most important update of the Ethereum protocol to cope with

scalability and performance issues. Among others, it proposes two major improvements, such

as the shift from PoW to a new PoS implementation called Casper Proof of Stake, and the

implementation of Shard Chains. The upgrade to PoS evolves Ethereum to a more energy-

efficient platform, while Shard Chains may drastically improve scalability by changing the way

the blockchain is replicated across the nodes of the network. Sharding allows parallel execution,

enabling the achievement of better throughputs. However, it comes at a security cost since each

shard is not managed by the entire network and hence is more vulnerable.

Ethereum Private Networks. Many implementations of the Ethereum protocol can run

private networks. We refer them to as Ethereum-private. Two of the most common Ethereum

clients are Geth [2], the Ethereum implementation in Golang language, and Parity [4], a Rust-

based implementation. Both allow the creation of a private instance, in which transactions are

visible only to a subset of network participants. Ethereum clients running private networks

enable the integration of pluggable lightweight consensus algorithms. These types of chains

are mainly used for business-to-business private enterprise settings which require higher

performance (hundreds of txn/sec) and privacy guarantees. The security of Ethereum-private

does not depend on computational power, but on the number of nodes, the attacker can control.

The attacker needs to control at least 1/3 of nodes, but a wrong consensus implementation may
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drastically increase the probability of attack success.

Algorand. Algorand [1] is a novel permissionless blockchain platform that aims at solving

the so-called blockchain trilemma, namely, scalability, decentralisation, and security. Algorand

embeds a distributed computation engine, i.e., Algorand Virtual Machine (AVM), that runs on

every node of the network and executes smart contracts, similarly to Ethereum. Algorand’s

smart contracts are self-verifiable pieces of code that run on the blockchain and automatically

approve or reject transactions according to a certain logic. The AVM interprets smart contracts

written in an assembler-like language called Transaction Execution Approval Language

(TEAL). The transaction model is similar to Ethereum, namely is account-based. Algorand’s core

innovation is its new consensus protocol, PPoS, which can reach agreement in large networks

without giving up neither scalability nor security. Algorand blockchain is designed not to fork

ever, transactions are considered final as soon as executed and included in a block. This makes

Algorand much faster than Ethereum with a block time of about 4.5 sec and throughput of

about 1000 txn/s. Compromising Algorand requires an attacker to control 1/3 of the stake.

Hyperledger Fabric. Hyperledger Fabric [3] is a permissioned blockchain platform featured by

a modular architecture. The distinguishing characteristic of Fabric is that it splits the transactions

ordering, i.e. the consensus process, from transactions execution, i.e. the operations on users’

assets. The assets within the ledger state are represented as a collection of key-value pairs, and

through smart contracts (called chain-codes in Fabric’s jargon), it is possible to combine their

values to carry out complex functions according to users’ needs, e.g. to perform an auction.

Being permissioned, Fabric offers an authentication layer that identifies the system entities by

issuing X.509 digital certificates. Additionally, the authentication process enforces authorisation

policies on the operations. Fabric introduces the concept of channels to represent restricted

consortium networks. Transactions within a channel remain private and shared only across

channel participants, enabling data isolation and confidentiality. As the operating environment

is more trusted than a permissionless setting, it allows employing a lighter consensus, which

results in better performances despite restricted security assumptions.

3. Blockchain Consensus Protocols

In this section, we describe the consensus underlying the blockchain platforms mentioned in

the previous section, namely PoW, CPoS, PPoS, PoA and PBFT.

Proof-of-Work. The PoW is a lottery-based consensus schema consisting of computationally-

intensive hashing tasks executed by some distinctive network nodes, called miners. Specifically,

miners create a block by retrieving transactions from a local pool and rush looking for a random

number that, if concatenated with the transactions included in a block, makes the hash of the

block lower than a target number. Such target number is adjusted over time according to a

desired difficulty. The difficulty is chosen to keep constant the block period, i.e., the average

time required by miners to solve the puzzle. The more the global computational power of the

network, the higher the difficulty, thus the lower is the target number. After solving the PoW,

the miner can broadcast the corresponding block to the network for being accepted by other

nodes. If accepted, all the correct nodes consider it as the latest block in the chain and start

mining new blocks on top of it. Due to the probabilistic nature of the PoW, forks may happen. It
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is the responsibility of the platform implementing the PoW to find a strategy to cope with forks.

The standard approach used by Bitcoin and Ethereum, as mentioned in the previous section,

is the longest-chain rule. Transactions may include a mining fee to incentive miners to pick

that from the pool. Thus, transactions with zero or low mining fees may never be included in a

block generating starvation [34, 32]. The verification and subsequent acceptance procedures

happening in PoW make a block persistent unless an attacker controls the majority of the

miners’ hash power (the aforementioned 51% attack), which enables it to create a chain fork

with modified transactions. However, being based on computational power rather than several

nodes, it is not vulnerable to sibling attacks. Although provides strong integrity properties,

besides energy inefficiency, PoW has performance limitation due to the intensive hashing tasks.

Casper Proof-of-Stake. The Proof-of-Stake (PoS) works by deterministically selecting a set of

validators according to their cryptocurrency holdings, i.e. their stake. Any node committing a

stake can become a validator by locking up their stake amount into a deposit. The validators

propose and vote on the next block, and the weight of each validator’s vote depends on the

deposit amount. In Ethereum’s PoS implementation, called Casper (CPoS) [18], each validator’s

turn is determined by one of the following techniques: Chain-based PoS: the algorithm pseudo-

randomly selects a validator during each time slot to propose a block; BFT-style PoS: a multi-round

process, in which each validator sends its vote for a specific block. At the end of the process, all

(honest and online) validators permanently agree on whether or not any given block is part of

the chain. Conversely to PoW, the CPoS protocol causes no waste of energy since it does not

requires computational tasks to be solved, therefore, performance can be much better. However,

if a validator does not follow the consensus rules, PoS applies penalties. Attacking a PoS requires

an attacker to control the majority of committed staking, making it not vulnerable to sibling
attacks. However, it is crucial not to make predictable the leader, otherwise, the attacker just

needs to compromise a much smaller set of nodes that may be elected as a leader; in this case,

the security drops from the ideal majority of committed staking to compromised nodes.

Pure Proof-of-Stake. The PPoS [24] is the underlying consensus of Algorand. It leverages

VRF (Verifiable Random Functions) [30] to significantly decrease the high volume of exchanged

messages occurring in traditional voting-based and lottery-based consensus. Specifically, PPoS

works as follows: it proceeds in rounds, and for each round there are three phases: block proposal,
soft vote, and certify vote. When a round starts, users use the VRF to select themselves as leader

and committee members. In the block proposal phase, the leader selected by the VRF propagates

a new block along with the VRF output, which proves that the account is a valid proposer. Then

in the soft vote, a selected committee of users cast a vote on the block proposals. This phase

reduces the number of proposals down to one, guaranteeing that only one block gets certified in

a round. When a quorum of votes from the committee members is reached starts the certify vote.

In this last phase, a new committee checks the validity of the block at the soft vote stage. Thus a

new vote begins to certify the block. When a quorum is reached, the block is committed and the

round terminates. Each phase is characterized by a timeout to ensure safety when partitions

occur. PPoS can achieve higher throughput and lower block time than traditional PoS due to a

reduced message exchange. Furthermore, the VRF makes the leader unpredictable, dismissing

the possibility of having fixed validators such as in traditional PoS.

Practical Byzantine Fault Tolerance. The PBFT consensus protocol [12] is characterised by a
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single-leader and view-change approach. The algorithm proceeds in views, for each view there

exists a leader and a set of replicas. Each view executes a three-phase commit protocol where

replicas exchange messages to reach the total order of transactions. In case of misbehaving

leaders, all the correct replicas run a view change operation which starts a new view and elects

a new leader. In an eventually-synchronous network, where messages are delayed and network

partitions may happen, the PBFT consensus protocol guarantees strong consistency provided

that 𝑓 < 𝑁/3, with 𝑓 malicious nodes and 𝑁 replicas. PBFT has been proven to be optimal

with 𝑁 ≥ 3𝑓 + 1 nodes [12]. PBFT is vulnerable to sibling attacks though since it cannot

distinguish if an attacker is falsely impersonating multiple nodes.

Proof-of-Authority. The PoA has been proposed as part of the Ethereum consortium for private

networks and implemented with two protocols called AuRa and Clique [35, 39]. PoA relies on a

set of trusted authorities running the consensus. Consensus in PoA relies on a leader rotation
schema, which distributes the responsibility of block creation among the authorities [9, 22].

Time is divided into steps. In each step, an authority is elected as the proposer. The way

authorities are elected differs in the two consensus protocols. AuRa proposes a deterministic

function based on UNIX times, which requires strong synchronisation assumptions. Conversely,

Clique computes leaders according to the number of the next block on the blockchain. The

PoA is a hybrid consensus protocol between the lottery-based and voting-based approaches.

PoA protocols guarantee eventual consensus on transactions. Indeed, the lightweight leader

election may lead to forks that eventually get resolved. Consequently, PoA cannot achieve

instant finality but this is delayed in time. According to the concept of the longest chain, a block

in PoA is considered final when a majority of further blocks have been proposed, under the

assumption that blocks are proposed at a constant rate [35]. These algorithms are vulnerable to

sibling attacks, and thus cannot be used in permissionless settings.

4. Smart Contracts Issues

Beyond secure-by-design due to consensus algorithms, a prominent security role is played by

smart contracts. In this section, we evaluate potential issues that affect the smart contract-

enabled platforms, such as Ethereum, Algornad, and Hyperledger Fabric, thus we consider

possible preventions/mitigation methods.

(𝐼1) Reentrancy. This vulnerability occurs when a caller contract invokes a function of an

external callee contract. Specifically, a malicious actor can call back from the callee contract

funds withdraw function of the caller contract, i.e., reentrancy, before the execution of the

caller triggering an infinite loop of calls. This allows the attacker to bypass the validity checks

of the caller and iterate infinitely. Ethereum is vulnerable to reentrancy and its exploitation

may lead to indefinite withdrawal calls. Two reasons cause this vulnerability [36]: (i) validity

checks are handled by state variables that are not updated until other transactions terminate,

(ii) no gas limit is required when handling interactions between external smart contracts.

Prevention methods consists in (i) update the state variables before calling external contracts;

(ii) introduce a mutex lock [19] in the contract state so that only the owner can update such

state. Similarly, Hyperledger Fabric suffers reentrancy since chaincodes-to-chaincodes are

allowed with no limitations inter-channel. Fabric mitigates such issues through a timeout,
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however, it is important to note that reentrancy has a limited impact on private settings since no

cryptocurrencies are involved. Conversely, Algorand does not suffer reentrancy since contract-

to-contract calls are allowed one way only, thus if smart contract A calls a smart contract B, the

latter cannot call back A.

(𝐼2) Integer overflow and underflow. This vulnerability occurs when a function computes an

arithmetic operation that falls outside a specific datatype. A prominent role is played by the

programming language. Furthermore, some protections there exist both natively or through

an external library. Ethereum does not provide native prevention for smart contracts, but

some recommendation has been defined, such as (i) using SafeMath library [33] to check on

underflow/overflow, (ii) using Mythril library [15] to check the security of EVM bytecode before

its execution. Algorand does not need any prevention library as TEAL natively copes with

under/overflow issues. Hyperledger Fabric, being based on golang makes us of the native

under/overflow management or common libraries such as overflow.

(𝐼3) Frozen Token. This vulnerability causes users’ funds deposited in the contract account to

be locked and impossible to withdraw back, effectively freezing them into the contract. Both

Ethereum and Algorand are vulnerable to such an issue. The causes of this vulnerability are

twofold: (i) the deposit contract account does not provide any function to spend funds using a

function from an external contract as a library, (ii) the callee contract function (selfdestruct
for Ethereum, ClearState for Algorand) is executed without checks. Prevention method

[14, 37]: a deposit contract shall assure that the mission-critical functions or money-spending

functions are not outsourced to external contracts. Hyperledger Fabric is not vulnerable since

no cryptocurrencies are involved.

(𝐼4) DoS with unexpected revert. This issue occurs if the execution of a transaction is reverted

due to a thrown error or a malicious callee contract that deliberately interrupts the execution.

Ethereum, Algorand and Hyperledger Fabric are vulnerable. For Ethereum, a best practice

to mitigate the issue regards the transaction sender to provide to the callee a certain amount

as a reward for the execution of a transaction so that the callee is not incentivized to revert.

Algorand does not have mitigation in place since no reward fees are available. Fabric, similarly,

does not have solutions to avoid it, due to the absence of cryptocurrencies.

(𝐼5) DoS with GasLimit. This vulnerability causes transactions to be aborted due to exceeding

the gas limit. This affects only Ethereum due to the presence of gas. To mitigate this issue the

contracts should not execute loops on accounts accessible data structures. Loops should be

controlled, such that the execution always terminates, even when transactions are aborted.

(𝐼6) Insufficient signature information. This vulnerability causes a digital signature to be valid

for multiple transactions. This happens when a sender uses a proxy contract [14, 37] as a deposit

for one or more authorised receivers. An authorised receiver owns a digitally signed message

delivered off-chain from the sender. The receiver withdraws funds from the proxy, which must

verify the validity of the digital signature. If the signature is malformed (missing nonces, or

proxy contract address), a malicious receiver can reuse the signature to reply to the withdrawal

transaction and drain the proxy balance. Prevention method: The contract shall check the

address and the nonce within digitally signed messages. Both Ethereum and Algorand are

vulnerable to this issue, while Hyperledger Fabric is not since it authenticates network nodes.

(𝐼7) Generating randomness. This vulnerability concerns smart contracts using pseudorandom

number generators (PRNG) to create random numbers for application-specific use cases. Specifi-
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cally, this vulnerability affects methods using random numbers created by a PRNG, in which the

base seed of the generator is a parameter controlled by miners, e.g. Solidity’s block.number,

block.difficulty. A malicious miner can manipulate the PRNG to generate an output that

is advantageous for itself. Ethereum, Algorand and Hyperledger Fabric are all affected by this

issue. For mitigation, mining variables should not be used in control-flow decisions. Therefore,

off-chain approaches to PRNG should be used, such as the use of oracles.

(𝐼8) Block Timestamp manipulation. This vulnerability affects smart contracts that use

timestamp parameter in the control-flow (e.g. for periodic payments) or as source of ran-

domness [14]. As miners can control this parameter, they could adjust that value to change the

logic of functions, and thus take profit. Ethereum is vulnerable to such issues and a prevention

method consists in avoiding the parameter in any control-flow decision logic. Algorand is not

vulnerable since it employs a maximum timestamp offset of 20 seconds between two blocks.

Similarly, Hyperledger Fabric has no constant block time.

(𝐼9) Transaction ordering dependence. This vulnerability is caused by a malicious manipulation

of the transaction priority mechanism used in Ethereum. Gas is usually used to prioritise the

execution of certain transactions over others [43]. However, malicious miners can alter this

procedure and always prioritise their transactions regardless of the gas price, hence manipulating

the global state of the blockchain in its favor [37]. Mitigation method: hide the gas price from

transactions using cryptographic committees or guard conditions [14]. Algorand and Hyperldger

Fabric are not affected by this issue since they do not use gas.

(𝐼10) Under-priced opcodes. This vulnerability is caused by under-priced opcodes that can be

executed at low cost and that consume a large number of resources. Misuse of the opcodes,

or a malicious actor, might trigger several invocations of these opcodes wasting the majority

of resources. This vulnerability regards Ethereum and it is caused by misconfigured gas price

parameters [14]. The Ethereum protocol has been upgraded to limit opcodes under-pricing.

Algorand is not affected since the cost is set 1 to all opcodes with a limit of 700 per application.

Hyperledger is not affected due to the nature of private blockchains’ costless computation.

(𝐼11) Token lost to orphan address. This vulnerability is caused by a lack of validation checks

on payment transactions. Ethereum only checks the recipient’s address format but not if such

an address is valid nor if it exists. If a user sends money to non-existing addresses, Ethereum

automatically creates a new orphan address [5]. An orphan address is neither an EOA nor a

contract address, hence the user can’t move the money which is indeed lost. Algorand has the

very same issue, with a small client-side check of existence as mitigation implemented in all

the official clients and SDKs. The only effective prevention method at the time of writing is to

manually assure the correctness of the recipient’s address [14]. Hyperledger nodes are instead

authenticated, thus it is not affected.

(𝐼12) Short address. This vulnerability affects only Ethereum and it is caused by the EVM

missing validation check on addresses. Recall that inputs are expressed as an ordered set of bytes,

in which the first four bytes identify the callee’s function, then other inputs are concatenated

in chunks of 32 bytes. In case of arguments with fewer bytes, EVM auto-pads with zeros to

generate the 32 bytes chunk. An attacker could manipulate this process to execute malicious

actions. For instance, if we consider the transfer(address addr, uint tokens) function

and a bad formatted addr with one missing byte, the auto-pad adds extra zeros at the end

of addr, and consequently increases the number of tokens to transfer [14]. To prevent that,
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write functions that validate the length of the transaction’s inputs. Algorand has prevention by

design, it does not add extra zeros as padding and the transaction fails in case of a short address.

Hyperledger Fabric, as above, is not affected due to the authentication of nodes.

(𝐼13) Erroneous visibility. This vulnerability takes advantage of Ethereum’s public nature.

Transactions (including data, balances and contract codes) are visible to any user. However,

Solidity provides four types of visibility to restrict the access to a contract’s functions, namely

public open to everyone, external only externally from the contract, internal only in-

ternally (the contract and its related contracts) , and private only within the contract. By

default, Solidity assigns the type public to functions, hence in case of erroneous visibility

configuration, an attacker might be able to call the function from the external [14]. To avoid

this, with Solidity 0.5.0 and above, it is mandatory to specify the function visibility. Algorand

conversely has all functions public only. Hyperledger can hide data in several methods such as

Trusted Execution Environment with Intel SGX, channels [8].

(𝐼14) Unprotected suicide. In Ethereum, Solidity contracts can be killed or deleted using the

suicide or self-destruct methods. Usually, only the contract’s owner, or authorised external

users, can invoke these functions. However, there might be cases in which the owner is not

verified by the functions, or the owner itself is malicious, in that case, an attacker can invoke one

of these methods and kill the contract. The very same situation happens with Algorand through

the ClearState function. Prevention method: enhance security checks with, permissions

mechanisms, to assure that the suicide/self-destruct and ClearState calls are approved

by different parties. Hyperledger Fabric is not affected.

(𝐼15) Unrequested Token. In Ethereum ERC-20 tokens can be sent to an arbitrary address.

This is used as a common phishing technique where a malicious actor creates an ERC-20 token

and sends some amount to random addresses. The token is designed with a sell smart contract

function which drains the wallet. When a phished user attaches his wallet to the application

controlling this contract, the user unintentionally authorises the smart contract to steal his

funds. Algorand mitigates this issue via opt-ins. Hyperledger Fabric is not affected since no

cryptocurrencies are involved.

5. Evaluation of Security Properties for Blockchain

In this section we introduce security and dependability attributes for blockchains and we

evaluate them over three dimensions, i.e., consensus, infrastructure and smart contracts. The

proposed analysis follows a qualitative evaluation that takes into account the descriptions of the

platforms and protocols detailed in the previous section. Therefore, the analysis considers how

the identified properties are met in each system. The methodology used assumes the deployment

of 𝑛 nodes responsible for consensus, which communicate over an eventually synchronous

network [17]. Such a model realistically describes the Internet network, where messages can be

arbitrarily delayed, but eventually delivered within a fixed time-bound.

A distributed protocol is considered if satisfies safety and liveness properties [11]. However,

in a blockchain context, the traditional definition of such properties does not straightforwardly

apply. For instance, transactions are asynchronously committed by the network after the

execution of a consensus protocol. For this reason, safety and liveness must be refined in order
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Table 1
Security evaluation of blockchain consensus protocols

PoW CPoS PPoS PBFT PoA

persistency eventual eventual yes yes eventual
termination yes yes eventual 𝑛 ≥ 2𝑓 + 1 eventual

validator fairness
hw stake stake

yes yes
dependent dependent dependent

to explicitly reflect the behavior of a blockchain system. To cope with this limitation, we start

from the traditional definitions of safety and liveness [11, 6, 7] to introduce two novel properties,

namely persistency and termination. We also provide a new metric for blockchains, i.e. the

fairness property. Following seminar work by Francez [21], we distinguish two aspects of the

fairness: validator fairness, for consensus protocols and client fairness, for infrastructures. The

novel security attributes for consensus in blockchain are thus summarised as follows:

1. Persistency: nothing wrong happens during the consensus execution; unwanted exe-

cutions must be prevented. When an honest node accepts a transaction, then all the

other honest nodes will make the same decision, which is irreversible. If persistency is

violated after a certain threshold (i.e. confirmation time), it will never be satisfied again.

Persistency is also referred to as finality [41].

2. Termination: ensures that a protocol makes progress towards an end, hence transactions

correctly terminate, i.e. the block including those transactions reaches persistency.

3. Validator fairness: in a blockchain, the consensus mechanism is fair if any honest node

can be potentially selected to the set of nodes that will participate in the agreement to

select the next block.

Table 1 summarises the consensus resilience of the four algorithms acting under the adver-

sarial model presented with our methodology. Firstly, we observe that PoW and CPoS enjoy

strong termination thanks to their probabilistic leader election based on mining, and staking.

Transactions are guaranteed to be added to the blockchain as soon as the mining proceeds, or

there is a majority of stakeholders. Conversely, probability in leader election affects persistency,

because of the possibility of having forks. However, such forks will eventually be resolved,

according to the specifics of the platform. For this reason, persistency must be classified as

eventual. Conversely, the PPoS protocol does not allow forks, and blocks are instantly finalised,

prioritising persistency over termination [24]. Indeed, the PPoS allows stalls in case of mis-

behaviors or network issues. However, PPoS’ introduces a recovery mechanism to ensure

termination, so we classify that as eventual. Both PoS protocols ensure security until a majority

of the stake remains in honest hands. If this condition is not verified, such systems can be

easily compromised. Validators with the majority of the stake can determine the next blocks

straightforwardly. This behavior is reflected with the validator fairness property in Table 1.

Differently in PoW, such property is strongly related to hardware capabilities. Miners with

outstanding computational power will have more chances to produce blocks.

Moving to permissioned blockchains, these systems rely on a higher level of trust, due to the

presence of node authentication. The consensus protocols used in this context are either classical
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Table 2
Security evaluation of blockchain platforms

Bitcoin Ethereum 2.0 Algorand Hyperledger Ethereum-private

confidentiality no no co-chains channels private txs

integrity
majority of majority of majority of

up to 3𝑓 + 1 eventual
hash power stake stake

availability yes yes yes up to 2𝑓 + 1 eventual
accountability partial partial partial yes yes
authorisation no no no yes yes
client fairness no no yes yes yes

voting-based ones, such as PBFT, or hybrid, as for PoA. PBFT has been broadly demonstrated to

guarantee persistency in the eventually synchronous model, as long as there are 𝑛 ≥ 3𝑓 + 1
active nodes in the network. Whereas as soon as 𝑛 ≥ 2𝑓 + 1 are honest, termination can be

also guaranteed [16]. In PoA, persistency is only eventually guaranteed, because PoAs are open

to forks. Termination is instead eventual, according to the number of honest validators. As long

as a majority of validators are active, termination is guaranteed, otherwise, the protocol stalls

and transactions are not finalised [16]. Finally, PoA’s validator fairness is guaranteed, since

every honest validator has the same chance of being elected as a leader as the others.

Turning to the security evaluation of blockchain platforms, we define six attributes based on

the traditional definitions of security and dependability [6], i.e. the CIA triad and the user’s

profiling. We identify the relevance of the properties of accountability and authorisation. Such

properties lead to fairness constraints which can be used to detect misbehaving participants.

Hence, our suggested attributes are:

1. Confidentiality: the possibility to keep some transactions confidential; absence of unau-

thorised leaking of sensitive information owned by one or more nodes;

2. Integrity: absence of improper alterations of the blockchain data from unauthorised users;

3. Availability: the ability of the system to run correct services without interruptions;

4. Authorisation: the ability of the system to specify access rights and privileges to resources

and to define permission roles for participants;

5. Accountability: the ability of the system to trace back the operations and the behaviour

of a certain user identity/physical entity;

6. Client fairness: the willingness of the system to democratically accept transactions from

any client without any preference.

Table 2, shows our analysis with the aforementioned six attributes. We observed that the

integrity of Bitcoin, Ethereum 2.0, and Algorand is strongly linked to where hash power and

stake lie. Indeed, an attacker owing the majority of the hash power (or stake), could break the

consensus protocol as already mentioned, hence maliciously injecting a fork with a subverted

chain [10]. In contrast, in Hyperledger and Ethereum-private, the integrity property is strongly

tied to the persistency property of their underlying consensus algorithms. Fabric employs PBFT,

which ensures persistency under the assumption of 𝑛 ≥ 3𝑓 +1, while Ethereum-private adopts
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Table 3
Security issues and native resistance/mitigation

Issue ID Security Issues
Native Resistance/Mitigation

Ethereum Algorand HL Fabric

𝐼1 CI + authorisation ✓
𝐼2 CI + authorisation ✓ ✓
𝐼3 A + authorisation ✓
𝐼4 A
𝐼5 A ✓ ✓
𝐼6 CI + authorisation ✓
𝐼7 I + authorisation
𝐼8 IA ✓ ✓
𝐼9 IA + accountability ✓ ✓
𝐼10 A ✓ ✓
𝐼11 I ✓
𝐼12 I + authorisation ✓ ✓
𝐼13 CI + authorisation ✓ ✓
𝐼14 all ✓
𝐼15 authorisation ✓ ✓

PoA algorithms, which can only guarantee eventual persistency. Despite strong availability,

the full replication of the blockchain in the Bitcoin, Ethereum 2.0, and Algorand platforms

leads to a lack of confidentiality due to the public nature of the information stored on these

blockchains [25]. However, if for Bitcoin and Ethereum 2.0 there is no way to mitigate this

issue, Algorand recently designed a solution which combines the public, permissionless network

with several private networks interconnected, a.k.a., Co-Chains [29]. Contrarily, confidentiality

in both Hyperledger and Ethereum-private can be guaranteed through the use of channels

and private transactions, respectively. Hyperledger Fabric and Ethereum-private can enforce

the so-called profiling properties of authorisation and accounting. This is because nodes

are authenticated. Authorisation is guaranteed by managing the permission of each node.

Accountability is achieved by tracing the interaction of nodes with the blockchain [26]. This is

not so in public permissionless blockchains like Bitcoin, Ethereum 2.0, and Algorand where

identities are pseudo-anonymous [25] and users are not authenticated. However, although

actions are difficult to attributable to specific entities, it is possible to analyze the behaviour of

specific accounts. Therefore, the public, permissionless nature of these blockchains ensures that

anyone can access the history of transactions and trace behavioural patterns. We deduce that

permissionless blockchain offer partial accountability [27, 31]. On the other hand, being these

systems public and decentralised, authorisation is not provided. Lastly, we evaluate the property

of client fairness. Permissioned blockchain benefits from fairness guarantees in that each client’s

transactions are processed without any preference or priority. On the contrary, the execution of

transactions in Bitcoin and Ethereum 2.0 is costly (either hardware or staking), hence making

incentive mechanisms for miners and validators necessary. Low-rewards transactions may

be stalled forever waiting to be processed [42]. Incentives mechanisms for permissionless

blockchain, like Bitcoin and Ethereum 2.0, lead therefore to a lack of client fairness. Differently,
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in the Algorand blockchain, every transaction counts the same, and there is no such mechanism.

Everything in Algorand is handled by PPoS cryptography and the computation of VRFs. This

allows Algorand to have very low transaction fees, which are thus distributed to rewards

accounts for the users, and to ensure client fairness.

We conclude our analysis with smart contracts. Table 3 illustrates a classification of the CIA
triad and profiling security properties against the issues described in Section 4. From the table

emerges that most of the smart contract issues may cause violation of confidentiality, integrity,

and authorisation properties. The platform that shows better resilience results in Hyperledger

Fabric and this is clearly due to its permissioned nature. Among the public blockchain instead,

Algorand outperforms Ethereum for many issues. This is due mainly to the usage of a constant

fee for transactions and opcodes conversely to Ethereum which is based on gas with a different

amount for opcodes. Also, the programming language used plays a key role. Both Hyperledger

Fabric and Algorand use languages that give some primitive control to avoid issues, such as

control against under/overflow concerning Ethereum. Finally, some design choice related to the

management of asset and smart contract calls makes Algorand more secure than Ethereum. For

instance, reentrancy (𝐼1) in Algorand cannot happen by design, and tokens require to be opted-in

before they can be received (𝐼15). The Ethereum naive solutions and lack of controls make it

the worst in terms of security. The only situation where Ethereum outperforms Algorand is

for erroneous visibility (𝐼13), indeed it allows to build private functions within a smart contract,

while Algorand does not.

6. Conclusion

In this paper, we studied the security aspects of modern blockchain systems. We defined the

security and dependability attributes which are relevant in the context of a blockchain. Thus, we

analysed how five blockchain platforms, namely Bitcoin, Ethereum (with its variants Ethereum

2.0 and private chains), Algorand, and Hyperledger Fabric, guarantee those attributes. The

analysis we proposed is divided into three dimensions, i.e. consensus, infrastructure, and smart

contracts. Firstly, we highlighted the infrastructures’ characteristics and how they differ in

terms of performance (infrastructure). Then, we described their built-in consensus protocols,

respectively, PoW, Casper PoS, PoA, Pure PoS and PBFT, analysing the approaches they adopt

to order transactions and create blocks in a Byzantine, eventually synchronous, network model

(consensus). Then, we listed smart contract issues evaluating whether blockchains are vulnerable

and their native resistance/mitigations (smart contracts).

From our study emerged that permissioned blockchains like Hyperledger Fabric and Ethereum-

private can guarantee fairness and confidentiality while providing accountability and authori-

sation. However, these platforms require strong assumptions on the underlying network and

the number of possibly subverted nodes to also ensure integrity and availability. This is also

reflected in the consensus protocol they adopt, specifically PBFT guarantees persistency at the

cost of eventual termination, whereas in PoAs, both properties are ensured only eventually.

Conversely, permissionless platforms such as Bitcoin, Ethereum 2.0, and Algorand offer bet-

ter integrity and availability, despite failing on profiling, confidentiality, and client fairness

properties. Finally, by studying smart contract issues we observed that Ethereum is the most
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vulnerable smart contract platform compared to Algorand and Hyperledger Fabric.
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Abstract
The paper analyzes the Diem Distributed Ledger Technology (DLT). First, the paper presents a general
overview of the Diem project from a technical point of view. Second, it presents a study that aims to
collect and analyze data from the Diem blockchain, in order to verify some properties declared in the
technical paper. For instance, a relevant property of the Diem blockchain is its transactions’ throughput,
i.e. the rate at which valid transactions are committed into a block by the Diem blockchain in a one-
second interval of time (transactions per seconds, TPS) and the interval of time for a transaction to be
confirmed. The data were collected over a period of three months (January 1 - March 31, 2022) and made
available on a GitHub repository.

The results of the data analysis show that the average transactions’ throughput is about 60 TPS and
the waiting time is on average 1 minute and 40 seconds. Moreover, the paper sheds light on some Diem
features that are unique when compared to similar blockchains, such as Ethereum. Some of these unique
features are the consensus mechanism based on the BFT consensus protocols (Byzantine Fault Tolerance,
2017), its accounting system based on a hierarchical model and its programming language, Move, used to
code smart contracts. The analysis will provide a better understanding of the Diem blockchain’s features.

Keywords
Blockchain, Virtual Asset Service Providers (VASPs), UTXO Model, Account Model, Move programming
language

1. Introduction

During the last decade, many distributed payment systems have emerged as an alternative to
centralized banking. The Diem Distributed Ledger Technology (DLT), initially called “Libra”
and renamed “Diem” in December 2020, was designed and proposed by the Diem Association, a
non-profit organization headquartered in Geneva, Switzerland. When Diem was introduced
by Facebook in 2019, the Diem Association aimed to be a competitor in the field of payment
systems, by introducing the Diem blockchain, i.e. a cryptographic payment system where each
party is clearly identified and every transaction is authenticated, authorized, validated and
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tracked. Moreover, Libra, the Diem DLT cryptocurrency, would have the ability to maintain a
stable value relative to a particular fiat currency [24]. According to the technical paper at launch,
the goal was to support at least 100 validators, able to process 1000 payment transactions per
second. A “validator” is the term used to describe a node of the network that helps verify and
propose new blocks of transaction data [7, 17].

Diem was a blockchain payment system based on an account model with users, roles and
rights, where only pre-authorised computers can access and finalize transactions. This set of
pre-authorised computers participate in a consensus mechanism based on the BFT (Byzantine
Fault Tolerance) consensus protocols [6, 11]. Compared to other cryptocurrencies, such as
Ethereum and Bitcoin, Diem has the following features:

• The withdrawal capacity i.e. the possibility to delegate the authorization to spend to a
different account.

• The Diem BFT consensus protocol, i.e. a consensus mechanism where a group of autho-
rized validators creates, verifies, and certifies the new blocks of transactions.

• An off-chain collateral system where the underlying assets are stored with an escrow
service.

• The accounting system based on a hierarchical model.
• The Move programming language is used to code smart contracts and, unlike other
programming languages used to code smart contracts, it integrates resources at the type
level.

The online payment market economically remains massive, which suggests enormous profit
opportunities for early actors on the market. Although the WhatsApp pay attempt did not
reach the expected success, Facebook came back in 2019 with Libra, then called Diem, a new
project that shares similarities with the previous idea. At the same time, Facebook made it clear
that it did not intend to stop at the initial 28 members, which included Paypal, Shopify, Uber,
eBay, and Vodafone. They were instead planning to expand the Association to over hundred
members in the upcoming years.

Table 1 shows the seven largest blockchain platforms sorted by Market Capitalization and
compared to the Diem DLT. The columns of the table reports some characteristics of the
blockchains, such as the presence of a stable coin and smart contract support. Stable coins are
cryptocurrencies which can maintain a stable price in relation to fiat currency [5]. A smart
contract is a self-executing computer program that uses the blockchain to store the contract’s
terms [39]. When the Diem DLT was operational, it supported a stable currency and the
capability to deploy and execute smart contracts. Then, Meta, formerly of Facebook, stopped
the project in January 2022.

Recently, the former Meta employees decided to continue the Diem proposal and they
renamed the project to Aptos [14]. Aptos has many features in common with the blockchain
Diem (https://github.com/aptos-labs). Some of these features are the possibility to deploy smart
contracts written in the Move programming language and the possibility to build higher-level
applications and protocols on top of the underlying Aptos blockchain. The Aptos’ development
network (devnet) is operational since March 2022 and it is possible to monitor their transactions
via a blockchain explorer named Aptos Explorer (https://explorer.devnet.aptos.dev/) According
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to the former Meta employees, the Aptos main network (mainnet) is planned to be launched in
the last trimester of 2022.

Table 1
Largest blockchain platform by Market Capitalization vs Diem blockchain

Market Cap (Billion USD) symbol Permissionless? Stablecoin? Smart Contract?

Bitcoin 771 BTC Yes No No
Ethereum 362 ETH Yes No Yes
Binance 65 BNB Yes No No
USD Coin 50 USDC Yes Yes No
Solana 35 SOL Yes No Yes
Diem - DIEM No Yes Yes

The first technical paper specified that any interests gained with the investments of the Diem
Association reserve fund, which will be composed mainly of short-term government bonds
will be used to cover the costs of the system, ensure low transaction fees, and pay dividends to
investors who provided capital to jumpstart the ecosystem[37].

The second version of Diem DLT was introduced with an update on the technical paper in
April 2020 [35]. Many popular crypto payment systems struggle to maintain a high transaction
throughput with a low transaction latency. According to the technical paper, Diem attempts to
solve this with the adoption of Diem Byzantine Fault Tolerance (Diem BFT) consensus protocol.
Diem BFT facilitates agreement among all validator nodes on the ordering of transactions while
achieving good transaction throughput and low transaction latency when scaling in the number
of validator nodes. The Diem BFT fault-tolerant model remains safe when at most one-third of
the nodes are faulty.

2. Background

Nowadays, there are a large number of blockchain platforms, each with its own characteristics
and design decisions [1, 33]. For instance, some platforms are designed specifically to support
rich and complex smart contracts (e.g., Ethereum and Solana), while others are designed to
act as a bridge between digital and fiat currencies (e.g.,Tether and USDC). We list the most ten
popular blockchain platforms and their characteristics vs the Diem blockchain, as depicted in
Table 1.

This section describes information peculiar to the Diem blockchain such as the Move pro-
gramming language 2.1 used to write smart contracts, the Proof-of-Authority (PoA) consensus
algorithm and the accounting used by the Diem blockchain.

2.1. The Move Programming Language

A Smart contract is a piece of executable code that run on the blockchain to facilitate, execute,
and enforce an agreement between untrustworthy parties without the involvement of a trusted
third-party [23, 26]. Smart contracts have the ability to convert paper contracts into digital con-
tracts [12, 18]. Compared to traditional contracts, smart contracts enabled users to codify their

35



agreements and trust relations by providing automated transactions without the supervision of
a central authority [23]. In order to prevent contract tampering, smart contracts are copied to
each node of the blockchain network [3, 38]. By enabling the execution of the operations by
computers and services provided by blockchain platforms, human error could be reduced to
avoid disputes regarding such contracts [23].

The blockchain Ethereum popularized the term by being the first public blockchain to provide
a Turing complete smart contract language [41, 16]. The goal of Ethereum is to provide a world
computer for which anyone can build and deploy blockchain-based applications, often referred
to as Decentralized Applications (DAPPS) [27].

As well as the Ethereum blockchain, also the blockchain Diem supports smart contracts
written in a different programming language which name is Move. Move is a programming
language based on Rust that was created by Facebook for developing customizable transaction
logic and smart contracts for the Libra digital currency. Every transaction submitted to the
Libra blockchain uses a transaction script written in Move to encode its logic [4].

The key feature of Move is the ability to define customized resource types. This customized
resource type supports all the operations generally available to other entities. This means
the Move programming language supports passing Resource as arguments to other functions,
returning them as the values from other functions, and assigning them to variables or storing
them in data structures. For this reaseon Move can be defined as a language where Resources
are first-class citizen.

Resources in the blockchain system are important because they provide scarcity protections:
they can only ever be moved between program storage locations, never implicitly copied or
deleted. The Move type system provides static enforcement of these security measures, but
allows programmers to define custom resource types.

By integrating resources at the type level rather than supporting a single type of resource
value (eg, Ether), the Move programming language provides programmers with the security
measures they need while remaining independent of the blockchain. Any developer can define
and use custom resources, without the additional re-implementation process required by ERC20
(Ethereum Request for Comment, Proposition 20) and other libraries. To protect critical resource
operations from untrusted code, Move encapsulates the fields of each resource in a corresponding
form. Modules are similar to smart contracts: they contain the types and procedures for creating,
updating, and destroying the assets they contain. They also provide an abstraction of critical
data: fields of a resource type declared within a form are protected by any other form, and
operations on that resource must only be performed within its form.

2.2. Consensus Model - Proof of Authority Consensus

Consensus makes it possible for a decentralized network of computers to agree upon and
share the state of the system [1]. The consensus is critical in ensuring participants can trust
the transactions processed on the blockchain even when they may not trust each other [10].
Before Bitcoin, it was impossible to electronically transfer digital money without relying on a
centralized authority to manage the state of the system.

Nowadays, public blockchains such as Bitcoin or Ethereum, allow anyone to participate in
the consensus process as a miner. Miners compete (or effectively vote) to add new transactions
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Figure 1: Address structure in different blockchains (Bitocoin, Ethereum and Diem).

to the blockchain with computing power by expending a certain amount of Central Processing
Unit (CPU) cycles to solve a mathematical puzzle. This puzzle is intentionally computationally
difficult to solve, yet it is very easy to verify the answer [29].

To add a block of new transactions to the blockchain, a miner must solve the puzzle. The first
miner to solve the puzzle sends (proposes) the block to the rest of the network for agreement. If
the network agrees on the solution to the puzzle, the miner is rewarded for creating the block
and the block is added to the blockchain (the miner wins this round of competition). Through a
combination of game theory and economics (effectively betting CPU cycles, which cost money,
to win the reward), Proof of Work (PoW) incentivizes consensus instead of attempting to enforce
it. Essentially a miner is rewarded for securing the network.

While public blockchains rely on PoW, enterprise (or permissioned) blockchains [15] tend to
use the BFT consensus protocols [6]. BFT consensus is based on the idea that a pre-selected,
authorized group of validators will create, verify the new blocks.

In a proof of authority consensus model, known participants leverage cryptographical digital
signatures to agree upon a set of transactions and their output to advance the blockchain’s
state [28]. For the Diem Blockchain the set of potential entities that can participate in consensus
are known as Validator Owners, while the active participants are known as the Validator Set.
The adding and removing of Validator Owners and specifying the current Validator Set is left to
the sole discretion of the entity managing “Diem Root” account. Validators receive transactions
from clients and share them with each other through a shared mempool protocol.

2.3. Diem Accounting System

In the Diem DLT, an account represents a resource on the Blockchain that can send transac-
tions. Each account is identified by a 16-byte hash value and there are two kinds of accounts,
ParentVASP and ChildVASP accounts. The ParentVASP represents the primary account of a
digital wallet, while the ChildVASP is defined as the child account of a particular ParentVASP.
Multiple ChildVASPs can be created by ParentVASP accounts [20]. Figure 1 represents the
address structure in different blockchains.

In Diem, a PoA will be requested from the ParentVASP, and these proofs should include all of
their children’s assets as well. Table 2 shows the users roles and permission supported by the
Diem DLT [13].
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Table 2
Diem Roles and Permissions

Role Granted by Unique? Address
Has
bal-
ances?

Ac-
count
lim-
its?

Fr.able? Txpri.

Diem Root genesis Globally 0xA550C18 N - N 3
Treasury Compliancegenesis Globally 0xB1E55ED N - N 2
Validator Diem Root Per Association member - N - Y 1
Validator Operator Diem Root At most one per Validator- N - Y 1
Designated Dealer Treasury ComplianceN - Y N Y 1
Parent VASP Treasury CompliancePer VASP - Y Y Y 0
Child VASP Parent VASP N - Y Y Y 0

Diem uses a variant of role-based access control (RBAC) to restrict access to sensitive on-chain
operations. A role is an entity with some authority in the Diem Payment Network (DPN). Every
account in the DPN is created with a single, immutable role that is granted at the time the
account is created. Creating an account with a particular role is a privileged operation (e.g.,
only an account with the ParentVASP role can create an account with the ChildVASP role). In
some cases, the role is globally unique (e.g., there is only one account with the Diem Root role).
In other cases, there may be many accounts with the given role (e.g., ChildVASP).

2.4. Stablecoin

Stablecoins are cryptocurrencies with the ability to maintain a stable price relative to a particular
fiat currency via a “peg mechanism”. A “peg” is a specified price for the rate of exchange between
two assets. In the context of currencies, a peg allows foreign currencies to be traded for the
chosen base currency at a fixed exchange rate. In the context of cryptocurrency, a peg refers to
the specific price that a token is aiming to stay at [9].

Today, stablecoins are mostly used for trading, lending and borrowing crypto assets. They
are a crucial component of the decentralized finance (DeFi) – financial services performed by
applications on a permissionless blockchain [21].

Stable coins first became widely known as a potential means of global retail payments when
Meta (then Facebook) announced its Libra project in 2019. Bitcoin and Ethereum rise and fall
by the day and even hour, in contrast, stable coins promise to maintain their value because
they are pegged to less volatile assets, like the U.S. dollar or Euro. Because of their potential
use as actual currency, U.S. government officials fear the potential risks stable coins pose for
consumers and financial markets if they remain unregulated. As an example, the value of the
TerraUSD stablecoin (UST) crashed in the cryptocurrency market almost completely at one
point on 9 May 2022 and lost its 1 USD peg to the dollar, tanking to a low of 0.02 USD [9]
without giving any legal protection to their investors [22].

Stablecoins can be split into three groups according to their collateral and price stabilization
mechanisms:

1. off-chain collateralized (e.g. Diem)
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2. on-chain collateralized (e.g. Dai)
3. uncollateralized, purely algorithmic stablecoins (e.g. Ampleforth).

The Diem DLT was planned to be an off-chain collateralized project, i.e. it should have used
use traditional reserve assets to stabilize Libra value, the Diem cryptocurrency. The Deim
reserve assets should have been fiat-currency bank deposits and short-term debt, with the US
dollar being the most prominent reference currency. As the reserves are not on the blockchain,
a custodian is required. In order to maintain price stability, all outstanding stablecoins must
be backed by reserve assets. Currently off-chain collateralized stablecoins are Tether, Binance
USD and USD Coin.

Unlike the Diem DLT, on-chain collateralized projects back their stablecoins with other crypto
assets. They are typically issued by DeFi applications as collateralized debt positions, i.e. a user
locks in collateral and in return receives coins created by the application. Thus, the collateral is
held directly in the application on the blockchain and no external custodian is needed. Currently
an collateralized stable coin system is Dai [19].

Finally, uncollateralized stable coin systems try to keep prices constant by algorithmically
adjusting the outstanding number of tokens according to demand. If prices are above the peg,
the algorithm will distribute new coins to users, thereby eventually reducing the price. If prices
fall below the peg, the system will sell a sort of bond to users in exchange for stable coins.
The stable coins received will then be destroyed, leading to a price increase. If prices then
move above the peg again, bondholders will be prioritized in the distribution of new coins. In
theory, this system incentivizes users to buy bonds if prices fall below the peg and rewards them
afterwards as prices exceed the peg again. Currently an uncollateralized stable coin system is
Ampleforth [25].

Table 3 shows the blockchains that support stable coins grouped by the stabilization mecha-
nism.

Table 3
Stable coin blockchain grouped by the stabilization mechanism

Blockchain Crypto Coin Market Cap (USD) Stabilization Mechanisms Max Min

Diem Libra - Off-Chain Collateralized - -
Tether USDT Off-Chain Collateralized 1.002 0.999
Binance BUSD 17,706,848,087.24 Off-Chain Collateralized 1.002 0.998
Dai DAI 8,855,233,197.17 On-Chain Collateralized 1.010 0.985
Ampleforth AMPL 87,155,777.68 Uncollateralized 2.11 0.91

3. Research Methodology

The main aim of the study was to better understand the Diem blockchain performance, in
terms of number of transactions per second and waiting times. The study presupposes that a
blockchain has a better performance than another when the former has a higher number of
transactions per second and shorter waiting times when compared to the latter.

Thus, the study was designed to address the following research questions (RQ):
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• RQ1: Can the Diem blockchain have a better performance in terms of number of transac-
tions per second when compared to other blockchains, such as Bitcoin and Ethereum?

• RQ2: What are the waiting times to confirm the transactions in the Diem blockchain?

To answer the research questions, the methodology of the study consists of three research
phases: a) Data Collection, b) Data Modelling, and c) Data Analysis and Results. The following
subsections describe each research phase.

3.1. Data Collection

The Diem DLT provides an application program interface (API) to interact with the blockchain.
We developed a script that performs a POST request to the API endpoint (https://test-
net.diem.com/v1), to collect the data from the Diem blockchain. The script queries the Diem
API at regular intervals of 100 milliseconds and it downloads 1000 transaction payloads for
each request. A timeout of 100 milliseconds is required to avoid sending too many requests in a
given interval of time and receiving the “Too Many Requests” server error. Within the rate-limit
of 100 milliseconds, we collected 3.500.000 transactions, which were submitted by Diem users
and available on the Diem test network. The same data can also be downloaded from a block
explorer, but the collection takes much more time because each request can download just the
data of a single transaction. The two block explorers available to download the data transactions
are the “InDiem Blockchain Explorer” (https://indiem.info/explorer) and the “Diem Blockchain
Explorer” (https://diemexplorer.com/testnet).

Table 4 shows the summary of the transactions data-set.
The mean, the median, minimum (min), the 25th, 50th, and 75th percentiles and maximum

(max) are calculated for each variable shown in the table. Some of these data are the size of
the script used to execute the transaction computed in bytes, the gas units used to execute
the transaction (gas_used), and the number of transactions added to the Diem blockchain in a
one-second interval of time (TPS) [32].

The data were collected as distinct files in JSON format. Listing 1 shows an example of
JSON-RPC request used to query the Diem block data. For instance, the second value of the
“params” list is an integer value (max=1000) that can be used to limit the number of transactions
returned. Listing 2 shows an example of JSON-RPC response used to store the Diem transaction
data. The request 1 returns the transactions’ information about a confirmed block in the Diem
DLT.

Table 5 describes the structure and the elements of the data related to the user transaction on
the Diem test network.

Listing 1 shows an example of JSON-RPC request used to query the Diem block data. For
instance, the second value of the “params” list is an integer value that can be used to limit the
number of transactions returned; the max value is 1000.

Listing 1: JSON-RPC request to query the Diem DLT
{

/ / R e q u e s t : f e t c h e s 10 t r a n s a c t i o n s
c u r l −X POST −H ” Content −Type : ␣ a p p l i c a t i o n / j s on ” \
−− da t a ’ { ” j s o n r p c ” : ” 2 . 0 ” , ” method ” : ” g e t _ t r a n s a c t i o n s ” , ␣ ” params ” : [ ␣ 1 00000 , ␣ 1 0 , ␣ f a l s e ␣ ] , ” i d ” : 1 } ’ \
h t t p s : / / t e s t n e t . diem . com / v1

}
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Table 4
Summaries of the transactions data-set

file size (B) gas_used bytesLength scriptBytesLength TPS
Min. 370.0 74.00 834 526.0 0.00

1st Qu. 606.0 74.00 1066 758.0 48.00
Median 606.0 74.00 1066 758.0 60.00
Mean 605.2 77.81 1065 757.2 62.45

3rd Qu. 606.0 74.00 1066 758.0 80.00
Max. 606.0 1748.00 1066 758.0 180.00

Listing 2: Transsaction JSON Response
{

” b y t e s ” : ” 00 f 9 4 2 c 6 ed8 c ab022562617 cb36 . . . ” ,
” gas_used ” : 4 79 ,
” hash ” : ” a f 6 6 1 1 b 8 7 5 d 2 f 2 9 1 c 5 7 5 f f 3 6 d . . . ” ,
” t r a n s a c t i o n ” : {

” c h a i n _ i d ” : 3 ,
” e x p i r a t i o n _ t ime s t amp_ s e c s ” : 1 6 45710527 ,
” g a s _ u n i t _ p r i c e ” : 0 ,
” max_gas_amount ” : 1 000000 ,
” pub l i c _k ey ” : ” a e4ccb911d6d36248ee3aedd437 . . . ” ,
” s c r i p t ” : {

” amount ” : 1 ,
” arguments ” : [

” { ADDRESS : ␣ 34 FCA44C571B29CC0AFF63363609B325 } ” ,
. . .

] ,
” code ” : ” a11ceb0b0 . . . ” ,
” cu r r ency ” : ”XUS” ,
” metada ta ” : ” ” ,
” me t a d a t a _ s i gn a t u r e ” : ” ” ,
” r e c e i v e r ” : ” 34 f c a 4 4 c 5 7 1 b 2 9 c c 0 a . . . ” ,
” type ” : ” p e e r _ t o_pee r_w i th_me t ada t a ”

} ,
” s c r i p t _ b y t e s ” : ” e001a11ceb0b01 . . . ” ,
” s c r i p t _ h a s h ” : ” 04 e a 4 3 1 0 7 f a f c 1 2 a d c d 0 9 . . . ” ,
” s e c onda ry_pub l i c _k ey s ” : [ ] ,
” s e conda ry_ s i gna tu r e_ s chemes ” : [ ] ,
” s e c ond a r y _ s i g n a t u r e s ” : [ ] ,
” s e c ond a r y _ s i g n e r s ” : [ ] ,
” s ende r ” : ” f 9 4 2 c 6 ed8 c ab022562617 cb361a1ad84 ” ,
” sequence_number ” : 3 75 ,
” s i g n a t u r e ” : ” 3 e 7 2 d 6 f f c 1 a f 7 7 . . . ” ,
” s i gna tu r e_ s cheme ” : ” Scheme : : Ed25519 ” ,
” type ” : ” u s e r ”

} ,
” v e r s i o n ” : 1 165000 ,
” vm_s ta tus ” : { ” type ” : ” exe cu t ed ” }

}

3.2. Data Modelling

The collected data were not suitable to perform data analysis, because reading these files takes
too much time. We organized the data into three .CSV files based on their transaction type.
Indeed, in the Diem DLT there are three types of transactions that can be sent by different types
of accounts:

• Transactions that send payments to other accounts.
• Transactions that are sent to create accounts, mint and burn Diem Coins.
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Table 5
Transactions Properties

Name Type Description

sender string Hex-encoded account address of the sender
signature_scheme string Signature scheme used by the sender to sign the transaction
signature string Hex-encoded signature of the transaction signed by the sender
public_key string Hex-encoded public key of the transaction sender
secondary_signers List Hex-encoded account addresses of the secondary signers
secondary_signature_schemes List Signature schemes used by the secondary signers to sign this

transaction
secondary_signatures List Hex-encoded signatures of this transaction signed by the primary

signers
secondary_public_keys List Hex-encoded public keys of the secondary signers
sequence_number unsigned int64 Sequence number of this transaction corresponding to sender’s

account
chain_id unsigned int8 Chain ID of the Diem network. The chain ID is a property of the

chain managed by the node. It is used for replay protection of
transactions.

max_gas_amount unsigned int64 Maximum amount of gas that can be spent for the transaction
gas_unit_price unsigned int64 Maximum gas price to be paid per unit of gas
gas_currency string Gas price currency code
expiration_timestamp_secs unsigned int64 The expiration time (Unix Epoch in seconds) for the transaction
script_hash string Hex-encoded sha3 256 hash of the script binary code bytes used

in the transaction
script_bytes string Hex-encoded string of BCS bytes of the script. BCS (formerly

“Libra Canonical Serialization” or LCS) is a serialization format
developed in the context of the Diem blockchain.

script Script The transaction script and arguments of this transaction

• Transactions that help account recovery, key rotation, by adding currencies and other
account administration tasks.

An account can send a payment to another account by submitting a transaction. If an
account A wishes to send a payment to another account B, it can do so by executing a
“peer_to_peer_with_metadata” transaction script. If an account A (the ParentVASP account)
wishes to create another account B (a ChildVASP account), it can do so by executing a “cre-
ate_child_vasp_account” transaction script with a single ParentVASP account, a user can create
up to 256 ChildVASP accounts. The transaction script allows you to specify: Which currency
the new account should hold, or if it should hold all known currencies. If the user wants to
initialize the ChildVASP account with a specified amount of coins in a given currency. An
individual can have at most one root account per Regulated VASP. Diem Networks was suppose
to create a ParentVASP account via the personal authentication key abd via the “create_par-
ent_vasp_account” transaction script. Table 6 shows the number of transactions type found in
the collected dataset.
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Table 6
Types of Transactions

transaction type occurencies
1 create_child_vasp_account 112 320
2 create_parent_vasp_account 1 230
3 peer_to_peer_with_metadata 1 180 980

3.3. Analysis and Results

The section presents the analysis of the transactions data as modelled in the previous section.
The data sets are stored in a tabular format where the rows (around one million) represent the
different transactions and the columns (nine) represent their characteristics. The total size of
the database is 58,1 Mega-Byte and is publicly available via Zenodo [30].

For blockchain-based applications, scalability has been extensively studied since the introduc-
tion of Bitcoin [8, 42]. We scraped and analysed the data from the Diem DLT API to compute
the scalability of the Diem blockchain. Unlike other blockchains, the Diem blockchain can
operate in either “normal” or “recovery” mode [2]. When the Diem DLT is on “normal mode”,
blocks with transactions are generated and committed in sequence. The system can switch to
recovery mode in case of a failing validator node or when the system is under attack. During
this time, the performance of the Diem blockchain can be negatively impacted or the processing
of transactions can be temporarily put to a stop.

A previous study [2] developed a simulation model to estimate how close Diem is to realizing
its goals. They calculated the amount of time a user has to wait to receive confirmation that
a transaction made on the blockchain will not be changed. The results showed that, for 100
validators, that amount of time is 10 seconds. As it comes to transaction throughput, the Diem
blockchain still requires major improvements, as in the best case only 300 transactions per
second were estimated for 100 validators.

Another study [40] have set up an infrastructure made of physical servers (14 cores with
384GB of RAM) to measure the number of transactions Libra DLT can process in a particular time
span. They have shown that the Libra blockchain can process about one thousand transactions
per second at most (one validator active), but the performance drops significantly as the number
of validators increases (350 TPS with 16 validators). They compared their results with other
permissioned blockchains and they found in particular that Diem has worse performance when
compared to the Hyperledger Fabric.

Table 7 below shows the TPS and average transaction confirmation time of Diem DTL vs.
other blockchains. The data about the Bitcoin and Ethereum blockchains have been taken from
different academic works.

As depicted in table 7, Ethereum has a transaction speed of 15.6 transactions per second.
The rate at which valid transactions are confirmed per second in the Ethereum blockchain is

higher when compared to Bitcoin. However, the TPS of Ethereum is low compared to the TPS
of Diem DLT, which has over 60 transactions executed per second. Figure 2a shows the number
of transactions that the Diem test network can process each second (TPS).

Figure 2c shows the power complementary cumulative distribution (CCDF) as a function of the
transaction waiting times in the memory pool before being confirmed in the Diem Blockchain.
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Table 7
Diem TPS Comparison against Bitcoin, Ethereum

mean (TPS) max min std

Bitcoin 4.60 - - -
Ethereum 15.60 - - -
Diem (test network) 65.51 185 0 35.72
Diem (simulation model) 80.00 300 0 -
Diem (14 cores, 384GB RAM, 16 peers) 350 - - -
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Figure 2: (a) Transactions per second in the Diem test network. (b) Waiting time per transaction. (c)
CCCDF of the Waiting time per transaction

The empirical CCDF seems to be well fitted by Poisson’s law shown as the continuous thin
orange line curving downward. Other academic studies on other blockchain suggest that the
waiting time for transactions in the memory pool has a trend that follows Poisson’s law [31].

4. Conclusion

Blockchain technology is rapidly evolving. Understanding the core components of the technol-
ogy and how they work together is crucial to make it available also to a larger audience [43].
Each component of the blockchain system plays an important role in the technology stack.
This study sheds light on some components of the Diem DLT, such as the consensus and the
specificity of the Move programming language used to write smart contracts.

According to some academic sources [36, 34], the project failed for political-economical
reasons. Nonetheless, some ideas of the project have been adopted and could be adopted by
other blockchains. For instance, the Diem consensus allows having a better TPS when compared
to other blockchains, such as Ethereum and Bitcoin. Moreover, unlike the consensus mechanism
adopted by other blockchains, such as Ethereum and Bitcoin, the Diem BFT consensus protocol
allows being compliant with the law in order to achieve large-scale adoption.

The data collection and analysis of the Diem transactions, even though performed on the
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test network, show that the transaction throughput, expressed as a number of transactions
per second, is better when compared to other popular blockchains. This is very important to
achieve large-scale adoption of this technology, as it can support a larger number of transactions
Another important characteristic of Diem blockchain, that has already been taken as a model
by other blockchains, is the use of traditional reserve assets, such as government bonds, and
stable fiat currencies, like the USD, to make the cryptocurrency value stable.

Finally, the programming language Move allows for defining custom resource types. This
feature helps smart contract developers write business logic for wrapping assets and enforce
access control policies without using external libraries. For all these reasons, the study can
provide useful insights for any blockchain developers to choose the right components for a
successful blockchain adoption at a larger scale.
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Abstract
Distributed systems have become ubiquitous in recent years, with those based on distributed ledger
technology (DLT), such as blockchains, gaining more and more weight. Indeed, DLT ensures strong data
integrity thanks to complex cryptographic protocols and high distribution. That said, even the most
powerful systems will never be perfect, and, in fact, the larger they get, the more exposed they become
to threats. For traditional systems, log auditing effectively addresses the problem and makes it possible
to analyze the use of applications. However, DLT systems still lack a wide range of log analyzers due
to the particularities of their distribution. To help remedy this weakness, we propose here a generic
auditing system called DELTA (for Distributed Elastic Log Text Analyzer). By coupling Natural Language
Processing with the Docker Engine of the Filebeat, Logstash stack, Elasticsearch and the visual tool Kibana,
DELTA tracks, analyzes and classifies logs generated by DLT systems. Additionally, it enables real-time
monitoring thanks to visual analysis and querying of structured data. DELTA is the first auditing system
applicable to blockchains that can be integrated with the Docker Engine. In addition to describing its
general principles and specific components, we illustrate its application to Hyperledger Fabric, the most
popular of the platforms for building private blockchains.

Keywords
Distributed Ledger Technology, Log Analysis, Cybersecurity, Natural Language Processing, Blockchain,
NLP, DLT .

1. Introduction

Distributed systems have been spreading rapidly in recent years [30], and the emergence of
Distributed Ledger Technologies (DLTs) such as blockchains have strongly contributed to this
trend. These technologies find a wide range of possible applications in areas such as the Internet
of Things (IoT), healthcare, supply chain management, energy, genomics, fintech, insurance,
automotive, etc. [2, 27, 21, 8, 5, 15, 13]. As a consequence, there is an ongoing strengthening
of development frameworks such as Ethereum, Hyperledger, EOSIO, Corda, Waves, Quorum etc.
which are constantly adding new features.

The trend is explained by the ability of DLT to provide a high degree of security, compared
to classical systems, by encrypting and decentralizing data, aspects that are both paramount
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for the development of decentralized applications (dApps). Data security is a crucial issue
for information systems in general, so, over time, numerous tools have been developed for
data protection and monitoring system access, including auditing, which provides a wealth
of security-related information. In particular, system log auditing extracts information about
the operations carried out and the conditions in which they took place and keeps track of
their timelines. Logs are therefore essential for analyzing the behavior of IT systems under
both normal and abnormal conditions. Indeed, while the normal case provides a history of the
operations carried out, the anomalous one helps identify system errors and detect vulnerabilities,
thus preventing cyberattacks.

However, compared to development frameworks, distributed systems auditing tools lag,
especially when it comes to blockchains. The more established ecosystems, such as Bitcoin
and Ethereum, have their log analysis tools. Yet, there is a lack of a standardized tool that can
be integrated with most frameworks and is endowed with real-time monitoring capabilities.
Existing tools designed for cloud and decentralized systems [18] are not easy to integrate with
development frameworks for blockchain applications and are not up to the challenges regarding
complete log auditing of blockchain systems [7]. We started from these premises in carrying
out the design and development of a universal log analysis tool, which takes the name of DELTA
for Distributed Elastic Log Text Analyzer, aimed at analyzing logs of activities on most of the
existing development frameworks for distributed and non-distributed systems - a versatility
which is made possible thanks to the use of the Docker Engine and the stack ELK (Elasticsearch,
Logstash Kibana) integrated via Filebeat.

For this purpose, we make use of the Docker Engine as a bridge for collecting logs between the
analyzer and distributed systems. Thanks to Docker, it is, in fact, possible not only to integrate
completely different systems but also to analyze the logs produced through the ELK stack.
This stack makes it possible to efficiently control log collection methods by accessing Docker
containers. Furthermore, Filebeat takes care of managing log collection methods in real-time,
and Logstash enables automatic log insertion into the Elasticsearch database, which in turn
supplies data to Kibana for immediate viewing through a customizable graphical interface.

The developed tool is not limited to traceability in that the textual part of the traced logs is
subjected to analysis through Natural Language Processing (NLP). NLP is used to perform, upon
the text within logs produced by the Docker containers, three types of analysis, namely: keyword
extraction, classification, and sentiment analysis. Keywords are extracted through two different
models: the more precise KeyBERT, based on BERT (Bidirectional Encoder Representations
from Transformers), and the more versatile YAKE! [6]. As regards log classification, the choice
fell on the Zero-Shot facebook / bart-large-mnli developed by Meta (formerly Facebook), which
works without requiring data outside the text. The idea of Zero-Shot models is to analyze
and classify data that are also completely different from those with which the training was
carried out using the methodology for statistical inference described in [20]. Finally, sentiment
analysis is performed through VADER (Valence Aware Dictionary and sEntiment Reasoner), an
open-source analysis tool based on rules for extracting sentiment using dictionaries. All log
collection, analysis, and classification processes occur in real-time, enabling interaction with
resource monitoring processes. In this way, it is possible to focus log analysis on the security
problems and undertake mitigating actions as needed.

Structure of the paper. The remaining part of the article is organized as follows: Section 2
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describes the methodology underlying Delta and the components used for its implementation;
Section 3 describes the application of DELTA to Hyperledger Fabric, the most popular platform
for private blockchains; Section 4 describes future work; Section 5 concludes the paper.

2. Methodology

The developed system is mainly divided into two macro sections, the first relating to the
collection of logs through the use of the Elastic components and the second part consisting of
the textual analysis systems provided by the DELTA tool. The following sections describe the
methodologies used to implement the system: Section 2.1 describes the use of the Elastic stack
and the log flow within the system, Section 2.2 is instead dedicated to the illustration of the
developed tool and how the log analysis and their re-elaboration takes place.

2.1. Elastic stack

The acquisition of logs produced by distributed services and systems was managed through the
combined use of several Elastic components. In fact, the stack used includes 4 such components,
namely Filebeat, Logstash, Elasticsearch and Kibana. The Filebeat component has been added on
top of the standard ELK stack as it supports log extraction from highly heterogeneous contexts
and therefore is perfectly suited to distributed environments.

These components fit together to obtain, manage, index, and view the generated logs auto-
matically and instantly. The logs come from the containers where the distributed services are
located and are first extracted through Filebeat, which reads the data directly by connecting to
the log files managed by the Docker engine. Then Filebeat passes the logs to Logstash which
aggregates them and places the raw information inside Elasticsearch creating a special index
for archiving. Finally, Elasticsearch makes indexing of the entered data available for access
via Kibana which provides the visual analysis of both the aggregate data entered through the
collection process and of the analyzed data (Figure 1).

Figure 1: Structure of the system
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2.2. DELTA Analyser

DELTA is aimed at processing the logs in the Elasticsearch database to extract relevant informa-
tion using Natural Language Processing techniques to facilitate data monitoring and analysis
operations. This occurs through a continuous activity of detection of relevant patterns such
as the presence of IP addresses, as well as of processing on the following three dimensions
(Figure 2):

• Keywords Extraction
• Category Classification
• Sentiment Analysis

DELTA Analyser

main

core

keyword-extractor

zero-shot-classifier

sentiment-analyser

elastic-client

utilities

Figure 2: Structure of DELTA tool

2.3. Keywords Extraction

Keyword extraction picks out words with the highest informative impact on the text, thus
making it possible to conduct statistical analysis or associate keywords with the triggering of
events across vastly varying contexts. Moreover, keywords can be exploited to boost monitoring
effectiveness to access the logs by filtering their content.

Many methods, techniques, and algorithms extract keywords or key phrases from texts
(e.g., TF-IDF, Rake, YAKE!). Since DELTA was designed for a generic context, we cannot make
predictions about the input to be analyzed. Vice versa, given the specificity that characterizes
some application contexts, there may be extraction models based on statistical concepts that
ignore specific keywords. When dealing with a distributed system that uses specific terms
to identify its components (for example, the word Tangle in the context of the distributed
ledger IOTA), such elements would be ignored by the most models based on word frequency or
dictionaries. These considerations led to implementing both a keyword extraction technique
based on the semantic similarity of the words and a method based on the statistical properties
of the texts. Therefore, for keyword extraction, we relied on two models, namely KeyBERT and
YAKE!.
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2.3.1. KeyBERT

KeyBERT is based on BERT (Bidirectional Encoder Representations from Transformers) [17],
published by Google in 2018, a model that uses a transformer [28] architecture to map words,
phrases and text into number vectors that capture their meaning. BERT is a bidirectional model,
which makes it able to interpret a word based on the context of the sentence, regardless of
whether the relevant information is left or right, unlike left-to-right architectures, which look
only at the words preceding the one being processed [12]. Furthermore, BERT does not resort
to recursive levels unlike LSTM-based technologies [16], but instead exploits the Self-Attention
[9] mechanism. The KeyBERT system can be implemented with different transformer models,
with the basic model all-MiniLM-L6-v2 having limited needs for computational resources with a
trade-off in precision levels. While, according to the official documentation, the highest quality
model turns out to be all-mpnet-base-v2, we have chosen to use the less powerful paraphrase-
albert-large model, as log texts are generally compact, so this model achieves excellent accuracy
with lower resource consumption.

2.3.2. YAKE!

YAKE! or Yake! or Yake, is an automatic keyword extraction algorithm that stands out above all
for its simplicity and an excellent balance between computational resource requirements and
quality of the analytics. It is an unsupervised algorithm based on statistical textual characteristics
extracted from individual documents. Therefore, it does not need to be trained on a particular
set of documents, nor does it depend on external dictionaries and corpora, nor has limitations as
regards text sizes, languages, or domains. It also does not use Part of Speech Tagging [26], which
makes it language-independent, except for the use of different but static stopword lists for each
language. This makes it easy to apply to languages other than English, particularly low-diffusion
languages for which open-source language processing tools may be underperforming.

2.3.3. KeyBERT compared to YAKE!

KeyBERT and YAKE! thus provide alternative models for keyword extraction. In testing the two
algorithms on logs, we found out that both offer high accuracy for short texts. Nevertheless, the
model suggested by default is KeyBERT, in virtue of its higher accuracy for longer texts. On the
other hand, KeyBERT turns out to be significantly more onerous in terms of performance and
waiting time. Therefore, DELTA provides both approaches to let users choose the most suitable
one for the analysis context.

2.4. Log Classification

Classifying logs according to labels (i.e., classification categories) can help analyze and monitor
distributed systems. First, it is thus possible to get an idea of the frequency with which logs
that share the same label occur to facilitate the identification of related problems. Furthermore,
through the analysis of the logs of the same category, it is possible to identify the presence of
specific patterns, which can then be used to verify the system’s correct functioning or detect
anomalies attributable to errors or tampering attempts. Finally, labels offer a way to access
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content in addition to keyword-based querying. The classification approach used in DELTA
is a hybrid that combines machine learning with rules, being a Zero-Shot [24] classifier. As
illustrated in [29], this methodology classifies text, documents, or sentences without resorting
to any previously tagged data by using a natural language processing model, pre-trained in an
environment or domain that may be completely different from the application domain. This
makes it possible to classify texts from heterogeneous contexts. It provides a probabilistic
value of whether the text belongs to a label by taking a text and a list of possible labels as
input. Thus, through a threshold, the text is labeled according to the categories to which it
belongs. The way Zero-Shot is used in Delta provides for multiple labels to be assigned to a
single log with different probabilistic scores by exploiting the fact that the model output is an
independent probabilistic value for each supplied label. This gives a more detailed view of
the system behavior and the consequent possibility of monitoring logs in a more specific and
targeted way. There are five preset tags used within Delta: Security, Connection, Communication,
Transaction and finally Operation. However, these can be changed according to the context of
use. The currently adopted model is the one provided by Facebook: ’facebook/bart-large-mnli’
[1], but this too can be changed according to needs and preferences.

2.5. Sentiment Analysis

In addition to keyword extraction and classification analysis, log sentiment analysis is also
performed. Sentiment analysis consists of language processing and analysis aimed at identifying
the subjectivity value of the text, with the primary goal to determine the polarity of a document,
i.e., to classify it according to the degree of positivity, negativity, or neutrality of the concepts
expressed. As surprising as it may seem, logs carry sentiment that can usefully shed light
on what is going on within the monitored system. In order to detect anomalies and errors, a
monitoring system based on DELTA will indeed benefit from the identification of logs loaded
with negative sentiment, indicative of errors or malfunctions. For the extraction of sentiment
from the logs, the library VADER-lexicon general is used, which, born as a sentiment analysis
library aimed at social media and customer feedback, has valuable features that make it an
excellent analyzer for short texts and hence for logs too. Once a given text has been analyzed,
VADER responds with a polarity value called compound that indicates the degree of positivity
or negativity of the sentiment of the analyzed text. The compound is later processed to define a
sentiment evaluation label through thresholds that were tuned and set according to empirical
evidence. Within DELTA, it is also possible either to modify the values of the thresholds or to
add new ones to refine levels of positivity and/or negativity.

2.6. Additional Log Processing

In addition to the textual analysis of the logs, further processing was carried out to bring
intrinsically relevant information to the fore. First of all, elements deemed irrelevant for the
analysis were removed. We also worked on the Logstash component responsible for collecting
data and creating a very detailed structure containing all the possible information directly
observable from the log generation sources. This structure has been stripped down and simplified
as far as possible to facilitate future analyses and speed up information sharing. Furthermore,
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Figure 3: Structure of the system

regarding security aspects and the control of the use of the system, the extraction of IP addresses
and connection ports, if present in the logs, was carried out. Finally, the information relating to
the log output standard was also extracted, thus making it possible for the aggregation filters to
operate in a simplified manner based on the type of log produced by the systems (Listing 1).

3. Application to Hyperledger Fabric

We briefly describe a DELTA application to Hyperledger Fabric [4, 11], the most adopted
platform for building private distributed ledgers. The challenges presented by blockchain and
DL management were, in fact, the initial motivation for DELTA, even if its construction was
then generalized to all systems that can be containerized and distributed through technologies
such as Docker and Kubernetes.

Like any distributed ledger, Fabric’s goals include ensuring a secure environment. However,
it has known vulnerabilities [10, 22, 3] that provide attack points for malicious users. While
these can be mitigated, there is a lack of a monitoring system that can detect potential attacks
and act promptly. This problem can be addressed by using DELTA to analyze the logs produced
by the system during the attack phase. Log checking is performed to identify attack patterns,
and then these are used to develop a monitoring system to spot and mitigate threats in real-time.
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Since Fabric blockchains are distributable using the Docker engine, DELTA is a close fit for log
analysis of the entire Fabric network. The monitoring system is based on the logs generated by
the Docker containers and then analyzed and processed by DELTA in real-time. Queries can
filter logs and obtain only the relevant ones for attack detection. To this aim, several additional
valuable data are extractable, such as name, unique ID image, execution status, and installed
volumes of Docker containers. Moreover, DELTA provides keywords, sentiment, and the types
of the log, which can be Security, Connection, Communication, Transaction, and Operation.

The attacks on Fabric fall into two broad categories, depending on whether they are about
the network rather than the execution of smart contracts [23]. DELTA is particularly effective
at dealing with the first ones. They are essentially variants of well-known attacks in distributed
systems, e.g., Distributed Denial of Service[19], Sybil[14] and Eclipse attacks [25], which exploit
some specificities of Fabric, such as the relatively lower level of decentralization, compared to
other blockchains, resulting from design choices like the use of a centralized Ordering Service
for transaction management. A monitoring system aimed at network attacks and consisting of
three microservices was consequently implemented, namely i) a service that relies on DELTA to
detect patterns of potential danger, once anomalous behavior is confirmed, sends a warning to
all configured addresses, ii) a service that takes care of sending warning messages via webhook
based on the detections made as in i), iii) a dedicated mitigation service.

4. Future Work

The DELTA tool provides an initial log auditing approach specific to distributed systems with a
focus on blockchain and DLT platforms. However, it is limited to the Docker engine. Although
widely used and suitable for distributed systems, Docker does not scale effectively to very
large systems. Consequently, the next step will be to integrate DELTA with Kubernetes, an
open-source platform, initially developed by Google, for managing workloads and orchestrating
containerized services, which simplifies both system configuration and automation of service
delivery practices in very large systems.

5. Conclusion

The exponential growth of distributed systems in recent years, mainly due to the advent of
Distributed Ledger Technology and, in particular, blockchains, has led to greater attention to
these systems’ security and analysis issues. In particular, the security of the information present
within distributed systems is paramount because these systems are being increasingly deployed
into contexts characterized by sensitive information. For this purpose, we have designed and
implemented the DELTA tool that collects and stores logs generated by the services that make up
the system through the use of some of the components provided by the Elastic search ecosystem
for data analytics. Then the logs are suitably processed to simplify their analysis. Finally, their
text content goes through Natural Language Processing to extract keywords and sentiment and
is classified according to relevant categories. Keywords enable effective log search, and their
extraction can be done according to needs by choosing between KeyBERT, more precise, and
YAKE!, faster and lighter. Sentiment analysis is performed through the VADER algorithm to
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measure the degree of text sentiment, where a significant degree of negativity warns about the
need to carry out thorough checks on what is happening to the system. Logs are classified in
categories that can be set based on the characteristics of the execution system to access them
according to classification.

The purpose of these analytical capabilities is to effectively provide the information extracted
from the logs to external monitoring processes, which can thus carry out specific and detailed
analyses based on the problems at hand and consequently mitigate them. To this end DELTA
was made customizable and is interfaceable with other platforms through REST APIs to query
the system and suitably filter content.
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A. Structure of Processed Logs

1 {
2 "_index":"data_parsed",
3 "_type":"_doc",
4 "_id":"HkEy0n8BYv2pyDWhsjXR",
5 "_score":1.0,
6 "_source":{
7 "@timestamp":"2022-03-20T12:48:09.287Z",
8 "type":"ERROR",
9 "message":"[31m2022-03-20 12:48:09.287 UTC 007d ERRO [0m [core.comm] [31;1

mServerHandshake [0m -> Server TLS handshake failed in 607.238772ms with error
server=Orderer remoteaddress=167.94.138.46:45236",

10 "sentiment":"very negative",
11 "id_log":"MQhep38BYv2pyDWh9xpE",
12 "container":{
13 "id":"0c06a22e0a5f43b7d2ef9b6bfbfa227ae828a3fd2be0e1ab44e3f46926106640",
14 "name":"orderer.example.com",
15 "image":{
16 "name":"hyperledger/fabric-orderer:2.4.2"
17 }
18 },
19 "keywords":[
20 [
21 "1mserverhandshake",
22 "remoteaddress",
23 "failed"
24 ]
25 ],
26 "classification_labels":[
27 [
28 "Communication",
29 "Security",
30 "Connection"
31 ]
32 ],
33 "ip":[
34 "167.94.138.46:45236"
35 ],
36 "name_image_doc":{
37 "name":"hyperledger/fabric-orderer:2.4.2"
38 },
39 "stream":"stderr"
40 }
41 }

Listing 1: Simplified structure of processed logs used on Hyperledger Fabric network
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Abstract
The increase in the interest in cryptocurrencies, and the consequent need for technological
maturity of blockchain-based platforms, has been the fuel for some recent advances in cryp-
tographic research. In this context, digital signature protocols have a central role since they
guarantee ownership and control of digital assets.

The absence of trusted central authorities in public blockchains, which is the very foundation
of this technology, poses some interesting challenges on the management of digital identities. In
particular, the computational infeasibility of restoring a lost key is a threat to anyone possessing
this kind of digital assets. A possible solution to this problem is to use threshold multi-signatures,
partially relying on a recovery-party whose only role, even though of paramount importance, is
to intervene in case of key loss.

We present a Schnorr multi-party digital signature scheme that supports an offline par-
ticipant during the key-generation phase, without relying on a trusted third party. Under
standard assumptions we prove our scheme secure against adaptive malicious adversaries and
capable of achieving the resiliency of the recovery in the presence of a malicious party.

Keywords
94A60 cryptography, 12E20 finite fields, 14H52 elliptic curves, 94A62 authentication and secret
sharing, 68W40 analysis of algorithms.

1. Introduction

Custody of cryptocurriencies, and in general of crypto-assets, is at the very core of the
burgeoning digital-asset market. Ownership is guaranteed by digital signatures and
making them available and usable by the general public presents many issues: to provide
a few examples, in case of inheritance heirs cannot access the crypto-assets unless unless
they already have access to the private key, and, in general, private keys can be easily
lost or forgotten, leading to the inaccessibility of the related assets. Many solutions
have been devised to mitigate these problems and to enable safe custody. Some rely on
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personal efforts (e.g., cold storage), others simply delegate full control of the assets to
a third party. Unfortunately, these kinds of solutions are partial: most either sacrifice
usability or completely rely on the trustworthiness of a third party. An alternative and
viable solution is to use threshold digital signatures [8]. This kind of technique addresses
more comprehensively the problems above. It relies on multiple private keys, instead of a
single one, which are distributed among parties, and a subset of them are required to
control the crypto-assets. This approach is resilient with respect to the unavailability or
loss of one party. In particular we design a three-parties protocol, that allows users to
distribute their key to a custodian and a third party, like a bank or another financial
institute. Security is guaranteed as long as the two helping parties do not collude, i.e.,
it is sufficient that one of the two remains honest to preserve the safety of the system.
Furthermore, this solution is effectively agnostic to the underlying blockchain, i.e., it
does not have to be supported by special features.

Starting from the highly influential work of Gennaro et al [14], several authors proposed
both novel schemes [7, 19, 20] and improvements to existing protocols [4, 9, 10, 12, 13,
17, 18, 21].

Recently, in [1] and [2] the authors propose an ECDSA-compatible and an EdDSA-
compatible (2, 3)-threshold multi-signature protocol in which one of the users plays the
role of the recovery party: a user involved only once in a preliminary setup prior even to
the key-generation step of the protocol.

In this paper we propose a third, Schnorr-based, variant of [2]. The Schnorr signature
algorithm has recently gained popularity in the world of cryptocurrencies, especially
since its addition to Bitcoin with BIP3401. Schnorr signatures have many advantages,
such as linearity, non-malleability and provable security. In particular, they are strongly
unforgeable under chosen message attacks: in the random oracle model assuming the
hardness of the discrete logarithm problem, in the generic group model assuming variants
of preimage and second preimage resistance of the used hash function. In contrast, the
best known results for the provable security of ECDSA rely on stronger assumptions.
Moreover, the threshold version presented here allows for fast computation with fewer
rounds of communication with respect to ECDSA, and unlike EdDSA does not require
expensive computation to derive a deterministic nonce.

We prove the protocol secure against adaptive adversaries by reducing it to the classical
Schnorr scheme, assuming the security of a non-malleable commitment scheme, and an
IND-CPA encryption scheme. Moreover we make some considerations about the resiliency
of the recovery, an interesting aspect due to the presence of an offline party, analyzing
possible changes that allow us to achieve this higher level of security.

2. Preliminaries

In this section we present some preliminary definitions and primitives that will be used
in the protocol and its proof of security.

1see https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki
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Notation We use the symbol || to indicate the concatenation of bit-strings. Sometimes
we slightly abuse the notation and concatenate a bit-string 𝑀 with a group element 𝒫, in
those cases we assume that there has been fixed an encoding 𝜑 that maps group elements
into bit-strings, so 𝑀||𝒫 ∶= 𝑀||𝜑(𝒫 ).

In the following when we say that an algorithm is efficient we mean that it runs in
(expected) polynomial time in the size of the input, possibly using a random source.

We use a blackboard-bold font to indicate algebraic structure (i.e. sets, groups, rings,
fields), a calligraphic font will generally denote elements of a finite group.

2.1. Cryptographic Hash Functions

In the Schnorr scheme (and therefore in our threshold protocol) a cryptographic hash
function 𝐻 is used as a Pseudo-Random Number Generator (PRNG), employed to derive
secret scalars and nonces. The requirements needed for the hash function used in Schnorr
signatures are analyzed in [23].

2.1.1. Schnorr Signature

Schnorr’s digital signature algorithm is an efficient algorithm able to generate short
signatures without sacrificing security. It is one of the first signatures that bases its
security on the difficulty of discrete logarithm problem [24].

If Alice wants to send a signed message to Bob, she has to choose group 𝔾 with
generator 𝑔 of prime order 𝑞 where the discrete logarithm problem is considered to be
hard and a cryptographic hash function 𝐻. Then they can do the following:

1. Key Generation: Alice chooses randomly a private key 𝑥 ∈ ℤ∗
𝑞 and computes the

public key 𝑦 = 𝑔𝑥;

2. Signature Generation: to sign a message 𝑚, Alice performs the following:

a) Choose randomly 𝑘 ∈ 𝑍∗
𝑞 ;

b) Compute 𝑟 = 𝑔𝑘;

c) Compute 𝑒 = 𝐻(𝑚||𝑟);

d) Compute 𝑠 = (𝑘 − 𝑥𝑒);

e) The signature is the pair (𝑒, 𝑠).

3. Signature Verification: to verify the signature after receiving 𝑚 and (𝑒, 𝑠), Bob
performs the following:

a) Compute 𝑟𝑣 = 𝑔𝑠𝑦 𝑒;

b) Compute 𝑒𝑣 = 𝐻(𝑚||𝑟𝑣);

c) The signature is valid only if 𝑒𝑣 = 𝑒.
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2.2. Encryption Scheme

In our protocol we need an asymmetric encryption scheme to communicate with the
offline party. The minimum requirement we ask for our protocol to be secure is that the
encryption scheme chosen by the offline party has the property of IND-CPA [3, 22].

This hypothesis will be enough to prove the unforgeability of the protocol, but it is
possible to achieve a higher notion of security by using a more sophisticated encryption
scheme that supports Zero-Knowledge Proofs for the Discrete Logarithm. This will be
more clearly explained in Section 4.5.

2.3. Commitment Schemes

A commitment scheme [5] is composed by two algorithms:

• Com(𝑀) ∶ {0, 1}∗ → {0, 1}∗ × {0, 1}∗: takes in input the value 𝑀 to commit2 and, using
a random source, outputs the commitment string 𝐶 and the decommitment string
𝐷.

• Ver(𝐶, 𝐷) ∶ {0, 1}∗ × {0, 1}∗ → {0, 1}∗ ∪ {⟂}: takes the commitment and decommitment
strings 𝐶, 𝐷 and outputs the originally committed value 𝑀 if the input pair is valid,
⟂ otherwise3.

We require a commitment scheme to have the following properties:

• Correctness: for every value 𝑀 it holds Ver(Com(𝑀)) = 𝑀.

• Binding: for every commitment string 𝐶 it is infeasible to find 𝑀 ≠ 𝑀′ and 𝐷 ≠ 𝐷′

such that Ver(𝐶, 𝐷) = 𝑀 and Ver(𝐶, 𝐷′) = 𝑀′ with both 𝑀,𝑀′ ≠⟂.

• Hiding: Let (𝐶, 𝐷) = Com(𝑀𝑏) with 𝑏 ∈ {0, 1}, 𝑀1 ≠ 𝑀0, then it is infeasible for an
attacker that may choose 𝑀0 ≠ 𝑀1 and sees only 𝐶, to correctly guess 𝑏 with more
than negligible advantage.

• Non Malleability: Given 𝐶 = Com(𝑀), it is infeasible for an adversary A to produce
another commitment string 𝐶′ such that after seeing 𝐷 such that Ver(𝐶, 𝐷) = 𝑀,
A can find a decommit string 𝐷′ such that Ver(𝐶′, 𝐷′) = 𝑀′ with 𝑀′ related to 𝑀,
that is A can only create commitments to values that are independent from 𝑀.

2.4. Zero-Knowledge Proofs

In the protocol, various Zero-Knowledge Proofs (ZKP) [16] are used to enforce the respect
of the passages prescribed by the specifications. In fact, in the proof of security we can
exploit the soundness of these sub-protocols to extract valuable information from the

2In the protocol and the simulations we implicitly encode every value we need to commit into a bit-string,
assuming there is a standard encoding understood by all parties

3Again, in the protocol we implicitly decode valid decommitment outputs (i.e. ≠⟂) into the original value,
assuming that the decoding is also standard and understood by all parties
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adversary, and their zero-knowledge property to simulate correct executions even without
knowing some secrets. We can do so because we see the adversary as a (black-box)
algorithm that we can call on arbitrary input, and crucially we have the faculty of
rewinding its execution.

In particular we use ZKP of Knowledge (ZKPoK) to guarantee the usage of secret values
that properly correspond to the public counterpart, specifically the Schnorr protocol
for discrete logarithms, and its variant that proves that two public values are linked to
the same secret (see [24, 27]). The soundness property of a ZKPoK guarantees that the
adversary must know the secret input, and appropriate rewinds and manipulations of the
adversary’s execution during the proof allows us to extract those secrets and use them
in the simulation. Conversely exploiting the zero-knowledge property we can trick the
adversary in believing that we know our secrets even if we do not, thus we still obtain a
correct simulation of our protocol form the adversary’s point of view.

2.5. Feldman-VSS

Feldman’s VSS scheme [11] is a verifiable secret sharing scheme built on top of Shamir’s
scheme [26]. A secret sharing scheme is verifiable if auxiliary information is included,
that allows players to verify the consistency of their shares. We use a simplified version
of Feldman’s protocol: if the verification fails the protocol does not attempt to recover
excluding malicious participants, instead it aborts altogether. In a sense we consider
somewhat honest participants, for this reason we do not need stronger schemes such
as [15, 25].
The scheme works as follows:

1. A cyclic group 𝔾 of prime order 𝑞 is chosen, as well as a generator 𝑔 ∈ 𝔾. The
group 𝔾 must be chosen such that the discrete logarithm is hard to compute.

2. The dealer computes a random polynomial 𝑃 of degree 𝑡 with coefficients in ℤ𝑞,
such that 𝑃(0) = 𝑠 where 𝑠 ∈ ℤ𝑞 is the secret to be shared.

3. Each of the 𝑛 share holders receive a value 𝑃(𝑖) ∈ ℤ𝑞. So far, this is exactly Shamir’s
scheme.

4. To make these shares verifiable, the dealer distributes commitments to the coeffi-
cients of 𝑃. Let 𝑃(𝑋) = 𝑠 +∑𝑛

𝑖=1 𝑎𝑖𝑋 𝑖, then the commitments are 𝒞0 = 𝑔𝑠 and 𝒞𝑖 = 𝑔𝑎𝑖
for 𝑖 ∈ {1, … , 𝑛}.

5. Any party can verify its share in the following way: let 𝛼 be the share received by
the 𝑖-th party, then it can check if 𝛼 = 𝑃(𝑖) by verifying if the following equality
holds:

𝑔𝛼 =
𝑡

∏
𝑗=0

(𝒞𝑗)𝑖
𝑗
= 𝑔𝑠 ⋅ 𝑔∑

𝑡
𝑗=1 𝑎𝑗(𝑖𝑗) = 𝑔𝑠+∑

𝑡
𝑗=1 𝑎𝑗(𝑖𝑗) = 𝑔𝑃(𝑖).
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3. Threshold Schnorr Signature

In this section we describe the main protocol: a (2, 3)-threshold variant of Schnorr digital
signature algorithm with an offline participant. Let 𝑃1, 𝑃2, 𝑃3 the parties involved in the
protocol, as already mentioned the goal is to allow to one of them, namely 𝑃3 to remain
offline during the key generation phase. Moreover our goal is to allow for a trustless
setup, where the parties does not have to rely to a third trusted party to generate the
credential. From now on we refer to 𝑃3 as the offline or recovery party, since its role is to
take part in the signing protocol if for any reason one of the two is no more able (secret
key loss, unreachability, etc.).

The protocol is dividend into four algorithms:

1. Setup Phase (3.1): in this phase all three players interact to set some common
parameters. Note that in a practical implementation this phase can be performed
ahead of time without any real communication, because these parameters are usually
fixed (e.g. for Bitcoin applications which have to use secp256k1 and SHA-256).

2. Key-Generation (3.2): performed by 𝑃1 and 𝑃2 to create the public key for the
signature scheme and the private shards for themselves and 𝑃3;

3. Ordinary Signature (3.3): used whenever 𝑃1 and 𝑃2 want to perform a signature. It
is called ordinary signature as this should be the standard signing procedure;

4. Recovery Signature (3.4): ideally, this algorithm is executed when either 𝑃1 or 𝑃2
is no more able to sign. 𝑃3 steps in and performs a signature with the remaining
party. It is important to emphasize that the final signature is still a standard one,
same as the one generated in an ordinary signature and indistinguishable to one
obtained in the centralized protocol.

From now on “𝑃𝑖 does something” means that both 𝑃1 and 𝑃2 perform that action.
Also by saying “ 𝑃𝑖 sends a message to 𝑃𝑗” means that 𝑃1 sends data to 𝑃2 and viceversa.

3.1. Setup Phase

The aim of this phase is to make 𝑃1 and 𝑃2 agree on all the parameters required in the
protocol and set up the private/public key pair used to contact 𝑃3 in case of need.

Player 1 and 2 Player 3
Input: Input:
Private Output: Private Output: sk3
Public Output: 𝔾, 𝑔, 𝑞, 𝐻 Public Output: pk3

𝑃3 picks a key pair (pk3, sk3) for a suitable asymmetric encryption algorithm. Then 𝑃1
and 𝑃2 agree on a secure hash function 𝐻 whose outputs can be interpreted as elements
of ℤ𝑞 and a group 𝔾 with generator 𝑔 of prime order 𝑞 in which the discrete logarithm
problem is considered to be hard.
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3.2. Key generation

This part of the protocol is performed by 𝑃1 and 𝑃2 to produce a common public key 𝒜
and to distribute shards of the corresponding private key to each player.

Player 1 Player 2
Input: pk3 Input: pk3
Private Output: 𝜔1 Private Output: 𝜔2
Public Output: rec1,3, rec2,3, 𝒜 Public Output: rec1,3, rec2,3, 𝒜

1. Secret key generation and communication:

a) 𝑃𝑖 randomly chooses 𝑎𝑖, 𝑦3,𝑖, 𝑚𝑖 ∈ ℤ𝑞 and sets 𝒜𝑖 = 𝑔𝑎𝑖 , 𝒴3,𝑖 = 𝑔𝑦3,𝑖;

b) 𝑃𝑖 computes [KGC𝑖, KGD𝑖] = Com((𝒜𝑖, 𝒴3,𝑖));

c) 𝑃𝑖 sends KGC𝑖 to 𝑃𝑗;

d) 𝑃𝑖 sends KGD𝑖 to 𝑃𝑗;

e) 𝑃𝑖 gets ((𝒜𝑖, 𝒴3,𝑖)) = Ver(KGC𝑗, KGD𝑗) .

2. Feldman VSS and generation of 𝑃3 data:

a) 𝑃𝑖 sets 𝑓𝑖(𝑥) = 𝑎𝑖 + 𝑚𝑖𝑥 and computes 𝑦𝑖,1, 𝑦𝑖,2, 𝑦𝑖,3 where 𝑦𝑖,𝑗 = 𝑓𝑖(𝑗);

b) 𝑃𝑖 encrypts 𝑦𝑖,3, 𝑦3,𝑖 with pk3 and obtains rec𝑖,3;

c) 𝑃𝑖 sends 𝑦𝑖,𝑗 and rec𝑖,3 to 𝑃𝑗;

d) If the asymmetric encryption algorithm supports DLOG verification, the
encryption rec𝑖,3 is accompanied by two NIZKPs: the first one proves that
the first ciphertext in rec𝑖,3 is the encryption of the DLOG of 𝒴𝑖,3 = 𝒜𝑖 ⋅ (ℳ𝑖)3
(where ℳ𝑖 = 𝑔𝑚𝑖 is sent during the Feldman-VSS protocol), the second NIZKP
proves that the second ciphertext is the encryption of the DLOG of 𝒴3,𝑖. 𝑃𝑖
checks the NIZKPs attached to rec𝑗,3.

e) 𝑃𝑖 checks, as in the Feldman-VSS protocol, the integrity and consistency of
the shards 𝑦𝑗,𝑖;

f) 𝑃𝑖 computes 𝑥𝑖 = 𝑦1,𝑖 + 𝑦2,𝑖 + 𝑦3,𝑖.

3. 𝑃𝑖 proves in ZK the knowledge of 𝑥𝑖 using Schnorrs protocol.

4. Public key and shards generation:

a) the public key is 𝒜 = ∏3
𝑖=1𝒜𝑖, where 𝒜3 = (𝒴3,1)2/𝒴3,2 so that 𝑎3 = 2𝑦3,1−𝑦3,2.

From now on we will set 𝑎 = ∑3
𝑖=1 𝑎𝑖 and we have 𝑔𝑎 = 𝒜;

b) 𝑃1 computes 𝜔1 = 2𝑥1, while 𝑃2 computes 𝜔2 = −𝑥2. Note that 𝜔1 + 𝜔2 = 𝑎;
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3.3. Signature Algorithm

This algorithm is the general signature scheme in which two players, 𝑃𝐴 and 𝑃𝐵, want to
sign a message. Each of 𝑃1, 𝑃2, 𝑃3 can take the role of either 𝑃𝐴 or 𝑃𝐵 depending on the
situation, we call Ordinary Signature the case in which 𝑃1 takes the role of 𝑃𝐴 and 𝑃2
takes the role of 𝑃𝐵.

Let 𝑀 be the message, the parameters involved are:

Player A Player B
Input: 𝑀, 𝜔𝐴, 𝒜 Input: 𝑀, 𝜔𝐵, 𝒜
Public Output: (𝑠, 𝑒) Public Output: (𝑠, 𝑒)

The protocol proceeds as follows.

1. Generation of 𝑟:

a) 𝑃𝑖 randomly chooses 𝑘𝑖 ∈ 𝔾;

b) 𝑃𝑖 computes 𝑟𝑖 = 𝑔𝑘𝑖;

c) 𝑃𝑖 computes [KGC𝑖, KGD𝑖] = Com(𝑟𝑖) and sends KGC𝑖;

d) 𝑃𝑖 sends KGD𝑖;

e) 𝑃𝑖 computes 𝑟𝑗 = Ver([KGC𝑗, KGD𝑗]);

f) 𝑃𝑖 computes 𝑟 = 𝑟𝐴𝑟𝐵.

2. Generation of 𝑠:

a) 𝑃𝑖 computes 𝑒 = 𝐻(𝑟 ||𝑀) and 𝑠𝑖 = 𝑘𝑖 − 𝜔𝑖𝑒;

b) 𝑃𝑖 computes [KGC′𝑖 , KGD′𝑖 ] = Com(𝑠𝑖) and sends KGC′𝑖 ;

c) 𝑃𝑖 sends KGD′𝑖 ;

d) 𝑃𝑖 computes 𝑠𝑗 = Ver([KGC′𝑗 , KGD′𝑗 ]);

e) 𝑃𝑖 computes 𝑠 = 𝑠𝐴 + 𝑠𝐵.

3. 𝑃𝑖 computes 𝑟𝑣 = 𝑔𝑠𝒜 𝑒 and checks that 𝐻(𝑟𝑣||𝑀) = 𝑒.

The output signature is (𝑠, 𝑒). If a check fails, the protocol aborts.

3.4. Recovery Signature

This is the scenario where one between 𝑃1 or 𝑃2 is unable to sign. 𝑃3 has to come back
online and perform a recovery signature with the other online party. There are two
different situations, depending whether the other party is 𝑃1 or 𝑃2.

Firstly we consider the case where 𝑃2 is offline and 𝑃1 and 𝑃3 want to perform a
signature. The parameters involved are:

Player 1 Player 3
Input: 𝑀, 𝜔1, 𝒜 , rec1,3, rec2,3 Input: 𝑀, sk3
Public Output: (𝑠, 𝑒) Public Output: (𝑠, 𝑒)
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The protocol is the following.

1. Communication:

a) 𝑃1 contacts 𝑃3 and sends 𝒜, rec1,3, rec2,3;
b) 𝑃3 decrypts rec1,3, rec2,3 using its private key to obtain 𝑦1,3, 𝑦3,1, 𝑦2,3, 𝑦3,2;
c) 𝑃3 computes 𝑎3 = 2𝑦3,1 − 𝑦3,2 and 𝒜3 = 𝑔𝑎3.

2. 𝑃3’s key creation:

a) 𝑃3 computes 𝑥3 = 𝑦1,3 + 𝑦2,3 + 2𝑦3,2 − 𝑦3,1;

b) 𝑃𝑖 proves in ZK the knowledge of 𝑥𝑖 using Schnorrs protocol (𝑥1 =
1
2𝜔1).

3. Signature generation:

a) 𝑃1 computes 𝜔̃1 =
3
4𝜔1;

b) 𝑃3 computes 𝜔3 = −1
2𝑥3;

c) 𝑃1 and 𝑃3 perform the signature algorithm with 𝑃𝐴 = 𝑃1, 𝑃𝐵 = 𝑃3 using 𝜔𝐴 = 𝜔̃1
and 𝜔𝐵 = 𝜔3. Note that it still holds that 𝜔𝐴 + 𝜔𝐵 = 𝑎.

The other scenario is the one in which 𝑃1 is offline and 𝑃2 signs the message with 𝑃3:

Player 2 Player 3
Input: 𝑀, 𝜔2, 𝒜 , rec1,3, rec2,3 Input: 𝑀, sk3
Public Output: (𝑠, 𝑒) Public Output: (𝑠, 𝑒)

The first two steps are the same as in the previous scenario, except that in the ZKP in
[2b] we now have 𝑥2 = −𝜔2.

3. Signature generation:

a) 𝑃2 computes 𝜔̃2 = −3𝜔2;
b) 𝑃3 computes 𝜔3 = −2𝑥3;
c) 𝑃2 and 𝑃3 perform the signature algorithm with 𝑃𝐴 = 𝑃2, 𝑃𝐵 = 𝑃3 using 𝜔𝐴 = 𝜔̃2

and 𝜔𝐵 = 𝜔3. Note that also here 𝜔𝐴 + 𝜔𝐵 = 𝑎.

4. Security Proof

In this section we discuss the security of the scheme in terms of the unforgeability
properties defined below. We also discuss other security aspects, such as recovery
resiliency in the subsequent Section 4.5.

Definition 4.1 (Unforgeability). A (𝑡, 𝑛)-threshold signature scheme is unforgeable if no
malicious adversary who corrupts at most 𝑡 − 1 players can produce the signature on a
new message 𝑚 with non-negligible probability, given the view of the threshold sign on
input messages 𝑚1, … , 𝑚𝑘 (adaptively chosen by the adversary), as well as the signatures
on those messages.
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The unforgeability of our protocol is formally stated in the following theorem:

Theorem 4.1. Assuming that:

• the Schnorr signature scheme instantiated on the group 𝔾 of prime order 𝑞 with
the hash function 𝐻 is unforgeable;

• Com,Ver is a non-malleable commitment scheme;

• the Decisional Diffie-Hellman Assumption holds;

• the encryption algorithm used by 𝑃3 is IND-CPA;

our threshold protocol is unforgeable.

In Section 4.4 we will prove the theorem by showing that if there is an adversary
A able to forge a signature for the threshold scheme with non negligible probability
𝜖 > 𝜆−𝑐 with 𝜆 a polynomial and 𝑐 > 0, then it is possible to build a forger F that forges a
signature for the centralized Schnorr scheme also with non negligible probability. The
simulation works by having an oracle that feeds inputs for the centralized scheme to F,
our goal is to respond by generating a signature exploiting A. First, it has to simulate
the key generation protocol in order to match the key received from the oracle, then
it can proceed with the signature part. The core of this setup is that if A is able to
crack our protocol, F will take advantage of that and will also create a forgery for the
centralized version of the oracle.

Following the definition of unforgeability, A will control one player while F controls
the remaining two. We must consider two different scenarios: one where A controls 𝑃1 or
𝑃2, and the case where A controls 𝑃3. First, we suppose without loss of generality that A
controls 𝑃2.

The adversary interacts by first participating in the key generation part to generate
a public key 𝒜, then starts requesting signatures on some messages 𝑚1, … , 𝑚𝑙. Here it
can either take part in the process or let 𝑃1 and 𝑃3 generate the signature. Eventually A

outputs a message 𝑚 ≠ 𝑚𝑖 ∀𝑖 and its valid signature with probability at least 𝜖, where this
is taken over the random tapes of the adversary and the honest player, respectively 𝜏A
and 𝜏𝑖. So we can write that

ℙ𝜏𝑖,𝜏A(A(𝜏A)𝑃𝑖(𝜏𝑖) = forgery) ≥ 𝜖, (1)

where A(𝜏A)𝑃𝑖(𝜏𝑖) is the output of A at the end of this process and ℙ𝜏𝑖,𝜏A denotes that the
probability is taken over the random tape 𝜏𝑖 and the adversary tape 𝜏A.

We say that a random tape is good if

ℙ𝜏𝑖(A(𝜏A)𝑃𝑖(𝜏𝑖) = forgery) ≥ 𝜖
2
. (2)

We recall the following useful lemma, stated and proved in [2].

Lemma 4.1. If 𝜏A is chosen uniformly at random, the probability that 𝜏A is good is at
least 𝜖

2 .
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4.1. Key generation simulation

Now we see into details how the key generation phase is simulated. F receives from the
challenger the public key 𝒜𝑐 for the centralized Schnorr protocol and a public key pk3 for
the asymmetric encryption scheme. The simulation proceeds as follows:

1. 𝑃𝑖 selects random values 𝑎𝑖, 𝑦3,𝑖, 𝑚𝑖 ∈ ℤ𝑞 and computes 𝒜𝑖 = 𝑔𝑎𝑖 , 𝒴3,𝑖 = 𝑔𝑦3,𝑖;

2. 𝑃𝑖 computes the commitment [KGC𝑖, KGD𝑖] = Com(𝒜𝑖, 𝒴3,𝑖);

3. 𝑃𝑖 sends KGC𝑖, then, after receiving KGC𝑗, 𝑃𝑖 sends KGD𝑖;

4. 𝑃𝑖 gets (𝒜𝑖, 𝒴3,𝑖) = Ver(KGC𝑗, KGD𝑗);

5. Now F knows all the parameters needed in the computation of 𝒜, so it rewinds A

to step 3, aiming to get 𝒜 = 𝒜𝑐;

6. F computes ̂𝒜 = 𝒜𝑐
𝒜2𝒜3

, computes the commitment [ ̂KGC1, ̂KGD1] = Com( ̂𝒜 ,𝒴3,1), and

sends it to A, so that it will receive ̂𝒜 as 𝒜1 which leads to 𝒜 = 𝒜𝑐;

7. F simulates a fake Feldman-VSS with 𝒜 (see e.g. [2]) since it cannot compute the
polynomial 𝑓 (𝑥): it selects 𝑦1,2, 𝑦1,3 randomly and computes 𝑐1,𝑗 =

1
𝑖 (𝑔

𝑦1,𝑖/ ̂𝒜) .

8. 𝑃𝑖 encrypts 𝑦𝑖,3 and 𝑦3,𝑖 with pk3, getting rec𝑖,3, then sends 𝑦𝑖,𝑗, rec𝑖,3;

9. 𝑃𝑖 computes 𝑥𝑖. Since F does not know the discrete logarithm of ̂𝒜, it sets 𝑥1
randomly;

10. F participates in the ZK proofs rewinding A and selecting appropriate challenges
in order to extract 𝑥2 from A;

11. 𝑃𝑗 can compute the key 𝒜 as described in the enrollment phase. A can also compute
𝜔2, while F cannot, since it does not know 𝑥1.

Note that at the end of the protocol, F does not know 𝑥1 nor 𝜔1, but F will still be
able to complete correctly the signing part by querying the oracle.

The proof of the correctness of the simulation is stated in the following lemmas. The
proofs are trivial and use the same argument of the one presented in [2].

Lemma 4.2. If the Decisional Diffie-Hellman assumption holds, and the encryption
algorithm used by 𝑃3 is IND-CPA, then the simulation terminates in expected polynomial
time and is indistinguishable from the real protocol.

Lemma 4.3. For a polynomial number of inputs the simulation terminates with output
𝒜𝑐 except with negligible probability.
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Observation 1. It is important that in step 3 the adversary sends KGC2 and KGD2 before
F, so that after the rewinding A cannot change its commitment (note that this applies
also to the simulation in Section 4.2). If the order were inverted, A could also use the
commitment of F to generate its value. Assuming the non-malleability property, A does
not deduce anything about the content of the commitment, but it could still use it as a
seed for a random generator. If this were to happen, F can guess ̂𝒜 with probability 1

𝑞
with 𝑞 the size of the group, making the expected time exponential.

It is possible to swap the order in the commitment step using an equivocable com-
mitment scheme with a secret trapdoor. In this case we only need to rewind at the
decommitment step and change 𝐾𝐶𝐷1 in order to match ̂𝒜.

4.2. Signature generation simulation

After the the key generation, F has to deal with the signature requests issued by A.
When A asks for a signature, F performs a simulation while having access to the signing
oracle that uses the previously created public key. Here F can fully predict what A will
output and, while it does not know any secret key of 𝑃1, it knows everything of 𝑃2 since
all the secret values were extracted from A during the ZK proofs.

The simulation proceeds as follows:

1. A chooses a message 𝑚 to sign;

2. F queries its signing oracle for a signature for 𝑚 corresponding to the public key 𝒜
and gets (𝑠𝑓, 𝑒𝑓);

3. 𝑃𝑖 randomly chooses 𝑘𝑖 ∈ ℤ∗
𝑞 , then computes 𝑟𝑖 = 𝑔𝑘𝑖 and [KGC𝑖, KGD𝑖] = Com(𝑟𝑖);

4. 𝑃𝑖 sends KGC𝑖, then, after receiving KGC𝑗, sends KGD𝑖 and gets 𝑟𝑖 = Ver([KGC𝑖, KGD𝑖]);

5. F rewinds A to step 4;

6. F computes ̂𝑟1 =
𝑟𝑓
𝑟2
, then its commitment [ ̂KGC1, ̂KGD1] = Com( ̂𝑟1) and sends ̂KGC1 to

A so it receives ̂𝑟1 as 𝑟1 which leads to 𝑟 = 𝑟𝑓;

7. 𝑃𝑖 computes 𝑟 = 𝑟1𝑟2, 𝑒 = 𝐻(𝑟 ||𝑚), and 𝑠𝑖 = 𝑘𝑖 − 𝜔𝑖𝑒 (F picks 𝑠1 at random);

8. 𝑃𝑖 computes [KGC′𝑖 , KGD′𝑖 ] = Com(𝑠𝑖), then sends KGC′𝑖 ;

9. 𝑃𝑖 sends KGD′𝑖 and gets 𝑠𝑖 = Ver([KGC′𝑖 , KGD′𝑖 ]);

10. F computes 𝑟 ′2 = 𝑔𝑠2 ⋅ 𝑔−𝑒𝜔2, if 𝑟2 = 𝑟 ′2 it rewinds A to step 8, otherwise it sends 𝑠1
and aborts;

11. F computes ̂𝑠1 = 𝑠𝑓 − 𝑠2 with its commitment [ ̂KGC′1, ̂KGD′1] = Com( ̂𝑠1) and sends
̂KGC′1 to A so it receives ̂𝑠1 as 𝑠1 which leads to 𝑠 = 𝑠𝑓;

12. 𝑃𝑖 computes 𝑠 = 𝑠1 + 𝑠2 and 𝑟𝑣 = 𝑔𝑠𝒜 𝑒, then checks that 𝐻(𝑟𝑣||𝑚) = 𝑒. If a check fails
the protocol aborts, otherwise the signature is (𝑠, 𝑒).
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Lemma 4.4. If Com is a secure non-malleable commitment scheme, the protocol above is
a perfect simulation of the centralized one and terminates correctly with output (𝑠𝑓, 𝑒𝑓).

Proof. The simulation is identical to the real protocol except that here F does not know
its secret shards. Nevertheless it is still able to retrieve the correct value from A by
rewinding it. As above, if the protocol terminates, by construction it will terminate with
output (𝑠𝑓, 𝑒𝑓). If A is dishonest or refuses to decommit some values, the protocol aborts.
Note that the check of step 10 is introduced to preserve any abort that the adversary
may cause by sending an invalid 𝑠1.

4.3. Recovery signature simulation

Since A can ask both types of signature, we must also consider the case of a recovery
signature. The core algorithm remains the same, so the results above still holds. Here we
only need to change the setup phase during which the third player recovers its secret
data. There are two scenarios: one in which A controls one of 𝑃1 or 𝑃2 and another where
it controls 𝑃3, which is easier, since the enrollment phase can be avoided. We will proceed
in order.

Trivially, if A asks for a recovery signature between the two honest parties, F can
simply ask its oracle and output whatever it received from the oracle. So we can limit
ourselves to deal with the case where A participates in the signing process.

If A controls 𝑃2 the simulation works as follows:

1. 𝑃2 sends to 𝑃3 𝒜, rec1,3, rec2,3. Note that some of them are random data sent by 𝑃1;

2. 𝑃3 cannot decrypt the values received in the previous step. It simulates the ZKP
about 𝑥3 and extracts the secret values from 𝑃2;

3. 𝑃2 computes ̃𝜔2 = −3𝜔2. Note that 𝑃3 does not have the right shards so it cannot
compute its secret key;

4. They perform the signing algorithm using the simulation above. Here F does not
know its secret key, but it can use the signing oracle to get the signature.

If A controls 𝑃1 the only difference is in the computation of 𝜔̃1 =
3
4𝜔1. The last case

is the one where A controls 𝑃3. The enrollment phase is done all by F so it can easily
generate random shards that will be sent to 𝑃3 during the recovery signature phase and
output the public key given by the oracle. Then with the same simulation as before it
can simulate the signature.

4.4. Proof of the unforgeability property

Now that we have dealt with all the possible cases we need to prove Theorem 4.1:
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Proof. Let 𝑄 < 𝜆𝑐 be the maximum number of signature queries that the adversary
makes. In a real instance of the protocol the adversary outputs a forgery after 𝑙 < 𝑄
queries, either because it stops submitting queries or because the protocol aborts. As
we previously proved, our simulator produces a view of the protocol that the adversary
cannot distinguish from the real one, therefore A will produce a forgery with the same
probability as in a real execution. Then the probability of success of our forger F is 𝜖3

8
which is the product of the probability of the following independent events:

1. choosing a good random tape for A, whose probability is at least 𝜖
2 as per Lemma

4.1;

2. getting a good public key, whose probability is at least 𝜖
2 as shown in Lemma 4.2

and 4.3;

3. A successfully produces a forgery, whose probability is again 𝜖
2 (2).

Under the assumption on the security of the Schnorr signature scheme, the probability of
success of F must be negligible, which implies that 𝜖 must be negligible too, contradicting
the hypothesis that A has a non-negligible probability of forging a signature for the
scheme.

4.5. Resilience of the recovery

In our security analysis we focused on the unforgeability of the signature, however with an
offline party another security aspect is worthy of consideration: the resiliency of recovery
in the presence of a malicious adversary. Of course if the offline party is malicious and
unwilling to cooperate there is nothing we can do about it, however the security can
be strengthened if we consider that one of the online parties may corrupt the recovery
material. In this case a generic CPA asymmetric encryption scheme is not sufficient to
prevent malicious behaviour, because we need a verifiable encryption scheme that allows
the parties to prove that the recovery material is consistent, just like they prove that
they computed the shards correctly.

In particular we need an encryption scheme that supports DLOG verification as
explained in point 2d of the Key-Generation algorithm. A suitable candidate could be a
variant of the CramerShoup cryptosystem presented in [6]. This algorithm is equipped
with a ZKP that allows the sender to prove that the plaintext encrypted is the discrete
logarithm of a public value. In particular, since the protocol is a three step ZKP with
special soundness, completeness, and honest-verifier zero knowledge, it is possible to
build a non-interactive ZKP using the Fiat-Shamir heuristic.

5. Conclusions

In this paper, we presented a Schnorr threshold signature with the goal of providing a
reliable and efficient solution for the custody of crypto-assets, both from possible attackers
and from loss due to accidents of various nature. In this sense, threshold signatures
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without a trusted dealer offer a perfect solution, since the private key is never created,
and they overcome the limitations of blockchains that do not have native multi-signature
support. Although decentralized signature algorithms have been known for a while,
we are aware of only few proposals for algorithms that are able to produce signatures
indistinguishable from a standard one. The protocol described in this work is, as far as
we know, the first example of Schnorr threshold multi-signature allowing the presence of
an offline participant during key-generation and whose signatures are indistinguishable
from Schnorr ones.

The focus of this work was to shift away from DSA-like protocols, further motivated
by the recent adoption of Schnorr signatures in Bitcoin4. Moreover, Schnorr signatures
are quite a multi-party-friendly algorithm, unlike EdDSA, since we can avoid expensive
tricks to generate a deterministic nonce.

Similarly to its ECDSA and EdDSA counterparts, in order to guarantee the security of
the signature itself against black-box adversaries, the protocol involves a large utilization
of ZKPs, that are the main bottleneck in terms of efficiency.

Future research steps could be the generalization to (𝑡, 𝑛)-threshold schemes with more
than one offline party and the extension of our notion of security. Although our protocol
is susceptible to DOS attacks on the offline party, there are many ways to overcome this
apparent weakness, such as the distribution of the role of the Recovery party to multiple
servers or the generalization of our scheme to more than three parties.
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Abstract
In this paper we explore a context of application of Cob, a recently introduced Byzantine Fault Tolerant
consensus protocol. Cob proves to be a leaderless consensus protocol which carries out the consensus
process in parallel on each component of a list of events to be observed and recorded.

We show how Cob can be used to define a consensus layer for scalable and sustainable blockchains.
This layer is used to design consensus protocols based on sharding as a mean to achieve scalability,
and on the fragmentation of time in time-slots, which get assigned to nodes that are instructed to create
new blocks, as a mean to reduce the amount of computation and communication necessary for the
maintenance of the distributed ledger.

We explain why Cob is a viable candidate to implement such consensus layer through the introduction
of an auxiliary blockchain that we name Synchronization Chain.

Keywords
Cob, blockchain, consensus, sharding, time-slot, synchronization

1. Introduction

A blockchain is a distributed ledger which allows a network of nodes to record transactions in
a trusted and immutable manner. The network is generally composed of independent parties
which cooperate to the maintenance of the ledger without the influence of a central authority.
Clearly, since a blockchain is a distributed system, one of the most important problems is the
consensus. Every blockchain is provided with a consensus algorithm which allows the network
of nodes to agree on the information to record into the ledger, even in presence of malicious
or faulty nodes. Since consensus protocols can be quite intensive under the computational
or communication point of view (e.g. proof of work or Byzantine fault tolerant protocols,
respectively), the number of transaction that can be recorded in the ledger per second in average
is low if compared with the centralized counterparts. Therefore, the same negative comparison
can be done regarding the costs applied to the users in terms of fees (e.g Bitcoin [13] vs Visa).
This causes blockchain platforms to be incapable to grow and manage an increasing number
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of requests, a property which is referred to as scalability. In particular, we say that a platform
scales if it can easily adapt to changes in the number of users that decide to join in, as well as in
the number of transaction requests that such users perform.

1.1. Preliminaries

We now introduce two techniques which are adopted to solve the problem of intensity of
computations/communications, and the problem of scalability.

1.1.1. Reduction of computations or communications

Some consensus protocols, such as EOS [4], Quadrans [1] or Takamaka [3] divide the epochs
in smaller time units which we call time-slots. Before the new epoch begins, a redistribution
mechanism assigns each time-slot to a node in the network. These nodes are in charge of the
creation of a block and if one of them does not manage to broadcast its block in time (i.e. before
the end of the time-slot), then its block gets discarded by the network. In this approach, the
network first reaches a consensus on the way the time-slots must be redistributed and, after that,
only the node in charge during a time-slot can produce and advertise a new block. This drastically
reduces the computational consumption derived by the classical protocols based on proof of
work such as Bitcoin [13] which requires that the nodes execute intensive computations without
any break. Similarly, this approach reduces the burden of communications between nodes given
by Byzantine fault tolerant (BFT) protocols such as Algorand [2] or HoneyBadgerBFT [12].

However, the subdivision of an epoch in preassigned time-slots, although it brings several
benefits in term of energetic efficiency and platform stability, it also brings one important issue:
every node in the network must have access to a common clock which specifies the beginning
and the end of a time-slot, an essential tool to determine whether the node in charge created
the block in time or not. The problem of accessing a common clock could be avoided by using
same speed clocks and an event which triggers the end of a time-slot and the beginning of a
new one1. But, even with a common clock, there would still be the problem that a message
does not reach every node in the network in the very same instant of time. Therefore, a block
may be received in time by some nodes, and the same block may be received late by some other
nodes if it is broadcast near the end of the time-slot. In fact, in a distributed system where
the messages are broadcast via gossip, the time in which a node 𝑛 receives a message does not
provide very precise information about the time the other nodes have seen such message. Let 𝜆
be the message propagation time, assuming a common clock exists and 𝑇 is the time when 𝑛
has received the block, then, if the communication happens via gossip (which is typical in the
context of permissionless blockchain networks), the other nodes will receive (or have received)
the block in the time interval [𝑇 − 𝜆, 𝑇 + 𝜆]. The node 𝑛 does not know much more than this.

This observation opens the door to a series of vulnerabilities of the system which may allow
an attacker to discard blocks legitimately created and diffused by an honest node. In fact, if
there is not a third party who certifies the legitimate creation and diffusion of a block, the only

1Some consensus protocols such as Algorand [2] assume that the nodes in the network are provided with same speed
clocks and each node resets its clock every time a certificate for the new block is received. Since Algorand assumes
that the certificate propagation time is below a parameter 𝜆, the delay between two nodes is upper-bounded by 𝜆.
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feedback the network receives regarding the timing of diffusion consists only of the opinion of
the nodes in charge in the following time-slots.

In Section 3 we will explain how Cob, a novel BFT consensus protocol, can substitute the third
party which attests which blocks have been legitimately created in time by the right node. This
protocol is executed by the network of nodes and is a leaderless consensus protocol, therefore the
only way for a block to get certified and accepted, is to be received in time by a great majority
of the nodes in the network. This is exactly what we expect to happen when a node behaves
honestly, and makes it impossible for an attacker to pretend that such block was not diffused in
time.

Moreover, the publication of the certificates that attest that a block have been created in time
can be used as the triggering event which officially ends the current time-slot and starts the
new one. This approach to the declaration of the beginning of a new period of time is similar to
the one adopted by Algorand [2] to declare the beginning of the next round.

A legitimate question might be why not to use a BFT protocol to reach consensus directly
on the new block instead of reaching consensus on a certificate which proves the legitimacy
of the newly created block. The quick answer to this question is that reaching consensus on
a certificate will let us prove the legitimacy of multiple blocks simultaneously, and delegate
expensive and/or difficult checks on the individual blocks, as it will become more clear in the
following sections.

1.1.2. Improving the scalability

In order to solve the scalability issues of blockchain platforms, many approaches have been
proposed over the years. Some of them are the block size increase, the use of off-chain state
channels, segregated witness (SegWit)[9], the use of directed acyclic graphs as in [14] and sharding.
Among these, sharding seems to be the most promising [8, 15], a description of the main
platforms adopting this technique is presented in [10].

The term sharding comes from database management, where it identifies a particular type
of database partitioning, that consists in dividing large databases into smaller parts, called
shards. Shards are more manageable in terms of server hosting and other aspects of database
maintenance, and allow to have faster query time by diversifying the responsibility of a database
structure. Similarly, when we talk about sharding in the context of blockchain platform design,
we refer to an architecture which divides the “usual” chain of blocks into multiple chains called
shards, which are managed in parallel by different groups of nodes. This improves throughput,
since many transactions can be simultaneously validated, allowing blockchains to effectively
scale for a huge number of users. Although sharding is promising, it faces many challenges
that the community must efficiently and securely solve. For example, one should note that,
if a network is divided in shards, for an adversary it is potentially easier to take control of a
single shard compared with the whole network. In fact, its impact in terms of ratio of nodes it
controls grows linearly with the number of shards the network adopts to record transactions.
Another challenge the protocol designers must deal with is the inter-shard communication:
nodes working on different shards might be in possess of or access to different data sources.
Therefore, the protocol designer must assure that transactions elaborated by different shards
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are consistent despite the fragmentation of the transaction insertion process.
Since sharding aims to maximise the scalability of a platform depending on the underlying

network of nodes (with great focus on preserving the security requirements), and the network
conditions can suddenly evolve2, it is good practice to regularly update the configuration of
the system (i.e. the actors and parameters involved). Each period of time in which the system
configuration is updated is referred to as epoch.

In order to better comprehend what sharding is, we briefly describe some of the main
components of a consensus protocol for a blockchain implementing sharding. We refer to the
surveys [15, 8] for more details about blockchain sharding.

1. Identity establishment and shard formation: this process aims to identify the single nodes
who take part to the protocol execution and (randomly) assign them to a specific shard.
This process should prevent Sybil attacks from being successfully performed by malicious
entities who manage to create multiple identities.

2. Intra-shard consensus Each node within a shard must execute a consensus protocol to
reach agreement on the transactions to be recorded in the fragment of ledger which is
under that shard’s control. Here, we make a distinction between two possible approaches
to intra-shard consensus: weak and strong consistency. According to the definition in [8],
weak (or eventual) consistency means that different nodes might end up having different
views of a blockchain, which leads to forks, therefore a certain number of blocks at the
end of the blockchain need to be truncated to obtain stable transactions. Contrarily,
strong consistency means that after the generation of a valid block, every non-faulty node
shares the same view and therefore no forks can happen.

3. Cross-shard transaction processing: it is essential that the transactions processed by the
shards are consistent not only within the shard they belong to, but also across the whole
system. Therefore, for cross-shard transactions, which are transactions which involve
information processed by more than a shard, a network must adopt some mechanism
which allows synchronization and reconciliation of transactions processed by different
groups.

4. Epoch reconfiguration: in order to guarantee the security of the shards, they may need to
be reconfigured, requiring both reconfiguration rules (to let the platform respond to the
network evolution) and possibly a randomness source.

In Section 3 we will explain why Cob can be adopted to deal with the epoch reconfiguration
and can contribute to the cross-shard transaction processing in a sharding-based consensus
protocol.

1.2. Contribution

Cob [6] is a novel BFT protocol (i.e. a strong consistency protocol) which is an evolution of
the MBA protocol [7]. MBA is defined for complete synchronous networks, therefore it can

2The network evolution refers to: a) new nodes who decide to join the network or nodes that decide to leave it, b)
nodes who decide to actively partake to the consensus process and others which decide to be passive and only have
access to the information recorded into the ledger, c) nodes which become faulty over time (or, more importantly,
an attacker corrupts some of them whenever it believes it is profitable).
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be executed only by small networks with few dozens of nodes, while Cob can be executed
by incomplete gossiping networks that can have millions of nodes, a property that makes it
suitable for networks of permissionless blockchains. The aim of Cob is to allow a network of
nodes to reach consensus on a list of time-stamps of events that are expected to happen in a
time interval, we will explain why it can be adopted in the design of consensus protocols for
blockchains implementing sharding.

In this context, Cob can be used to let the network make multiple decisions simultaneously,
for example decisions about which shards have correctly performed their job, or decisions
about the evaluation of parameters which characterize the protocol epochs on the basis of the
network conditions. We will emphasize the advantages that Cob brings to the organization of
the workload that must be executed by the shards and show some performance evaluations
regarding a Cob execution under the framework we will describe.

Outline In Section 2 we provide a high-level but comprehensive description of Cob, which
is fully presented in [6]. In particular we underline the properties that Cob satisfies and the
assumptions it relies on. In Section 2.2 we describe its workflow and building blocks, namely
the Multidimensional Graded Consensus and Multidimensional Binary Byzantine Agreement
[7, 6].

In Section 3 we describe how Cob can be used to create a framework for the design of
sustainable and scalable blockchain platforms. Scalability is obtained by using the sharding
technique, sustainability is obtained by dividing time in time-slots, duringwhich some prescribed
nodes are expected to create blocks of processed transactions. In Section 3.3 we propose a
solution to put in practice the principles previously presented.

Finally, in Section 4 we compare the performance of Cob and Algorand as consensus protocols
for the solution presented in Section 3.3. The comparison is centered into quantifying the amount
of data broadcast in the network by the nodes.

2. The consensus protocol Cob

In this section we provide a high-level description of Cob, a novel consensus protocol which
efficiently solves the following problem:

Problem 2.1. Given a set of events which a network of nodes can observe, how can the nodes
reach consensus on some relevant information about such events?

The problem above is discussed in [7, 6] by considering the presence of malicious nodes in
the network, and this leads to the identification of two properties that such a consensus protocol
must satisfy in order to maximise the amount of agreed-upon meaningful data.

1. The consensus protocol must be leaderless, which means that there is no single node
proposing a protocol output and the other nodes decide whether to accept it or not, but
rather several nodes must collectively construct the output list. The reason behind this
is that a leader, if honest, would propose a list of relevant information which is heavily
influenced by its own point of view (which in some cases might lead to incorrect decisions),
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and if the leader is malicious, it may easily perform censorship attacks refusing to include
some information in the list, or deliberately include invalid information. In both cases,
if the network does not agree even with one component proposed by the leader, it will
reject the leader’s proposal, and this process is repeated until a leader proposes a list
which gets accepted by a majority of the network. Note that this might not even happen,
in fact, if there is a wide disagreement among the nodes about one or more components,
there might not exist a list which is accepted by such majority.

2. The consensus process must be carried out in parallel and independently on each compo-
nent of the list, so that disagreement on a single component does not affect the consensus
on the others. In this regard, if a specific component can not be agreed upon on any
meaningful value due to a wide disagreement among the nodes of the network, then the
network must be able to identify this network condition and manage to reach consensus
on a default value that we identify with ⊥.

In [7] there is a simple example which helps to understand why these two properties have
such a great impact on the way consensus is achieved. In [7] it is also presented a predecessor
of Cob as a solution to Problem 2.1 for a relatively small network of a fixed number 𝑛 of nodes,
under some strong communication assumptions, considering an attacker that controls less than
1
3 of the nodes. In particular it is assumed a strongly-synchronous communication model and a
complete network, where every node could instantaneously send a message to every other node.
These assumptions are not practical and dramatically reduce the number of application contexts.
In fact, under the complete and synchronous network (CS network) model, the communications
between nodes happen instantaneously, via direct channels, every time a common clock (i.e.
shared by all the network participants) ticks the beginning of a new protocol step. Since it is
assumed that the network is complete, it is essential, for sake of efficiency, that the network is
composed of a small number of nodes (which does not exceed the hundreds). The evolution of
Cob presented in [6] overcomes these shortages, and can be adopted by wide networks of nodes
(even with millions of participants), making it way more practical and its adoption suitable for
the network of permissionless blockchains. From now on, when we refer to the protocol Cob
we refer to the second definition [6], unless explicitly specified.

2.1. Cob: network and communication assumptions

Since in complete networks the number of messages exchanged through the network grows
exponentially with the number of network participants, for practical applications it is more
convenient to consider a network model which differs from the CS network, such as the
Asynchronous Gossiping Network (AG network)3 presented by Micali in Algorand [2].

In this model messages are broadcast in the network in a gossiping fashion: a procedure
characteristic of peer-to-peer communications where messages pass from one node to its
neighbours and so on until they reach every node. In gossiping networks the network relies on

3Algorand describes the environment in which it is defined as asynchronous. This is because the communications
between nodes happen via gossip and the protocol steps, which for a single user are non-overlapping time intervals,
for different users may overlap due to lack of clock synchronization. However, since Algorand assumes that there is
a predetermined upper-bound to the time required by a message to reach (almost) every node, and therefore there
is an upper-bound to the delay between different nodes, Algorand can not be considered an asynchronous protocol.

82



each member to pass messages along to its neighbours, therefore it is reasonable to envisage the
network as an incomplete, connected and non-directed graph. We assume that a message sent
by an honest node reaches every honest node within a time limit that depends on the size of the
message itself. Since malicious nodes can behave arbitrarily, the previous assumption means
that they cannot be cut vertices in the network graph, that is the graph remains connected even
without the edges connected to malicious nodes. We will also require that the ratio of malicious
or faulty nodes is less than 1

3 .

2.1.1. Timing assumptions

In an AG network there does not exist a common clock (as in the case of CS network), but it
is assumed that all network participants are provided with Same-Speed Clocks [2]. In other
words, it is assumed that each network participant has its own clock and that the clocks all
have the same speed, even if they are not synchronized in any way. However, it is assumed that
there is an upper-bound 𝜆 on the time required by a node to diffuse in the network a ”short”
message. Therefore, this assumption implies that the non-synchronized clocks can reach a sort
of synchronization in the following way: suppose that a node communicates to the other nodes,
via a short message 𝑀, the beginning of a new protocol execution. This node will immediately
reset its private clock to 0, as the broadcast of 𝑀 begins, and the other nodes will do the same
once they are reached by 𝑀. Since the message 𝑀 reaches every node in the network within
time 𝜆, every node will reset to 0 their own private clock in the absolute time interval [0,𝜆]
(where 0 is the absolute time when the first node broadcasts 𝑀), causing the delay between
different nodes to be upper-bounded by the parameter 𝜆. Afterwards the time discrepancies do
not vary because of the same-speed nature of the clocks.

We have explained how an AG network addresses the goal of designing a practical model
which, on one hand it does not require a node to send a message to every single node every time
it wants to share some information with the whole network, but on the other hand it forces the
nodes to maintain their private same speed clocks slightly asynchronous (with the delay which
is upper-bounded by a constant value 𝜆).

2.1.2. Sortition mechanism

Another relevant aspect regarding the design of Cob is the following: since the nodes in the
network which adopts Cob as consensus protocol can be as wide as needed, it is essential that
not every node in the network broadcasts a message at the end of every step. This would clearly
cause a network overload. In order to address this problem, Cob uses a sortition mechanism
which instructs some nodes to be active during a given protocol step (i.e. to broadcast a message)
while assigning to the other nodes a passive role (i.e. just collect and help broadcast the messages
of the players). In order to better clear up this distinction, from now on, in a specific step, we
will call players only the nodes selected to be active and broadcast their message, while a generic
node of the network will be referred to as a user.
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2.2. High level description of Cob

We now provide a high level description of the protocol. We first describe two protocols
which are the building blocks of Cob and we explain how they achieve the core properties
mentioned at the beginning of this section: the fact that Cob is leaderless, and that the consensus
process is carried out in parallel on the components of the list. The first component is the
Multidimensional Graded Consensus (MGC) and the second one is the Multidimensional Binary
Byzantine Agreement (MBBA). Both protocols are an extension to the multidimensional case
of protocols presented by Micali and adopted in Algorand [2], namely the Graded Consensus
protocol [5] and the Binary Byzantine Agreement protocol [11].

2.2.1. Cob’s building blocks

The MGC is a 3 steps protocol which starts once the network observes the events they want
to time-stamp and requires the players (i.e. the users who are elected to be active in a given
step) of the first step to broadcast their list of observed values created during the observation
phase. Once the 3 steps are executed, each node 𝑛 in the network privately builds a list v(𝑛) of
relevant information about the observed events (note that the lists can eventually be different
for different nodes). Together with the list of relevant information, each node 𝑛 computes a
grade 𝑔(𝑛)𝑖 ∈ {0, 1, 2} associated to each component 𝑖 of the list, which represents the confidence
that such value is well spread around the network, according to the information received. In
particular, a grade of 0 represents a high disagreement in the network; 1 represents a state of
uncertainty given by an intermediate number of messages advertising the corresponding value;
2 guarantees the node which computed the grade that every honest nodes has recorded the
same value in that component.

Distinct nodes might have saved different lists of relevant information, and they might have
also recorded different grades, based on the messages received in the steps of MGC Protocol.
However, it is proven that, for each component, the difference between the grades of honest
nodes is ∣ 𝑔(𝑛)𝑖 − 𝑔(𝑚)𝑖 ∣≤ 1 and it is also proven that, if 𝑔(𝑛)𝑖 ≥ 1 for each honest node, then
the relevant information recorded in the 𝑖-th component is the same for every honest node.
This implies that if some honest node sets 𝑔(𝑛)𝑖 = 2 then the relevant information saved by the
nodes in the 𝑖-th component is the same for every node. This is a remarkable information, but
we recall that the protocol is executed by nodes that do not trust each other. Therefore, it is
necessary to find a way to let the nodes who are certain that a relevant information is shared
by all the honest nodes convince the nodes who are not certain about it. For this purpose the
network executes the protocol MBBA: a 3 steps loop which allows the nodes in the network to
reach agreement on a list of bits with the same dimension of v(𝑛). The scope of this protocol
execution is to detect the components of the list of relevant information v(𝑛) which are the same
for every honest node. In particular, after the MGC protocol execution, each node will build
a list of bits setting each component to: 0 if it is assured that all the nodes are in agreement
on that specific component (i.e. the associated grade is 2), 1 otherwise. Now the network is
ready to perform the MBBA protocol, since every node has its own private initial list of bits. In
[7, 6] it is proven that the MBBA is a Byzantine Agreement protocol, which allows a network of
nodes provided with an initial list of bits to reach consensus on a shared list of bits b. In the
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context of Cob, the private initial list will be computed from the output of MGC, but at the end
of the MBBA execution, the nodes will reach consensus on b, which allows every node 𝑛 to
compute the list of relevant information (the output of Cob) on which the honest nodes can
be in agreement. This list v is built in the following way: for every honest node 𝑛 v𝑖 = v(𝑛)𝑖 if
b𝑖 = 0 otherwise v𝑖 = ⊥, which means that such component is left blank.

In [6, 7] it is proven that Combining MGC with MBBA it is possible to solve Problem 2.1.
We omit the formal definition, and just summarize the main protocol steps of Cob using the
building blocks previously described. For a detailed description of the protocol we refer to [6].

Protocol 1 Cob

• Observation Phase For every user 𝑢 in the network:

– 𝑢 observes the events E = (𝐸1, … , 𝐸𝑚) that must be time-stamped;
– 𝑢 locally records the observed values o(u) = (𝑜(𝑢)1 , … , 𝑜(𝑢)𝑚 ).

• Multidimensional Graded Consensus For every user 𝑢 in the network:

– 𝑢 starts the execution of MGC with input the list o(u);
– 𝑢 takes part actively to a step of MGC only if it is elected as a player via the random sortition

mechanism adopted by Cob;
– output 1 of MGC: 𝑢 locally saves the list of values u = (Θ𝑢

1, … , Θ𝑢
𝑚), given by MGC;

– output 2 of MGC: from the list of grades gu = (𝑔𝑢1 , … , 𝑔𝑢𝑚) given by MGC, 𝑢 obtains a list of
bits vu,0 = (𝑣 𝑢,01 , … , 𝑣 𝑢,0𝑚 ), where ∀𝑖 ∈ {1, … , 𝑚}, 𝑣 𝑢,0𝑖 = 0 ⟺ 𝑔𝑢𝑖 = 2, and 𝑣 𝑢,0𝑖 = 1 otherwise.

• Multidimensional Binary Byzantine Agreement For every user 𝑢 in the network:

– 𝑢 starts the execution of MBBA with input the list of bits vu,0;
– 𝑢 takes part actively to a step of MBBA only if it is elected as a player;
– output of MBBA: 𝑢 builds a certificate for vu = (𝑣 𝑢1 , … , 𝑣 𝑢𝑚) = v = (𝑣1, … , 𝑣𝑚), which is the

same for every honest user in the network.4

• Cob Output Determination Being v the output of MBBA and u the first output of MGC computed
by the user 𝑢, 𝑢 computes the output of Cob outu = (Θ̄𝑢

1, … , Θ̄𝑢
𝑚), where ∀𝑖 ∈ {1, … , 𝑚}, Θ̄𝑢

𝑖 = Θ𝑢
𝑖 if

𝑣𝑖 = 0 and Θ̄𝑢
𝑖 = ⊥ if 𝑣𝑖 = 1. 5

We underline the fact that the way MBBA is used in Cob is the same way BBA is used in
Algorand: the goal is to decide whether to reject or accept a candidate piece of information
(for Algorand a block, for Cob an observed value or a relevant information about a give event).
However, MGC is used in a very different way: while GC in Algorand is used to determine
the leader of a given protocol run, MGC in Cob is used to collect the opinion of several nodes
advertising the list of values they have observed6.
4What the network is actually doing during the MBBA execution is identifying the components of the vectors u

which are the same for every honest user 𝑢. In particular if agreement on a component 𝑐 of v (the list of bits) is
reached on 0, i.e. 𝑣𝑐 = 0, then this means that the honest users share the same value Θ𝑢

𝑐 and they will preserve it,
otherwise, if agreement has been achieved on 1, i.e. 𝑣𝑐 = 1, this means that the network could not be convinced that
the honest nodes share the same value Θ𝑢

𝑐 .
5It is proven that for each pair of honest users 𝑢1, 𝑢2, outu1 = outu2 holds.
6Algorand is a leader-based consensus protocol for a blockchain used to exchange cryptocurrency, therefore it
tolerates that some blocks may be created by malicious nodes and contain no transactions. In fact, in many
applications it is not necessary that a transaction request is immediately included in the newly created block, what
is essential is that eventually an honest node will create a block which includes the pending transaction request.
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3. Applicability of Cob

In this section we will explain how Cob can be used to regulate a scalable and sustainable
blockchain. As we explained in Section 1.1, an approach which can be used to reduce the
amount of computation or communication necessary to the maintenance of a blockchain is
the subdivision of time into preassigned time-slots. This concept clearly can be combined to
sharding in order to increase the scalability of a blockchain platform. What we obtain is a
sharding-based blockchain in which for each shard the network assigns a time-slot to a specific
node. Therefore, if the number of shards in a given epoch is 𝑚, then there must be 𝑚 nodes,
one for each shard, who are expected to publish a block within the end of the time-slot. But
let us proceed step by step in the description of how Cob can be used to achieve this protocol
structure.

3.1. Cob and time fragmentation

First, we explain how Cob can be adapted to the certification of block creation. As we have
mentioned in Section 2, Cob is a leaderless consensus protocol which has been designed to let a
network of nodes reach consensus on the description of a set of events which are expected to
happen in a time interval. If we can consider a standard blockchain (a single shard) which is
maintained with the use of preassigned time-slots, then there is a single event that the network
observes during every time-slot: the creation of a block performed by the node in charge. Note
that the fact that Cob carries out the consensus in parallel on each component of the list of
events observed is not relevant now (since we are considering only one event), but it will become
relevant in Section 3.2.

If the following statements hold:

1. nodes are provided with same speed clocks;
2. it is possible to upper-bound the diffusion time of a message of fixed weight;
3. the nodes agree on 𝑡, the duration of a time-slot;
4. the network agrees on a list 𝐿 which assigns each time-slot o a given node;

then we can describe a protocol which manages the definition of time-slots and guarantees that
an attacker can not pretend it has received late a legitimately created block.

In Section 3.2 we will explain how to obtain the last two items of the list, namely the duration
𝑡 of the time-slots and the list 𝐿; for what concerns the first two items, they are commonly
adopted assumption in distributed protocol definitions. Assuming that each network member is
in possess of the information above, the protocol could work in the following way:

Protocol 2 Time-slot

• Synchronization setup: the network executes an instance of Cob to decide when to start; as
soon as the network creates a certificate for the message start, the actual protocol can begin.
Since the upper-bound for the diffusion time of the certificate is 𝜆, the delay between any two
honest nodes is less than 𝜆.

• Block creation: the node in charge, according to the list 𝐿 builds a block of transactions and
before time 𝑡 − 2𝜆 broadcasts this block.

86



• Timing evaluation: the nodes of the network start executing Cob when their own private clock
signs time 𝑡, and try to reach consensus on the digest of the newly created block.7

• Certificate creation and start of a new time-slot: each player marks the end of the
current time-slot and the beginning of the new one as soon at the reception of a certificate for the
newly created block (produced by the network via Cob). The nodes reset their same-speed clocks
(the delay is given by the diffusion time of a certificate, which is again 𝜆).
Return to Block creation.

In Protocol 2 it is shown that, assuming the existence of a list 𝐿, which assigns each time-slot
to a node, this iterative protocol guarantees that if the right node creates and broadcasts a block
in time, the network can certificate the correctness of the creation process.

Up to now, the network has not evaluated the transactions included into the block, however,
this can be done right after timing verification. Assuming that 𝐿, the consensus protocol, and
the semantic rules which define which transactions can be included into the ledger are public
knowledge, the only aspect that can bring the nodes to disagreement is whether the legitimate
node has created its block in time. The disagreement may be caused by the delay between nodes
and the time of diffusion of messages. Once this information is agreed upon through Cob, every
honest node will be able to determine if the transactions are invalid (therefore the block will
not be taken into account) or the block can be preserved.

3.2. Cob for time-slot assignation and sharding consensus

As emphasized in Section 1.1.2, a key concept in the design of blockchains implementing sharding
is the epoch: a time interval in which the system configuration (i.e. protocol parameters and
nodes partaking the consensus process) is fixed [8]. Once the epoch ends, the actors executing the
consensus protocol may be substituted and, if the network has evolved, the protocol parameters
can be updated accordingly.

While explaining how Cob can be useful in the implementation of architectures based on
sharding, we will follow the guidelines described in Section 3.1, maintaining the division of time
in preassigned time-slots for each shard. We remind that our goal is to propose a consensus
layer which may help in the creation of sustainable and scalable blockchain platforms. The
first adjustment that must be done regards the list 𝐿 which deals with the time-slot assignation,
which must cover the time-slots of an epoch and then must be updated for the following one.
Since in the sharding case there is more than one chain of blocks, the list 𝐿, together with the
time-slot, must specify the shard on which a node must append its block.

Cob can be very useful in the definition of a sharding based architecture mostly by periodically
making a freeze frame representing the network status and defining the next epoch configuration.
Since Cob is a strong consistency protocol, once the frame describing the network status is
published, the network will consider those information final, and act accordingly. For instance,
Cob can be used to let the network determine the protocol parameters of an epoch on the basis
of the information previously broadcast by the nodes. Examples of protocol parameters that
must be agreed upon to define an epoch are the following:
7Note that if the creator of the block has broadcast it before 𝑡 − 2𝜆 (according to its own time reference), then every
node has received the block within time 𝑡 (again, according to their own time reference), since 𝜆 upper-bounds the
time for the message diffusion, and also the delay between two nodes.
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1. the number of shards;
2. the number of time slots;
3. the duration of the time-slots;
4. the list 𝐿 of nodes in charge of the creation of a block in a given time-slot and a given

shard.

Note that these parameters must be determined according to the information observed during
the previous epochs, and the consensus protocol must make explicit some deterministic rules
to let the network easily reach consensus on the values. In fact we recall that consensus can
be reached if there exist, at the beginning of the protocol, a sufficiently large agreement on
the values proposed by the single nodes: then the consensus protocol makes this agreement
explicit, reliable and final. Therefore, the evaluation of the epoch parameters can be seen as a
description of events observed during the previous epochs. For example, the number of shards
active during an epoch could depend on the number of nodes that apply for becoming block
creators in the following epoch: the higher the number of candidates, the higher the number of
shards. This means that each protocol parameter can be seen as a description of events observed
in a given time interval, therefore they can be determined executing an instance of Cob.

It is necessary to clarify the fact that some parameters depend on other parameters, for
example the list 𝐿 depends on the number of shards and the number of time-slots. In this case
it is sufficient to validate the list 𝐿 to consequently implicitly fix the number of shards and the
number of time-slots.

3.3. The Synchronization Chain based on Cob

Now that we have explained how Cob can be useful in the creation of a sustainable and scalable
blockchain, the next question is: how can we build a framework which is agnostic of the
underlying sharding consensus components (i.e. intra-shard consensus, cross-shard transaction
processing, and shard formation), and put into practice the ideas described in Section 3.2 and
Section 3.1?

This can be done introducing another independent chain, which we call Synchronization
Chain, which is maintained by the network and has two main scopes:

• synchronize the work of the nodes who work in different shards: the Synchronization Chain
dictates the beginning and the end of the time-slots and hash-links the blocks that have
been legitimately created in time. This can be done in the following way: after every
time-slot, the nodes working at the maintenance of the Synchronization Chain reach
consensus on the set of blocks which have been created (by the nodes prescribed by 𝐿)
and broadcast in time during that time-slot. The consensus is reached on the digest of
these blocks, therefore a block of the Synchronization Chain contains the list of blocks
created in time for each shard, and when this block gets published, the network starts the
new time-slot and knows which blocks have passed the first validation (which is only
about timing and legitimacy);

• deal with epoch reconfiguration: the block of the Synchronization Chain created in the
last time-slot of each epoch, together with the hash pointers to the blocks of the shards
mentioned above, contains the parameters of the following epoch. The consensus protocol
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must specify how the parameter must be valued, and must specify how the nodes must
create the list 𝐿. The nodes maintaining the Synchronization Chain, follow these rules
to compute the parameters, and produce this larger block during the last time-slot of
an epoch. With this information the network activates the next epoch and the new
time-slots.

Table 1
A block of Synchronization Chain created in a time-slot of epoch ℎ.

HEADER

𝐻(𝑆ℎ,𝑖−1) hash-pointer to previous Synchronization Block

DATA

𝐻(𝐵𝑠
ℎ,𝑖)

𝐻(𝐵1
ℎ,𝑖) hash-pointers to the blocks created

⋮ during 𝑖-th time-slot of epoch ℎ on shard 𝑠
𝐻(𝐵𝑚

ℎ,𝑖)

EPOCH DATA (only in blocks created after the last time-slot of
epoch ℎ)

parameters value of parameters for following epochs

List 𝐿 list of nodes that will create blocks in the assigned
shards in the next epoch

In this context, Cob is well-suited to be used as the consensus protocol for the Synchronization
Chain. In fact, besides being leaderless, a property which guarantees the authenticity of the
data agreed upon, it efficiently carries out the consensus process in parallel on each component
of the list of events, which is essential in this kind of applications, as emphasized in Section 2.
Since the agreement on some components of the list of observed events might be reached
on ⊥, the blockchain consensus protocol must determine some default values for the epoch
parameters. That is, there should be a rule which decides the value of the parameters to be
used when agreement is reached on ⊥. For example, the configuration of the previous epoch
could be maintained, otherwise the network could adopt some fixed configuration. This design
choice depends on the application context.

The protocol that describes the use of the Synchronization Chain can be summarized in the
following way:

Protocol 3 Synchronization Chain

• Epoch reconfiguration and timing evaluation: the network executes an instance of Cob
to decide the new epoch parameters, and the blocks created in time during the current time-slot.
As soon as the network reaches agreement, the block of the Synchronization Chain is published,
advertising the parameters and the digest of the blocks created in time. The new epoch begins.
Go to Certificate creation and start of a new time-slot.
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• Timing evaluation: the nodes of the network start executing Cob when their own private clock
signs time 𝑡, trying to reach consensus on the digest of the newly created blocks, one for each
shard.
Go to Certificate creation and start of a new time-slot.

• Block creation: the nodes in charge, according to the list 𝐿 published at the end of Epoch
reconfiguration and timing evaluation, build a block of transactions and before time 𝑡 − 2𝜆
broadcast their block.
If the current time-slot is the last of the epoch, go to Epoch reconfiguration and timing
evaluation, otherwise go to Timing evaluation.

• Certificate creation and start of a new time-slot: as soon as a player receives a cer-
tificate for the newly created blocks (produced by the network using Cob), it marks the end of the
current time-slot, and the beginning of the new time-slot. Therefore the nodes can reset their
same-speed clocks (which will be delayed by at most by the diffusion time of a certificate, namely
𝜆) and return to Block creation.

Since Cob is a consensus protocol with strong consistency, the information included in the
blocks of the Synchronization Chain are final. Moreover, thanks to the fact that Cob is leaderless,
the evaluated fields are trustworthy. Therefore, the Synchronization Chain can be seen as a
trusted third party who communicates the outcome configuration for the following epoch based
on the information the network has collected during the current (but possibly also previous
epochs).

The intra-shard consensus protocol can be weak, which allows lower communication con-
sumption, however, due to to the Synchronization Chain’s timing evaluation, there is a strong
consistency consensus on the legitimately created blocks. This simplifies Cross-shard trans-
action processing, since the nodes working in different shards know which transactions can
potentially become final.

4. Performance analysis

We can now take the performance analysis of Cob included in [6] and apply it to the use case
discussed here. The analysis is focused on comparing the amount of data broadcast in the
network during a instance of Cob executed on a list with ℓ components with the amount of
data broadcast in an execution of ℓ instances of Algorand to reach Consensus on each relevant
information regarding the observed events.

In order to provide a comparison which fits the use case of the Synchronization Chain
described in Section 3.3, we must identify a reasonable number of parameters necessary to
perform the epoch reconfiguration, then we can vary the number of shards and time-slots to
determine the number of elements in the list 𝐿.

Once this is done, we can quantify the weight of messages broadcast at the end of the last
time-slot of each epoch, when the epoch reconfiguration is performed, and the weight of
messages of all the other time-slots, when the network must notify only the blocks created
within the end of the current time-slot. For sake of simplicity we will assume the number of
time-slots during an epoch is fixed, so that we can vary only the number of shards.

The number of components Nc𝑒 that must be agreed upon in the last time-slot of epoch 𝑒
can be parameterized as follows: Nc𝑒 = 𝛼 + 𝛽Ns𝑒+1 + Ns𝑒 where Ns𝑥 is the number of shards in
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Figure 1: Amount of data broadcast in the
network (in MB) using Algorand or Cob during
the last time-slot of each epoch, in terms of the
number of shards.
Linear scale in the x-axis and logarithmic
scale in the y-axis.

Figure 2: Amount of data broadcast in the
network (in MB) using Algorand or Cob during
any time-slot of each epoch but the last one,
in terms of the number of shards.
Linear scale in the x-axis and logarithmic
scale in the y-axis.

epoch 𝑥, 𝛼 is the number of parameters defining the general configuration of the platform, and
𝛽 is the number of parameters specifying some properties of each shard of the next epoch (e.g.
the nodes designated to work on a given time-slot).

Let us fix the number of time-slots for epoch to 10, and choose the parameters 𝛼 = 20 and
𝛽 = 10 + 1 (these values are chosen in the same order of magnitude as the ones relative to the
blockchain Quadrans [1], where 10 of the 𝛽 parameters characterizing the shards are the nodes
assigned to a given time-slot, for each shard). For what concerns the regular time-slot, the
number of components that must be agreed upon is simply Ns𝑒, i.e. the number of blocks that
should be created (note that this number is considered also in the last time-slot).

The results of the comparison are presented in Figure 1 and Figure 2, and are based on the
performance analysis included in [6] for the values of parameters 𝛼 and 𝛽 mentioned above.
For sake of simplicity we also assumed Ns𝑒 = Ns𝑒+1, i.e the number of components in the last
time-slot is 20 + 12Ns𝑒+1.

5. Conclusions

In this paper it is shown how the consensus protocol Cob, presented in [7, 6], can be useful
for designing sustainable sharding-based consensus protocols for blockchains, as suggested in
the original papers [7, 6]. The key concept is the following: in an architecture that pre-assigns
time-slots to nodes, the node assigned to a given time-slot in a shard is common knowledge,
and the network is in agreement about this. The same holds for the quality evaluation of the
transactions included in the blocks: every honest node can determine whether a given block
contains valid transactions according to the chain of blocks to which it is connected. In fact,
the consensus protocol must define how the ledger can evolve and, given a static status of the
ledger, which transactions can be appended. The only thing which remains subjective for each
node is the moment in which a message is received. Someone might have received it in time,
someone else might have received it late. These messages may be blocks of transactions or data
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useful for the epoch reconfiguration, anyways, it is essential for the network to have a clear
image of the status of the evolving system (the blockchain), in particular when the system is
maintained by several groups working in parallel, which is the case of a blockchain that uses
sharding to scale. We propose a solution to this problem using Cob, so that consensus can be
reached on these subjective data (the network decides on the basis of what the majority of the
nodes have observed) and every node in the network can have the same view on how the ledger
is evolving.
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Abstract
Certification of product origin and supervision of supply chains are fundamental activities in today’s
market scenario. Hence, it is of the highest interest to develop platforms that allow domain experts to
quickly and easily build supply chain management systems allowing them to trace their production/-
transformation processes. This paper presents how the *-chain framework can solve this problem. In
particular, we used the model and the graphical language defined by our framework to represent an
olive oil supply chain, and the suite of tools we develop within such a framework to generate the related
blockchain based traceability system, i.e., to automatically generate a set of solidity smart contracts
implementing the system and two web interfaces to interact with them (one for supply chain adminis-
trators, the other for the actors of the production/transformation process), starting from the graphical
representation.

Keywords
Supply Chain, Blockchain, Distributed Ledger Technology, Domain Specific Graphical Language, Smart
Contracts, Automatic Smart Contract Generation.

1. Introduction

Supply chains are network of organizations, involved in the different processes and activities,
that produce value in the form of products and services for the final buyer [6]. Depending on the
specific scenario (e.g., product processing, service provisioning, warehousing) different types of
supply chains can be considered. For instance, a production supply chain represents the flow of
goods from the rawmaterial to the final product. Supply chain management is therefore a crucial
process to optimise the production cycle and lower the related costs. Blockchain technologies
have been proven effective in developing solutions for the implementation of management
systems for supply chains. Several works are currently available in this regard (like [1, 4, 5]),
but these solutions are too specific for the field they were designed for. Consequently, they are
not general enough to be used in alternative scenarios without major changes and adjustments,
for which a relevant knowledge of the blockchain technology and expertise in smart contracts
development is required. In this regard, we introduced the *-chain platform [3, 2], a platform to
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simplify the implementation of blockchain based supply chain management systems (SCMSs).
Our platform provides a powerful Domain-Specific Graphical Language to represent supply
chains, an easy-to-use graphical interface for authoring such representations, and a suite of
tools for translating graphical models into the smart contracts building up the SCMS.
Our platform serves two main purposes: on the one hand, it provides a general solution for

implementing supply chain management systems; on the other hand, it allows the supply chain
administrators to implement applications distributed via blockchain technologies. In this paper,
we demonstrate the capabilities of our platform, using the olive oil supply chain as a study case.
In particular, we use *-chain to model all the steps required to produce marketable Olive Oil,
starting from the harvesting phase up to bottling.

The rest of this paper is organized as follows: in Section 2 we introduce fundamental notions
of blockchain and smart contracts; Section 3 describes *-chain functionalities, together with
insights on its implementation; Section 4 summarises the Olive Oil supply chain, highlighting
the main stages that the product goes through; in Section 5 we show how the considered supply
chain can be modeled through our tool; Section 6, finally, summarises and concludes the paper,
also pointing out new directions for future work.

2. Background

Distributed Ledger Technology (DLT) refers to systems and protocols that allow simultaneous
access, validation, and updating with immutable data across a network. In simple words, the
DLT is all about the idea of a ”decentralized” network against the conventional monolithic
centralized mechanism. Blockchain Technology (BT) is a special case of DLT, focusing on
industries and financial sectors. The BT offers great potential to foster various sectors with its
unique combination of characteristics as decentralization, immutability, and transparency. So
far, the most prominent attention the technology received was through news from industry
and media about the development of cryptocurrencies (such as Bitcoin1, and Monero2), which
all are having remarkable capitalization. BT, however, is not limited to cryptocurrencies; there
are already existing blockchain based applications in industry and the public sector. Also, BT
can have applications on non-financial sector, such as traceability problems and workflow
organization. A smart contract is a self-executing contract (script) with the terms of the
agreement between two actors, generally a buyer and a seller, directly written into lines of code.
The code and the agreements contained in the script exist across a distributed decentralized
blockchain system. One of the most popular coding languages for describing smart contracts is
Solidity3, widely used for Ethereum4 systems.

1Bitcoin Project: https://bitcoin.org
2Monero project: https://www.getmonero.org
3Solidity white paper: https://docs.soliditylang.org/en/v0.8.6/
4Ethereum project: https://ethereum.org/en/
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3. *-chain framework

The *-chain framework [2] consists of a set of tools designed to aid the development of
blockchain-based SCMSs. In particular, the end-user is provided with a web interface built
upon a Domain-Specific Graphical Language (DSGL) that allows for tracing supply chains on
the blockchain [3]. The framework translates the representation specified by the user into a
set of smart contracts that are then used to implement an SCMS within the blockchain. The
main purpose of *-chain is to enable experts in the context of a specific supply chain process
(such as olive oil production) to contribute in the definition of SCMSs that can be distributed
via blockchain, even with little or no knowledge of DLT. Therefore, our framework decouples
the distinct tasks of supply chain process design and smart contract programming, which can
be assigned to different professionals in the two respective fields.

The web interface provided by the *-chain framework integrates a graphical editor that can
be used by supply chain domain experts to design SCMSs through a dedicated DSGL, equipped
in turn with primitives that allow representing the most common types of supply chains. The
editor also produces a textual, JSON-formatted, representation of the specified supply chain
model, which is used to generate the smart contracts in the final SCMS. Those smart contracts
corresponds to asset types belonging to a given supply chain and are endowed with functions
that trace the execution of operations supported by the various assets.

4. Olive oil supply chain

The olive oil production process requires a series of steps that we can summarise in the following
main phases:

• agricultural maintenance
• preparation of the olives
• crushing, kneading
• extraction
• separation
• conservation

During each of those steps, various parameters are monitored to guarantee the quality of the
final product. Olive oil is, indeed, subjected to quality controls that determine its commercial
classification5. For example, the temperature reached by the olive paste and the degree of
oxidation of the oil can alter the final result, both in terms of taste/odour and chemical properties.
Exceeding the imposed thresholds can cause, in addition to unpleasant smells and tastes, also
harmful effects on the human body. In this section, we illustrate the whole olive oil supply
chain, also providing, for demonstration purposes, insights into the agricultural maintenance
phase.

The agricultural maintenance (for which we show a flow chart in Figure 1) constitutes the
first phase of the olive oil supply chain and has a major impact on the organoleptic characteristics

5Olive oil classification follows the EEC regulation 2568/91 and subsequent amendments (656/95 and 2472/97), and
the commercial standard of the International Olive Committee (Norma COI, 1998).
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Figure 1: Flowchart fragment of the olive oil supply chain showing the stages of agriculturalmaintenance
(green rectangles) along with the properties to be recorded (in orange with rounded edges).

of the final product. In this phase, olives are harvested, transported and then either sold or used
in the following phases. Before the processing phase, olives undergo a series of operations,
such as, for example, weighing, husking (elimination of foreign material), selection (division
according to healthiness and size) and washing. Between weighing and husking there can
also be short storage of the olives (maximum 24 hours) following the indications given for
conservation in the agricultural phase. The weighing is carried out in the oil mill at the time of
delivery. As for washing, this is done either by immersion or with special washing machines
that maintain a forced movement of the water. In the crushing phase, the olive cell wall is
broken in order to release juices. The crusher (with discs, hammers or knives) is mostly used in
continuous cycle systems because it better responds to automation needs. The loading is carried
out mechanically and the unloading takes place from the bottom, again mechanically, with the
pouring of the oil paste into the kneading machines. The processing can take place in a very
short time, and with a minimum footprint. Kneading is the phase in which oil drops aggregate
and grow in volume. During this process, the olive paste coming from the crushing is slowly
stirred to ease the separation of the oily component from the aqueous one. The temperature
is an important parameter to monitor, as the pasta should reach a maximum of around 25 ∘𝐶.
Another discriminating factor in the final result is the kind of used machinery, which varies
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from traditional millstones to modern malaxers. The extraction process consists in separating
oil, water and solid parts in the kneaded paste. The factors that most affect the final result during
this phase are again the temperature and the time needed to conclude the operation. Moreover,
three main types of extraction technology can be used, each deriving from a different physical
principle: pressure, percolation and centrifugation. The oil obtained after the extraction phase
often contains a minimum percentage of water, which undergoes a further separation process,
which can be carried out either through decantation or centrifugation. The final product will
have a different yield depending on the methodology used. At this stage, the oil can already
be consumed and it is stored in containers where residues settle on the bottom to make the
product clearer. If the oil is intended for marketing, it is subjected to filtration and bottling.
Filtration removes solid and colloidal impurities from the oil and can be performed by using
different techniques. For bottling, hygiene and storage regulations must be taken into account.
To better demonstrate the functioning of the methodology we propose, we describe all the

mandatory and optional steps involved in the agricultural maintenance phase. As we can
see from Figure 1, this phase begins with the harvesting of olives from trees and the creation of
the corresponding lot. The information to monitor regards which cultivars are grown, as well
as the harvesting date and the quantity of olives in the lot. Furthermore, it is specified whether
the lot contains a PDO (Protected Designation of Origin) production, together with the owner’s
data. After the harvest, the olives can be stored in cool, well-ventilated rooms for a period of
time that does not exceed 2 or 3 days. The temperature of the room must be controlled since it
can compromise the quality of the product. The olives, then, can be either directly reused by the
same owner or transferred to third parties. In the latter case, there are three possible options:
sale, tolling and conferral. For tolling and conferral a transport document is mandatory, while
in the case of a sale, such a document can be replaced by a regular invoice. Finally, when the
olives are delivered, we are interested in the type of producer to which the asset is transferred.

5. Supply chain model translation

In order to translate the control process of the Olive Oil supply chain, we must first adapt
the various phases of the flow chart described in Section 4. The first step is to translate the
components of each phase into a logic block paired with the DSGL’s blocks of the *-chain
framework. We have to identify the relevant objects of the workflow with respect to the focus of
the analysis: the aim of this analysis is to supervise the Olive Oil, tracing the various production
processes in order to accredit the origin of the goods. Each element we want to track is identified
as an asset, paired with a blue rectangle shape. Each feature of this asset represents a relevant
detail for the supply chain representation meaning. These features are paired with small grey
circles attached to the blue shape of the asset itself: each circle is a property of the asset. Lastly,
each activity applied to an asset is represented as operation: these operations are paired with
a pointed arrow that links an asset to another object on the schema; the shape of the arrow
defines the type of the operation.
Figure 1 shows a subsection of the workflow of olive oil supply chain. Figure 2 represents

the translated schema: this schema is drawn with the *-chain framework, using one of the main
tools of the platform: the design interface.
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Figure 2: Representation of Olive oil supply chain with the *-chain framework.

5.1. Supply chain model representation

The first asset –the blue icon in the leftmost side of the schema– is the “Olive”, which is a
countable and consumable asset; this asset does not have any incoming arrows from another
asset: this could mean that: i) this is the point of origin of any asset Olive, or ii) the production
of this asset is not tracked using this supply chain schema. In both cases, the asset Olive is
generated at this point of the schema, using an asset_create() operation, labelled as “Harvesting
Lot”. Under this create operation the label “Farmer” is specified, which means that the creation
of an Olive asset can only be performed by a user paired with the “Farmer” role. The asset Olive
is also defined with a set of properties, which are: “lot ID”, “producer ID”, “date”, “cultivar”,
“PDO” and “quantity”. We can consider the Olive asset as the observation element of the supply
chain. The second element of the schema is still a Olive asset, wrapped into a “Storage” container.
This container should represents a room, a warehouse, or a silos, thus a generic location where
the Olive asset is stored. The “Storage” container is a non-consumable container. The container
Storage is defined with only a property: “temperature”. The two sides of these Olive assets are
connected with a black arrow representing the operation “conservation”: conservation represents
the conservation process of the agricultural maintenance phase. The “conservation” is an
“asset_pack()” operation. This type of operation represents the process to transfer an asset into
a specific item defined as container. Also under the “conservation” operation the label for the
permission role is specified: even in this case, the operation can be performed only by a user
paired with the “Farmer” role.
The next step is divided into three different paths drawn in the diagram. Each direction

represents a different procedure: “Conferral”, “Tolling”, “Sale” and “Reuse”. The Conferral and
Tolling procedures are identical under the procedural aspect, they differ only on their names.
For the sake of simplicity these two procedures will be represented with the same path. Each of
the different paths represents a plausible process choice. As it is described in the specifications
of the agricultural maintenance phase, it is possible for an Olive asset to be sold to another
user, transferred for processing to another user while maintaining the original owner, or simply
reused for a subsequent phase.

The path that starts with a red pointed arrow oriented to the top right side is representing the
Conferral and Tolling procedures. This path starts with a “giveControl” operation, establishing
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the change of controller from a user with the “Farmer” role to a user with the “Deliver” role.
The giveControl operation does not modify any other property of the asset Olive. through this
operation, only the controller of the Olive asset is changed, meanwhile the owner is still a
user with “Farmer” role. Following this path the Olive asset is loaded into a vehicle for the
delivering: this procedure is represented as following: a “Truck” container represents the vehicle
for the delivering procedure. The Truck is a non-consumable container with the bill of lading
(“BoL”) descriptor as the only property. The “loading” operation is declared as “asset_flow()”
-transferring an asset from a package to another-, loading theOlive into the Truck: this operation
has a role constraint on user with “Deliver” role. Hence, at the destination, the asset Olive is
unloaded from the truck; its controller is also changed from “Deliver” to “Miller”. These changes
of the asset are represented by two arrows: the black arrow with the label “offloading” represents
the asset being unloaded from the vehicle and placed in the “Miller”; the red arrow with the
label “giveControl” represents the change of controller to a user with the “Miller” role. The user
with the “Miller” role is the one that could load the asset Olive into the “Milling Storage”. This
storage is a non-consumable container, and is the starting point for the processing phase. Last
operation on this path is the “delivery” one. This operation is an “asset_pack()” that store the
Olive asset into the Milling Store.

The path that starts with a red pointed arrow oriented to the bottom right side is representing
the Sale procedure. This path starts with a “sell” operation, establishing the change of Owner
from a user with the “Farmer” role to a user with the “Miller” role. The sell operation modifies
the owner and the controller of the asset Olive. In the same way as the previously described
path, the Olive asset is loaded into a vehicle for the delivering. After the sell operation, this
scenario follows exactly the same procedure, ending with the deliver transaction. Therefore
-for simplicity- we do not describe again the exact operations performed in this short step, since
they are also performed in the same order. Also, the last operation on this path is -again- the
“delivery”, following the same constraints.

The third path to be represented is that of reuse: in this step of the agriculturalmaintenance
phase an Olive asset is stored by the same producer (the Owner). So there is no sale or transfer
of control: the owner must also be a user with the “Miller” role. To perform operations on the
Milling Store it is necessary for the user to have the “Miller” role.

5.2. Translation of the graphical representation

Once the design is complete, the *-chain framework translates the graphical model into smart
contract skeletons: the translation tool collects the assets, operations and roles defined in the
design interface. Each asset is represented by a different smart contract. Each smart contract
contains:

• A data structure representing the history of all the assets of the same type.
• All explicit operations defined on the asset.
• The implicit operations of creation and destruction.
• The implicit operation of “view()” that provides the history of a given asset.

There are four main contracts in the smart contract skeleton: contract_Olive, contract_Storage,
contract_Truck and contract_Milling_Storage. The main actor is contract_Olive which refers
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to the asset Olive in the graphic representation. The other contracts are generated from the
container elements, used for to store or to transfer the asset. The contract contract_Olive has all
the declared property on the asset Olive, listed in lexicographical order. On this contract are also
auto-generated and listed the functions: “conservation()”, “reuse()”, “loading()”, “offloading()”,
“delivery()”, “sell()”, and “giveControl()”. In order to easily understand the structure of the auto-
generated smart contract, a snippet code from the programming list of the solidity language is
shown in Figure 3.

Figure 3: Snippet of Solidity code generated by *-chain framework, translating the graphical represen-
tation of Figure 2.

6. Conclusion and Future work

We have demonstrated how the *-chain framework can easily translate very complex supply
chains: the DSGL developed for the platform manages to represent complex forms of process,
providing easy-to-identify elements. The framework is also able to translate the supply chain
schema into a solidity code listing, which is almost optimal to be deployed by a domain expert.

In future work we plan to better analyze the potential of the DSGL, comparing it with several
other models and tools, aiming to underline differences or similarities. Also, we plan to develop
a validation phase for the generated smart contract, to ensure a more clear and working output
code. Furthermore, it would be interesting to analyse the robustness of the code validating the
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model and the generated code through qualitative analysis. Our task is to refine the framework
and make the graphical interface much easier to handle, especially for inexperienced managers
who lack specific knowledge of the model. To further improve the usability of the framework,
we plan to introduce the possibility of defining macro-functions, i.e., the composition of existing
operations. The goal is to reduce procedural costs and earn an easier and clearer design. As
a successive step, we plan to translate it into other languages for DLT, such as Chaincode6.
Finally, we plan to investigate whether the adoption of different data structures to represent the
asset history reduces the storage and execution costs of the proposed solution.
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Abstract
Information asymmetry affects the actors of all the segments of the agri-food supply chain and can
arise many problems in the market along the production chain. Transactions of agri-food products are
asymmetric because suppliers and buyers have different levels of knowledge on the provenance, value,
quality, and freshness of food. Collusive relations among the agri-food chain actors, especially between
controllers companies and controlled ones, can cause market failures as they influence customers’
purchase decisions and severe health accidents when food safety is compromised. This paper proposes
using blockchain technology to combat information asymmetry and collusive relations. In addition to
transparency, cryptography and trusts, which are natively provided by the blockchain, our approach
provides a twofold mechanism for validating crowd sensed data: first, a lightweight syntax validation is
run before writing data in the blockchain (providing accountability also thanks to immutability); then, a
dedicated smart contract runs semantic validation in scenarios with multiple data sources. This semantic
validation may reveal collusive behaviours, downgrade colluding nodes and exclude or down-weight
their data in future validations. The smart contract seals data that pass both validations adding metadata
on data quality. Results prove the feasibility of our solution on Hyperledger Fabric under the assumption
that the majority of nodes are honest. Experimental results demonstrate that our implementation of the
twofold validation using smart contracts scales well with the dimension of the blockchain state. Our
mechanism may greatly impact Product Certification and Designation of Origin as it may be applied to
check specific requirements for raw materials, products, and production processes and protect from the
collusion of controlling consortia and certification bodies.

Keywords
Agri-food, economy, blockchain, smart contract, information asymmetry, validation

1. Introduction

In the globalised society, and above all in the developed economies, the quality and safety
of agri-food productions have received increasing attention from the consumer as a result of
the evolution intervened in recent years, in terms of production and marketing of products of
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vegetable and animal origin in a fresh and transformed state. This structural and functional
evolution of the sector is mainly due to some aspects. In fact, in the agri-food sector, there
are new products with differentiated and differentiable characteristics, including agricultural
commodities, vegetable and animal productions, highly-processed and high-service products.

Moreover, in the agri-food system, there is a strong integration of the productive sector with
the final consumer market in terms of information flows, knowledge of markets, and consumer
needs and expectations. The economic and technical literature reports the growing importance
of food quality and safety. These concepts are related to brands, information transparency,
traceability of production and commercial chains, the fight against counterfeiting, and food
fraud [24, 9]. However, in countries with high per capita income, the current health and
nutritional needs, expressed by new lifestyles, determine a rethinking of production protocols
that are increasingly attentive to the problems of resource sustainability and the protection of
environmental ecosystems and biodiversity. Finally, the continuous evolution of consumers’
tastes and preferences expressed over time by the variations in the demand should not be
overlooked. To manage this new scenario, the public operator and institutional figures have
provided regulations at national and international levels, disciplinary and production controls,
certifications and quality protection, international agreements, and trading platforms. However,
modern technologies require the adoption of systems that can support themselves by minimising
human intervention in data collection and certification processes. In this context, information
availability becomes fundamental for consumers because they quest for valuable information to
perceive and evaluate the quality of products, recognise the added value, and increase willingness
to buy or pay more. For all these reasons, this paper aims to analyse the role of information and
novel ICT technologies in creating higher standards of quality and improving the functional
efficiency of agri-food production markets by reducing information asymmetries on the demand
side.

The contribution of this paper joins together economy and computer science; first, we explain
the economic and technical implications of the information asymmetry in the agri-food market,
then explore a possible solution to reduce such an asymmetry using blockchain technology.
Blockchain has intrinsic traits such as transparency, trust, and traceability; these features help
to solve the information asymmetry but, alone, they are not enough to guarantee the data
accuracy and validity. Blockchain technology provides data immutability, accountability, and
traceability, but it does not guarantee the data quality. In the agri-food sector, data quality is
the cornerstone; therefore, a blockchain-based AgriChain platform for data quality is necessary.
Using blockchain and smart contracts and applying a novel data validation methodology, we
combat information asymmetry and its negative influence on the net value of investments, the
ranking of agri-food companies and their capability to access credit for financing their activities.
AgriChain uses multiple data sources, in which data are analysed by a set of smart contracts
implementing a two-step validation logic (syntactic and semantic). The syntax validation
works before data are written on the blockchain; it checks both the data and the user’s
identity and guarantees the accountability of the written information. Then, AgriChain smart
contract applies a semantic validation that works after data are written on the blockchain
and ‘seals’ them. This validation smart contract fights information asymmetry, providing
transparency and data accuracy.

The distortions of information asymmetry in the food market are described in Section 3. The
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actors and the roles in the agri-food supply chain are discussed in Section 4. Section 6 describes
the AgriChain methodology for validating and assessing data quality. Experimental setup and
results are presented in Section 7, then related works and conclusions are drawn, respectively
in Sections 8 and 9.

2. Background

This section briefly introduces the key elements of the proposed architecture, namely ontology
and blockchain.

2.1. Ontology

In computer science, ontology is a way to represent semantics (the meaning) through the
definition of categories, properties and relationships expressed through description logic [12].
An ontological approach enables or simplifies deductive reasoning, classification, problem-
solving, and the simplification of information exchange among systems. Deductive reasoning is
entrusted to the semantic reasoner, software capable of carrying out reasoning on formalised
knowledge bases. It is capable of elaborating the knowledge base according to some rules to
validate and analyse the knowledge base itself and, therefore, infer logical consequences. In 1999,
the W3C adopted the Resource Description Framework (RDF), which became standard in 2004.
RDF is a data model used to represent ontologies; the atomic data entity is the semantic triple, a
set of three entities: subject-predicate-object. Triples represent a statement on semantic data
(e.g., “Alice is 30”, “Alice knows Bob”). SPARQL Protocol and RDF Query Language (SPARQL) is
a SQL-like query language for receiving and manipulating RDF data. An implementation of
SPARQL is included in Apache Jena, a Java framework for developing semantic web-oriented
applications that include a SPARQL endpoint and supports a specific serialisation format named
Turtle (Terse RDF Triple Language). RDF data validation is entrusted to Shapes Constraint
Language (SHACL), which includes a list of constraints such as cardinality, range of values, etc.
[7].

2.2. Blockchain

Blockchain is a distributed technology that allows for addition-only data storage. Each member
of the distributed network (node) has its data replica on which it tracks every resource exchange
(transaction) between participants. The transactions are grouped into blocks, linked together
through a content hash, to form a chain. Members participate in the validation of transactions
in order to add them to the blocks through a distributed consensus algorithm. There are several
types of protocols, the most famous being Proof of Work (PoW), Proof of Stake (PoS), and
Byzantine fault tolerance (BFT). Ethereum was the first blockchain platform that introduced
smart contracts, small programs for validating transactions and performing the computation in
a distributed way. Ethereum is a permissionless blockchain where anyone can participate in
the network and participate in the consensus protocol.

Conversely, there are permissioned blockchains, such as Hyperledger Fabric (HLF), where
participants need special permissions to be part of it. HLF is part of the broader Hyperledger
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framework, which includes other distributed ledgers, libraries and tools, and the Linux Foun-
dation supports it. Here the smart contracts are called chaincodes and enable to read (query
operation) and write (invoke operation) the ledger. The ledger is included in a channel; nodes
that participate in this channel can read, write and invoke smart contracts. An HLF instance
can manage multiple channels and, therefore, multiple ledgers, defining different levels of scope
for each node.

Since version 2.0, HLF supports chaincodes as an external service. In this case, the chain
code management is independent of the node and allows us to define an endpoint where it is
executed.1 In this endpoint, we can also run more complex services, which the chaincode is
capable of invoking, such as in [18] where external chaincodes are used to query external data
sources. The call can be made in the single execution of the chaincode, or in case of longer
processing times, the chaincode can exploit the oracle paradigm [5]. In this case, the chaincode
emits an event that the service intercepts to start the computation of the request. When the
service has finished the processing, it returns the output to the chaincode.

3. Information asymmetry and market distortion

From an economic point of view, it is well known the possibility to score the perceived quality
of food products using a scale that spans from optimal to poor without interfering with its
potential edibility. However, the hygienic and sanitary safety of the products to the final
consumer markets is challenging to evaluate. Consumers have shown great interest in features
defining food quality, thanks to an excellent spending capability and a more sensitive contest
than in the past. Food quality is a multidimensional and dynamic concept [14]. Quality is “a
complex value whose definition involves objective and subjective components. For this reason,
quality is not a characteristic that can be immediately described or identified. However, it is
an idea that each of us has concerning what we need to satisfy a specific need. The more the
characteristics of a product correspond to the complex expectations we have concerning it,
the more we will be inclined to consider its quality” [25]. It becomes essential to deepen the
analysis on the perception of qualitative aspects, combining technical quality indicators with
measures and models of customer satisfaction interpretation in the information economy’s
theoretical context. Indeed, placing on the market certified quality products is reflected in an
increase in production costs and therefore in prices. Certification requires an estimation of the
economic value attributed to the quality perceived by the customers and the evaluation of the
premium price concerning the different and greater willingness to pay.

Information is an element that affects the functioning mechanisms of the markets, providing
a twofold perspective. On the one hand, the “control” and the “management” of the information
asymmetry between supply and demand, through the policy of trademarks, certifications, and
labelling of agri-food productions. On the other hand, national and international public and
private organisations and institutions preside over voluntary standardisation and establish
rules and procedures for controlling market transaction costs. They check company and
collective brands as precise quality signals, signals of value and contribute to strengthening

1Available at https://hyperledger-fabric.readthedocs.io/en/release-2.4/cc_service.html
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the necessary operating conditions for the exchange, contributing to the reduction of the
information asymmetry typical of imperfect markets [1, 20].

The quality of food production and the economic efficiency of the markets are closely connected
and correlated to the growing role of information. This type of situation does not always safeguard
the security and correctness of the information and the ability to choose given to informed
consumers. From the point of view of the economic production efficiency of the markets, these
elements contribute to creating a sort of functional distortions of the agri-food markets that
can prevent their correct functioning under the profile of economic theory. These specific
conditions seem to simultaneously produce disadvantages for producers and consumers in
terms of the natural relationship between supply and demand, oriented to the balance of short
and long term markets.

4. AgriChain actors and roles

The agri-food supply chain is composed of segments that cooperate to evolve the production
process from field to fork. Information asymmetry typically manifests in the last segment of
the supply chain affecting final customers but, in many cases, also influences other actors. The
various segments concur to a holistic view of the good, including production and transformation
processes. In case of partial or inaccurate information, two consecutive parts of the supply
chain (e.g., production, transportation, transformation, stock) may experience information
asymmetry too. For example, farmers know the history of the grain they grow - origin, timing,
and treatments. This information may be hidden to the miller, whose knowledge is limited to
storage in silos and the milling process. The same issue related to lack of knowledge occurs
between miller and distributors and, more in general, in all the steps between different actors.
The chain of value and responsibility that links those actors from farm to fork is affected by
information asymmetry in all its links.

Farmers and industries need prompt and trusted information to make better decisions for
growing or transforming agri-food products. The introduction of blockchain in the agri-food
sector has represented a digital innovation aimed at increasing business income by reducing
production inputs (and therefore of costs expressed at constant prices) and increasing the
outputs (the quantity produced and therefore of revenues expressed at constant prices). Digital
innovation is always aimed at increasing the company’s competitiveness and technical and
economic efficiency by optimising production factors and reducing variable costs. For example,
accurate information on the state of plants brings to savings of water for irrigation, avoiding
unnecessary wastes. The same happens for fertilisers and pesticides with knowledge on seasonal
trends and infections. These decisions change the structure of production costs and positively
affect the entrepreneur’s net income.

The information asymmetry negatively influences production and marketing choices, and
the potential problems along the supply chain may lead to market failure. An important
issue is related to product certification about the designation of origin. Such certifications
are characterised by strict requirements and are guaranteed by consortia and certification
bodies. However, between the controlling and controlled entities may arise collusive relations,
which are then difficult to discover and strongly affect the market. A recent example is given
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Figure 1: Blockchain node representation of our validation system. It includes a SPARQL endpoint, a
syntactic validator, and a semantic validator

the production of ham under the Protected Designations of Origin (PDOs) “San Daniele” and
“Parma”, which require the use of a specific breed of pigs. However, a collusive system within
the protection consortium eluded controls on the seed of the pigs and, in contrast with the
production disciplinary, put on the shelves products whose PDO was not valid. The effects
of information asymmetry apply both to product quality and health, as in the cases such as
pistachio, whose origin has implications in terms of aflatoxin and ochratoxin and may cause
risks for consumers’ health [21]. This example shows that information asymmetry may have
different facets. The consumer needs to know a product’s provenance, but this information is
not sufficient if it is not linked to the risks of products from a specific area.

5. Validation Architecture

To combat the information asymmetry, we provide AgriChain, a blockchain-based platform for
semantic and syntactic validation that executes external smart contracts on HLF (see, Section
2.2). In this way, within a blockchain node, we can run complex services such as Apache
Jena, a free and open-source Java framework for building semantic applications [3], otherwise
impossible to be implemented as legacy smart contracts. It includes a SPARQL endpoint, i.e.
Fuseki, and a syntactic and semantic validator, i.e. SHACL. As shown in Figure 1, each node runs
the two smart contracts in yellow that interface with the services mentioned above. We use HLF
channels to separate the essential information from metadata and facilitate their operations.
Semantic validation works on datasets rather than on a single transaction. The traceability
information is stored in the data channel, while the metadata channel is used to store useful
elements for the validation operations.
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5.1. Syntactic validation

The syntactic validation takes place before storing the information on the blockchain, imple-
menting filtering on the single input data. The smart contract syntacticSC (see, 1 in Figure 1)
receives as input the data and performs a signature validation. This step is shown in Algo-
rithm 1, where 𝑠𝑦𝑛𝑡𝑎𝑐𝑡𝑖𝑐𝑆𝐶 takes 𝑑𝑎𝑡𝑎𝐼 𝑛 as input parameter and passes it to 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛()
function (see, Line 2). If that check is successful, we continue with syntactic validation, calling
𝑠𝑦𝑛𝑡𝑎𝑡𝑖𝑐𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛() function (see, Line 3), as described in Section 6, to invoke the syntactic
validator service (see, 2 in Figure 1). This validation has to be customised as needed and depends
on the context of the application, for example, to verify that a “𝑤𝑒𝑖𝑔ℎ𝑡” field has a numeric
value expressed in 𝑘𝑔. When the validation is successful, we map 𝑑𝑎𝑡𝑎𝐼 𝑛 into a 𝑑𝑎𝑡𝑎𝑂𝑢𝑡 format
(see, Line 4) valid to be loaded on SPARQL endpoint (see, 3 in Figure 1). We assume that the
reference ontology is preliminary written on the blockchain and imported into the SPARQL
endpoint before starting the data collection process. Writing the ontology on the blockchain
guarantees interoperability and transparency in the definitions of products and links between
them. Finally, we also store 𝑑𝑎𝑡𝑎𝑂𝑢𝑡 on data channel (see, Lines 5 and 6).

Algorithm 1 syntacticSC
Require: 𝑑𝑎𝑡𝑎𝐼 𝑛 as input data
1: procedure syntacticSC(𝑑𝑎𝑡𝑎𝐼 𝑛)
2: if signatureValidation(𝑑𝑎𝑡𝑎𝐼 𝑛) then
3: if syntacticValidation(𝑑𝑎𝑡𝑎𝐼 𝑛) then
4: 𝑑𝑎𝑡𝑎𝑂𝑢𝑡 ← mapping(𝑑𝑎𝑡𝑎𝐼 𝑛)
5: putSPARQL(𝑑𝑎𝑡𝑎𝑂𝑢𝑡)
6: putBC(𝑑𝑎𝑡𝑎𝑂𝑢𝑡)
7: end if
8: end if
9: end procedure

5.1.1. Semantic validation

The semantic data validation process uses SHACL shapes, deriving from the ontology.2 We
assume that they are already present on the blockchain and used by the smart contract seman-
ticSC. The semanticSC, as shown in Algorithm 2, receives as input the parameters 𝑞𝑢𝑒𝑟𝑦, that is,
the SPARQL query which determines the subject of the validation, and 𝑖𝑑𝑆ℎ𝑎𝑐𝑙, the identifier of
a shape stored on the blockchain used in the validation. When this smart contract is invoked, it
retrieves the 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 from the SPARQL endpoint (see, 4 in Figure 1), using 𝑔𝑒𝑡𝑆𝑃𝐴𝑅𝑄𝐿() function
with 𝑞𝑢𝑒𝑟𝑦 parameter (see, Line 2). Similarly, we retrieves the 𝑠ℎ𝑎𝑐𝑙 shape from blockchain with
𝑔𝑒𝑡𝐵𝐶() function (see, Line 3). Then we forward 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 and 𝑠ℎ𝑎𝑐𝑙 shape to SHACL validator (see,
5 in Figure 1). Here, the 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑉 𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟() function calls the semantic validator service (see,
Line 4) which performs a semantic validation and gives back the 𝑟𝑒𝑠𝑢𝑙𝑡. Now, 𝑟𝑒𝑠𝑢𝑙𝑡, along with

2We generated the SHACL shapes using the Astrea tool, https://astrea.linkeddata.es/. The shapes have been tuned,
and we added missing validation elements from the ontology, such as the cardinality range.
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𝑑𝑎𝑡𝑎𝑠𝑒𝑡, are examined by a calculateScore() function (see, Line 5) which scores the validation
performed. The single application defines the calculation of the score and its metric; for example,
the closer the harvesting coordinates of different olives are, the more accurate the result that
the crop belongs to an exact agricultural land. At the end, 𝑞𝑢𝑒𝑟𝑦, 𝑖𝑑𝑆ℎ𝑎𝑐𝑙, 𝑟𝑒𝑠𝑢𝑙𝑡, and 𝑠𝑐𝑜𝑟𝑒 are
written on metadata channel as proof via 𝑝𝑢𝑡𝐵𝐶() function (see, Line 6).

Algorithm 2 semanticSC
Require: 𝑞𝑢𝑒𝑟𝑦 as input query for SHACL validation
Require: 𝑖𝑑𝑆ℎ𝑎𝑐𝑙 as input id of SHACL shape
1: procedure semanticSC(𝑞𝑢𝑒𝑟𝑦, 𝑖𝑑𝑆ℎ𝑎𝑐𝑙)
2: 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 ← getSPARQL(𝑞𝑢𝑒𝑟𝑦)
3: 𝑠ℎ𝑎𝑐𝑙 ← getBC(𝑖𝑑𝑆ℎ𝑎𝑐𝑙)
4: 𝑟𝑒𝑠𝑢𝑙𝑡 ← semanticValidator(𝑑𝑎𝑡𝑎𝑠𝑒𝑡,𝑠ℎ𝑎𝑐𝑙)
5: 𝑠𝑐𝑜𝑟𝑒 ← calculateScore(𝑑𝑎𝑡𝑎𝑠𝑒𝑡,𝑟𝑒𝑠𝑢𝑙𝑡)
6: putBC(𝑞𝑢𝑒𝑟𝑦, 𝑖𝑑𝑆ℎ𝑎𝑐𝑙, 𝑟𝑒𝑠𝑢𝑙𝑡, 𝑠𝑐𝑜𝑟𝑒)
7: end procedure

The reasonerSC interfaces the blockchain with the reasoning service. When this smart
contract is invoked, it queries the SPARQL endpoint (see 3 in Figure 1) to obtain the dataset to
forward to the reasoner, indicated with 4). When the reasoner finishes its processing (see 5),
the smart contract stores the result on the blockchain. If the result leads to new inferred triples
from the initial dataset, the new data is updated in the SPARQL endpoint invoking syntacticSC.
In such a case, the initial data are stored on the data channel, and the inferred information goes
on the metadata channel.

6. AgriChain validation methodology

The agri-food sector includes multiple supply chains for the different agricultural products:
tomatoes, wine, dairy, olive oil, etc. These supply chains involve many actors with different roles,
and in most cases, they hold contrasting interests. Agricultural entrepreneurs, transformation
industries, transport, logistics, and great and small distribution are exemplary actors that appear
in many agri-food supply chains. However, any chain has its peculiar actors with specific needs
and roles. For example, in the simplified model of the olive oil supply chain shown in Figure 2,
there are farmers, olive growers’ cooperatives, warehouses, shops, and customers as the main
actors. These actors typically provide data through human operators, which are not trusted by
default. To solve the problem of mistrusted operators, the authors propose to use IoT devices.
However, this strategy shifts the point of trust from humans to IoT devices. IoT sensors are
owned and maintained by those actors indicated above and can be maliciously manipulated
according to their specific interests. To guarantee data quality, AgriChain leverages the double
validation indicated above, invoking dedicated smart contracts.

The input syntactic validation, performed by smart contract syntacticSC (see, Pseudocode 1),
checking that the transaction contains specific fields, as exemplary shown in Listing 1, including
the actor’s signature. The smart contract checks multiple signatures if multiple actors are
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Figure 2: Data sources for AgriChain and smart contracts for data validation. Syntax-validated
transactions are in gray, those semantically validated are in white.

involved in the transaction. This validation is performed on a transaction before being written
on the blockchain. This preliminary validation guarantees accountability because each piece of
data is linked to an accountable entity, but still, it does not protect from the ‘garbage in, garbage
out’ problem. In other words, this lightweight syntax validation checks the identity of the data
provider, the timestamp, and other metadata without guaranteeing ‘semantic’ validity.

{
” a c t o r ” : {

” s i g n a t u r e ” : ” e b f 3 d 6 a 0 e 5 4 d 2 4 9 f f . . . ” } ,
” r e s _ d e t a i l s : ” : {

” res_name ” : ” o l i v e s 0 1@ f i e l d 0 1 ” ,
” hasGeoTag ” : t rue ,
” hasWeight ” : t r u e } ,

” d a t a ” : {
” l a t ” : 3 8 . 1 2 0 2 4 0 ,
” lon ” : 1 3 . 3 5 7 3 8 8 ,
” kg ” : 10 } ,

” t s ” : ”2020 −05 −30 T16 : 0 6 : 4 4 + 0 1 : 0 0 ”
}

Listing 1: Syntactic validation - Fields extracted from the transaction.

The second check involves both syntactic and semantic validation; in what follows, we stress
the semantics aspects. Here, the smart contract semanticSC (see, Pseudocode 2) takes care of the
validation on a more extensive set of data that, grouped, have a special meaning; the validation
logic depends on the specific supply chain and the meaning of data, in our experiments we
focused on the geographical origin of the olive oil product. Unlike the typical blockchain
validation, our semantic validation is performed after the data is written on the blockchain, it is
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Figure 3: Exemplary semantic validation for geo coordinates of extra-virgin olive oil origin provided by
120 actors. The majority cluster (67 dots) is in yellow, noisy measures in black (30 elements), colluding
nodes (23) in red.

triggered by new data arrivals that are semantically linked to the previous ones. For example,
the geographic coordinates provided by several harvesting operators through their smartphones
and IoT devices with GPS receivers are in Listing 1, providing the location of the product and
farm field01. As shown in Figure 3, the syntax validation smart contract uses clustering to
estimate the position (the mean of the majority cluster) from malicious and colluding nodes (in
red).

6.1. Costs and benefits of the proposed solution

When an agri-food related business choices to use blockchain technology to implement its food
supply chain in some or all aspects, it is choosing to undergo some change. Change is not
always good for business, so why should a business decide to switch to a blockchain-based
solution? Because using blockchain expresses the company care about transparency, thus
inspiring old customers to possibly buy more products and/or new ones to switch from another
brand to this one. Of course, every kind of IT infrastructure comes with costs of installation and
maintainability. We propose those costs to be proportionally assigned to the 𝑛 involved actors.
This solution could be thought of as a blockchain-based pay-per-use like a subscription system.
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Figure 4: Protégé class hierarchy overview for sb:OliveOil.

7. Experimental Setup and Results

Part of the platform presented in this paper was proposed within the DEMETER3 project, which
leads the digital transformation of the European agri-food sector through the rapid adoption of
advanced IoT technologies, data science and smart farming, ensuring its long-term viability and
sustainability. Our blockchain currently runs within the DEMETER ecosystem, and the project
partners can invoke its services. A fundamental part is the semantic model, used as a common
language between different project entities. It is based on the GS1 vocabulary, extended, revised
and refined to be able to describe an entire supply chain. We exemplary show the olive oil
supply chain (see, Figure 4), where we have extended the gs1:FoodBeverageTobaccoProduct4

class with sb:OliveOil5 to be able to map the entire process. In addition to the interoperability
offered by the semantic model and its mappings with other ontologies, the platform offers APIs
compliant with the OpenAPI standard. Seeing the generality of the platform, we, as a case
study, have implemented the validation of olive harvesting in the olive oil supply chain. Within
the SHACL validator, we have added a clustering algorithm, the DBSCAN [19], to calculate the

3Available at https://h2020-demeter.eu/
4Available at: https://www.gs1.org/voc/FoodBeverageTobaccoProduct
5Available at: https://seedsbit.com/ontology/#OliveOil
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(c)

(b)

(a)

Figure 5: Time spent by the chaincode for clustering geographical points with DBSCAN for 100
consecutive invokes (a); Average number of points to create at least one cluster (in red) (b); Number of
entries written on the blockchain (c). One typical run is depicted in green; the average value on 15 runs
appears in blue. When a new pair of coordinates is added, the smart contract is triggered; the 𝑖th call
works on a bigger state than the 𝑖 − 1th.

proximity of the harvested olives to the soil. Our blockchain platform of choice to illustrate our
work is Hyperledger Fabric, although the SeedsBit platform uses multiple blockchain platforms,
including MultiChain and Ethereum.

As introduced in Section 6, we used Hyperledger Fabric to implement our model partly and
to give some experimental results in terms of performances. Our test network was composed of
two Fabric organisations, having two peers each. Moreover, we used the RAFT algorithm [17],
which is the default consensus protocol for Hyperledger Fabric. RAFT is a CFT (Crash-Fault
Tolerant), but it can be easily substituted with a BFT (Byzantine Fault Tolerant) as Fabric has a
modular approach to the consensus protocol [4].

Thus we had five nodes running for consensus purposes. The blockchain was deployed on a
single host configuration on a machine with the following specs: Intel© Xeon© CPU E5-1660 v3
@ 3.00GHz with 32 gigabytes of RAM. Figure 5 shows, out of 100 consecutive invocations of the
smart contract semanticSC, the time spent by the DBSCAN algorithm for clustering (see, Figure
5a), the number of clusters found (see, Figure 5b), and the number of entries used by DBSCAN
(see, Figure 5c). At each invocation, we assume that the number of entries has increased by 1
unit, so syntacticSC has inserted a new entry into the blockchain. We can see how the analysis
of 100 points, the most computationally expensive part, uses about 8 ms, with is compatible with
the smart contract execution. The clusterisation of the terrain, with about 75 points, required 6
ms.
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8. Related work

The problem of information asymmetry in food traceability has multiple facets that have been
traditionally tackled singularly and using old paper documents and product specifications. Our
approach towards information asymmetry is to improve transparency under multiple points of
view: economy, blockchain technology, data quality.

From an economic point of view, it is well known the possibility to score the perceived
quality of food products using a scale that spans from optimal to poor without interfering with
its potential edibility. However, the hygienic and sanitary safety of the products to the final
consumer markets are challenging to evaluate. Consumers have shown great interest in features
defining food quality, thanks to a greater spending capability and a more sensitive contest
than in the past. Food quality is a multidimensional and dynamic concept [14]. Quality is a
complex feature made by objective and subjective components. For this reason, quality cannot
be immediately described or identified, but it is a subjective idea that involves personal needs.
The more the characteristics of a product match our expectations, the more we will be inclined
to consider its quality [25]. It becomes important to deepen the analysis on the perception
of qualitative aspects, combining technical quality indicators with measures and models of
customer satisfaction interpretation in the information economy’s theoretical context. Indeed,
placing on the market certified quality products is reflected in an increase in production costs
and therefore in prices. Certification requires an estimation of the economic value attributed
to the quality perceived by the customers. This requires the evaluation of the premium price
concerning the difference and greater willingness to pay. Information is an element that affects
the functioning mechanisms of the markets, providing a twofold perspective. On the one hand,
the “control” and the “management” of the information asymmetry between supply and demand,
through the policy of trademarks, certifications and labelling of agri-food productions. On
the other hand, national and international public and private organisations and institutions
preside over voluntary standardisation and establishing rules and procedures for controlling
market transaction costs. Company brands, collective brands, signals of quality and value work
as media communication and contribute to strengthening the operating conditions necessary
for the realisation of the economic exchange, contributing to the reduction of the information
asymmetry typical of imperfect markets) [1, 2, 20].

From the point of view of the economic efficiency of the product markets, these elements
contribute to creating a sort of functional distortions of the agri-food markets that can prevent
their correct functioning under the profile of economic theory. These specific conditions
seem to simultaneously produce disadvantages for producers and consumers in terms of the
natural relationship between supply and demand, oriented to the balance of short and long
term markets. In fact, in [22, 10, 23, 13] many different ways to leverage blockchain technology
in this direction are illustrated. In [22] it is explained why a food traceability system based on
RFID and blockchain would be ideal in China after many food safety accidents happened. These
accidents were related to inadequate and primitive food supply chain management. In [10], the
typical steps and places of a blockchain-based food traceability system are shown. The authors
of [8] conclude their work stating that ‘there are still few uses to support that some properties
of blockchain implementation might be useful towards supply chain management’. In [13],
it is reported how Walmart - one of the biggest American corporations in the hypermarket’s

115



field - in collaborations with IBM, reduced the time needed to track the origins of mango “from
seven days to 2.2 seconds”. These performances also show how blockchain is, without doubt,
a solution to at least consider when talking about food safety and food supply management.
The blockchain used in this pilot study was Hyperledger Fabric. Among others, we found the
high customisation possibilities offered by Hyperledger Fabric and its growing community
and scientific literature response and usage. We see in [11] that performance is not going
to be an issue at least in terms of transactions/second (the authors state that - after heavy
re-engineering - they reached 20000 transactions/second). On the other hand, in [16] we see
possible problems in critical scenarios if the blockchain physical network undergoes latency.
In addition to performance, the blockchain has been used for guaranteeing high-quality data
[26, 15].

9. Conclusion and Future Work

Quality of food production and the economic efficiency of the markets are closely connected and
correlated to the growing role of information. This type of situation does not always safeguard
the security and correctness of the information and the ability to choose given to informed
consumers. The central role of the agri-food sector requires quality of data because erroneous,
malicious, and missing information affect the food supply chain in terms of quality and safety.
This paper presented AgriChain as a mechanism for validating data syntactically before being
included in the blockchain and semantically before being sealed. These two validations are
executed through a distributed logic, implemented with one or more dedicated smart contracts.
Typically the blockchain is the preferred technology when seeking trust, transparency and
traceability among actors who do not trust each other or have contrasting interests. We demon-
strated how AgriChain goes beyond this vision on data management, breaking the simplistic
concept that data written on the blockchain are trustful because they have been validated
in advance. Indeed, Agrichain performs only a lightweight validation before including the
information into a block; this only guarantees accountability and syntax consistency. From the
semantic point of view, the second validation guarantees first data cleaning second data quality
assessment. AgriChain performs data cleaning applies clustering algorithms implemented as
smart contracts on data collected through crowd-sensing. Standard data cleaning methods
aim at detecting and removing repeated entries, detecting outliers, checking data volumes. In
general, such methods do not deal with malicious data sources. Then, AgriChain smart contract
checks accuracy, timeliness, completeness, uniqueness, and consistency [6] and provides KQIs,
Key Quality Indicators which are added, as metadata, as a data seal on the blockchain. This
paper presented a new methodology for using smart contracts to enforce a twofold validation
and guaranteeing the quality of data for food traceability.
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1. Introduction

Facility Management (FM) deals with managing the facilities, namely all assets, both tangible and
intangible, that support a company’s core business making the life of occupants of residential
buildings, shops, offices or factories more pleasant and safe. Within FM, a Global Maintenance
Service (GMS), is a form of outsourcing contract specifically related to maintenance and based on
measurable results. Through a GMS contract, a client, or principal, entrusts a series of activities
aimed at the maintenance of the facilities to a single primary service provider, or agent, for a well
defined period of time. The following elements are relevant to this paper for a GMS contract.

• The contract is based on results. The remuneration is a function of a series of Key Perfor-
mance Indicators (KPIs) through which it is possible to measure the quality, efficiency
and effectiveness of the performed activities.

• There is a working group made up of representatives of the client and the primary service
provider, whose function is to ensure the correct start and execution of the project, with
particular regard to the implementation of integrated management tools.

• The primary service provider appoints a single manager, with respect to which the client
can refer as the sole interlocutor and who has responsibility for the activity of all the
personnel involved in the performance of the services covered by the contract. The
primary service provider can delegate some activities to secondary service providers.

Figure 1 summarizes and clarifies the relations between the parties discussed so far.
Examples of the employment of GMS contract for the maintenance of facilities include the

following.

Lighting. Energy supply and ordinary and extraordinary maintenance of related systems.

Real estate assets. Their ordinary and extraordinary maintenance, plant maintenance, clean-
ing and surveillance services.

Green. Paving, cleaning, cutting of the grass, refurbishment of green areas.

Heat. Ensure the heating and air conditioning system including the supply of fuel, gas and
electricity.

GMS can be modelled as a relationship between a Principal (P) and an Agent (A) [4], where the
principal appoints the agent to act on its behalf for the maintenance of its facilities. According to
the GMS, the relationship is governed by a contract (C) based on results measurable by suitable
KPIs.

Usually, the client pays the provider either on the basis of measurements declared by the
provider or by performing measurements by themselves. In the first approach, the client must
trust the provider. In the second approach, the costs of the client for autonomously performing
the measurements might be too high with respect to the benefits of the outsourcing approach.

In this paper, we propose an architecture based on blockchain and IoT technologies to address
this problem. We also provide details for a sample use case of this approach encompassing
oracles to acquire measurements from IoT devices into the blockchain. Our sample use case

120



Client

(P)

Primary Service
Provider (A)

Facility

Manager

Use Maintain

Refer Name

GMS Contract
(C)

Partner

Secondary
Service Provider

Delegate

KPI

Measured with

0..n

1..1 1..1

0..n

1..11..1

1..1

1..11..1

1..1

0..1

1..1
1..n

1..1

Figure 1: Diagram of the relations between parties

is taken from a real tender for heat maintenance related to an Italian hospital. We provide
examples of smart contract code to realize that use case.

This paper is structured as follows. In Section 2, we provide background notions about
blockchain technologies and how they are able to access off-chain data through oracles. In
Section 3, we describe the architecture of a blockchain-based GMS and how it benefits from this
technology. Finally, Section 4 draws the conclusions of the paper and provides some discussion
about open problems.

2. Blockchain Background

A blockchain is a type of Distributed Ledger Technology (DLT) where transactions, new records
to the ledger, are recorded according to an immutable order obtained by means of cryptographic
hash functions that chain the blocks in which transactions are recorded. Unlike a centralized
database, a blockchain is decentralized, namely there is no need for a central authority or
intermediary for processing, validating, and/or authenticating transactions. A blockchain is
typically managed by a set of autonomous nodes that collectively create a peer-to-peer (p2p)
network adhering to a protocol for inter-node communication and validating new blocks. Nodes
do not trust each other and malicious nodes are tolerated, within certain limits that depends
on the consensus algorithm. The most common blockchains can be abstracted as a key-value
database. For example, in a blockchain implementing a cryptocurrency, keys are addresses
(or accounts), while values are the balances of their wallets. In this scenario, a transaction
is an operation that transfer some cryptocurrency from a wallet to another. For efficiency
reasons, transactions are not confirmed one-by-one but aggregated into blocks. Transactions
are confirmed when a new block is created (or mined). The mining of a new block requires
to verify that all transactions of the block, considered in the chosen order, comply to certain
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consensus rules (that depends also on the application domain). When a new block is mined by a
node of the network, all the other peers verify that it respects the consensus rules in a process
called validation. The consensus (for more details, see [16, 17, 8]) is the decentralized process by
which a block is finally stored in the ledger.

There are two types of blockchains that can be categorized according to the access in reading
and writing to the content of the ledger and to the access in participating to the consensus. In
public blockchains, everyone can read the content of the ledger and propose new transactions
that, if successfully validated by the consensus, will be eventually stored in the ledger. On the
contrary, in private blockchains, users are authenticated and access control allows or denies
each user operation as occurs for access control of regular information systems. Similarly, in
permissionless blockchain every user can participate in the consensus, while in permissioned
one the participation in the consensus is allowed only to specific users.

While initially blockchain has been primarily conceived to implement cryptocurrency trading,
it can now be adopted to realize general-purpose applications through the use of smart contracts.
They consist of pieces of code that are executed as part of a transaction. In simple terms, in these
cases, the blockchain implements a global decentralized virtual machine and smart contracts
are the programs running on it.

Smart contracts can process only data that are stored in the blockchain. However, in the
GMS use case that we consider in this paper, there is the need of accessing off-chain data. This
is possible using an Oracle (for more details, see [6]). Oracles are components that allow a
blockchain, or a smart contract, to get inputs from outside the blockchain through regular
blockchain transactions. There are several oracle services providing APIs to allow smart
contracts to access external data. Examples include Chainlink [1], Provable [3], BandChain [5],
and Tellor [2].

3. GMS On-Chain

We have seen that GMS can be modeled as a P/A relationship (see Figure 1). In such a relationship,
the agent acts on behalf of the principal and should not have a conflict of interest in carrying
out its task. An agent may act in its own best interests and in a way that is contrary to the
best interests of the principal, generating the so-called P/A Problem. This problem typically
arises when P has into enough information to directly ensure that A is always acting in P’s best
interest.

The transparency, immutability, traceability and algorithmic governance offered by Blockchain
technologies can contribute to mitigate the P/A Problem [10], reducing (or even eliminating)
the asymmetry of information and thus facilitating the creation of a genuine net value.

The employment of the blockchain, allows us to envision new models of governance, where
trust between the actors is substituted by A and P relying on the consensus within the P2P
blockchain infrastructure, i.e. relying on a community rather than on the trust in individual
actors. In this perspective, the natural different interests of P/A, at least economically-wise, as
well as the participation of different providers competing in the market, are guarantees to the
achievement of a real consensus among the parties, even in less open infrastructure such as the
permissioned blockchains.
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In particular, the Blockchain can provide:

• algorithmic governance autonomously managed by smart contracts capable to implement
decentralized decision-making processes providing the highest guarantee of impartiality
to all the involved stakeholders;

• a transparent and immutable bidding process to select the service providers (i.e. Agents);
• a minimization of the information coordination costs on a shared infrastructure, making

the organization’s data accessible to new customers and suppliers;
• a reduction of verification costs, namely costs involved in verifying the transactions

between Principal and Agent.
• a reduction of intermediation costs, i.e. the costs due to the certification activities by a

third party, external to the contractors.

Figure 2: At the Business layer, the relationship between the Principal and Agent modeling the GMS,
is regulated by a contract based on performance measures defined by suitable KPIs. The Business
components are mapped into their technical counterparts in the Technical Layer. Principal and Agents
are two entities on the Blockchain. The remuneration of the Agent (i.e. a transaction from the Principal
to the Agent) is governed by a Smart Contract according to specific sensors’ observations measuring
the KPIs. To access sensors’ data, the Smart Contract interacts with an Oracle.
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3.1. Modelling the P/A Relationship On-Chain

The architecture of the on-chain GMS modeled as P/A relationship is represented in Figure 2.
Here we assume that both the Principal and the Agent are entities on-chain identified by an
address. Note that we currently assume the pseudoanonymity sufficient to carry on the economic
transaction behind the GMS contract, however, while this is technically more convenient, we
have not yet properly investigated all the complexity of managing identity on-chain [12] in
particular when norms, laws, and regulations must be satisfied.

In the following, we will use Solidity code sketches to illustrate the structure and main
components of the necessary smart contracts. Smart contracts of the following examples refer
to the hospital heating use-case described in Section 3.2. The GMS contract is translated into a
smart contract (see Listing 1). The function payAgent, at Line 23, performs the payment if the
KPI are satisfied. In this case, this occurs when the level of CO emission measured by a sensor
is below a given threshold (see line 27). To access the data of the IoT sensors [13], the smart
contract interacts with an Oracle [7] as sketched in Listing 2. In this case, we use the Provable
Thing Oracle [3], that provides access to off-chain data to a number of Blockchain Technologies,
including Ethereum, EOS, R3 Corda and Hyperledger Fabric.

In some cases, primary service providers can take advantage of sub furniture provided by
secondary service providers. Also in this case, a smart contract can be employed to manage this
relationship as a P/A one as shown in Listing 3.

3.2. Use-Case: GMS for an Hospital

In this section, we show how the components of Figure 2 can be mapped to a real tender
specifications document [11] which defines the modalities through which the Bianchi Melacrino
Morelli Hospital in Reggio Calabria, Italy, intends to entrust the ordinary and extraordinary
maintenance service of the buildings, the technical plants, and the furniture to a primary service
provider for three years.

Art. 6 of [11], details the reference maintenance plan, and provides a number of sheets that
list all the maintenance operations that the primary service provider has to perform. For the
sake of simplicity, we simply consider the sheet in Table 1.

Maintenance guide N. 05
Plant or Facility type Operations performed by the maintenance service Cyclicity

thermomechanical plants Combustion control according to Legislative Decree 152/06 Annual

Table 1
Maintenance operations carried by the primary service provider

The sheet mandates that every year, the combustion of thermo-mechanical systems must be
checked according to the D.L.gs 152/06 [14] regulation.

Principal and Agent The Principal is the hospital company. The Agent is the primary
service provider taking care of the maintenance of the hospital facilities as foreseen in the GMS
according to the specification provided [11] and possibly taking advantage of secondary service
providers.
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Measurable Contract Art. 286 of D.Lgs 152/06 [14] defines the threshold values and the
measurement modalities to check the emissions. In the following, we summarize the most
relevant elements for the considered use case.

• The atmospheric emissions of civil thermal plants with nominal thermal power above the
threshold value must comply with the limit values set out in part III of Annex IX to part
five of D.Lgs 152/06 (see Table 2).

• The emission values of the plants must be checked at least annually by the person in
charge of the operation and maintenance of the plant during normal inspection and
maintenance operations. The measured values, with the indication of the relative dates,
of the measurement methods used and of the person who carried out the measurement,
must be attached to the plant logbook.

• For the purposes of sampling, analysis and assessment of emissions from thermal plants
referred to in paragraph 1, the methods provided for in part III of Annex IX (see Table 2)
are applied.

• The installer verifies compliance with the emission limit values.

Installed Electrical Rated Output (MW)
[1] > 0, 15% ≤ 3 > 3% ≤ 6 > 6% ≤ 20 > 20

Total dust 100𝑚𝑔/𝑁𝑚3 30𝑚𝑔/𝑁𝑚3 30𝑚𝑔/𝑁𝑚3 30𝑚𝑔/𝑁𝑚3

Total organic carbon (TOC) n.a. n.a. 30𝑚𝑔/𝑁𝑚3 20𝑚𝑔/𝑁𝑚3

10𝑚𝑔/𝑁𝑚3

Carbon monoxide (CO) 350𝑚𝑔/𝑁𝑚3 300𝑚𝑔/𝑁𝑚3 250𝑚𝑔/𝑁𝑚3 200
150𝑚𝑔/𝑁𝑚3 100𝑚𝑔/𝑁𝑚3

Nitrogen oxides (expressed in 𝑁𝑂2) 500𝑚𝑔/𝑁𝑚3 500𝑚𝑔/𝑁𝑚3 400𝑚𝑔/𝑁𝑚3 400𝑚𝑔/𝑁𝑚3

300𝑚𝑔/𝑁𝑚3 200𝑚𝑔/𝑁𝑚3

Sulphur oxide (expressed in 𝑆𝑂2) 200𝑚𝑔/𝑁𝑚3 200𝑚𝑔/𝑁𝑚3 200𝑚𝑔/𝑁𝑚3 200𝑚𝑔/𝑁𝑚3

[1] For plants with a rated thermal input equal to or greater than 0.0035 MW and no greater than 0.15 MW,
it is applied an emission value for total dust of 200

Table 2
An example of requirements and KPIs for a tender. Values shown in this table are taken from the Italian
regulation [14] (see text), which applies to the the tender considered in Section 3.2.

According to the GMS, the smart contract will (a) verify the satisfaction of the requirements
for the emissions according to the measured KPIs and the limit defined in [14] and (b) perform
the payments to the service providers.

KPI and sensors The KPI to measure the satisfaction of the contract terms is clearly defined
in Table 2. As an example, if we consider the Total Suspended Particles and a heating system
with nominal installed power between 3 and 6 MW, the threshold is 30mg/Nm3.

The measurements of the satisfaction of the KPI are provided by the sensors of Table 2,
namely Total Suspended Particles, Total Organic Carbon, Carbon Monoxide, Nitrogen Oxides,
Sulfur Oxides. Sensors should sample the environment with accuracy and a sampling period
defined by the regulation.
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Smart Contract examples. Listing 1 illustrates how Principal and Agent can manage their
collaboration with a smart contract. “PayCOContract" accesses external data through the
contract oracle in Listing 2. Finally, “Subcontract" in Listing 3, demonstrates how a primary
service provider can delegate a secondary service provider on a blockchain through a specific
smart contract.

1 pragma solidity ^0.4.22;
2 import "./ExampleContract_CO_Oracle.sol";
3
4 contract PayCOContract {
5
6 ExampleContract_CO_ORACLE private OracleContract;
7 address public P;
8 address public A;
9 uint public CO_Threshold;

10 uint public lastPayment;
11 uint public payment;
12 uint public INTERVAL = 10;
13
14 constructor (address _OracleContract, address _P, address _A, uint _CO, uint _payment) {
15 OracleContract = ExampleContract_CO_ORACLE(_OracleContract);
16 P = _P;
17 A = _A;
18 CO_Threshold = _CO;
19 payment = _payment;
20 lastPayment = block.number;
21 }
22
23 function payAgent() payable {
24 require(block.number > lastPayment + INTERVAL);
25 require(msg.value == payment);
26 require(msg.sender == P);
27 if (stringToUint(OracleContract.CO) < CO_Threshold) revert();
28
29 A.transfer(msg.value);
30 }
31
32 }

Listing 1: A sketch of a smart contract to execute the payment from the Principal to Agent if
specific conditions are met. For the sake of brevity “stringToUint" function is omitted
but it casts a string into an unsigned integer in Solidity.

1 pragma solidity ^0.4.22;
2 import "github.com/provable-things/ethereum-api/provableAPI_0.4.25.sol";
3
4 contract ExampleContract_CO_ORACLE is usingProvable {
5
6 string public CO;
7 event LogConstructorInitiated(string nextStep);
8 event LogCOUpdated(string CO);
9 event LogNewProvableQuery(string description);

10
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11 function ExampleContract() payable {
12 LogConstructorInitiated("Constructor was initiated. Call ’updateCO()’ to send the

Provable Query.");
13 }
14
15 function __callback(bytes32 myid, string result) {
16 if (msg.sender != provable_cbAddress()) revert();
17 CO = result;
18 LogCOUpdated(result);
19 }
20
21 function updateCO() payable {
22 if (provable_getPrice("URL") > this.balance) {
23 LogNewProvableQuery("Provable query was NOT sent, please add some ETH to cover

for the query fee");
24 } else {
25 LogNewProvableQuery("Provable query was sent, standing by for the answer..");
26 provable_query("URL", "json(https://api.sensor.it).CO");
27 }
28 }
29 }

Listing 2: A sketch of a smart contract to get data from a CO sensor by Provable Things Oracles.
Provable Things provide oracles for a number of Blockchain Technologies, including
Ethereum, EOS, R3 Corda and Hyperledger Fabric

1 pragma solidity ^0.4.22;
2 import "./PayCOContract.sol";
3
4 contract Subcontractor is PayCOContract {
5 address public Secondary;
6 uint public SecondaryPayment;
7
8 constructor (address _OracleContract, address _P, address _A, uint _CO, uint _payment,

address _S, uint _secondary_payment) PayCOContract(_OracleContract, _P, _A,_CO,
_payment) {

9 Secondary = _S;
10 SecondaryPayment = _secondary_payment;
11 }
12
13 function paySecondary() public {
14 require(block.number > lastPayment + INTERVAL);
15 require(msg.value == SecondaryPayment);
16 require(msg.sender == A);
17 if (stringToUint(this.OracleContract.CO) < CO_Threshold) revert();
18
19 Secondary.transfer(msg.value);
20 }
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21 }

Listing 3: A sketch of a smart contract to execute the payment from the Primary Service (A) to
Secondary Service provider if specific conditions are met. Note that, since this is a
special case of contract where the agent delegates to another entity the management
of some facility, Subcontract inherits the main contract “PayCOContract"

4. Conclusions

In this paper, we discuss the design of a blockchain solution capable to support the Global
Maintenance Service on-chain, the implementation of the Principal/Agent relationship and how
modeling of the GMS on-chain provides several advantages. The transparency of Blockchain
can eliminate the asymmetry of information and consequently, it reduces (or even eliminate) the
P/A problem and allows a transparent and immutable bidding process for the selection of Agents.
The algorithmic governance autonomously managed by smart contracts is capable to implement
decentralized decision-making processes providing the highest guarantee of impartiality to all
the involved stakeholders and the shared blockchain infrastructure allows us to minimize the
information coordination, verification and intermediation costs.

All these arguments encourage us to proceed in this investigation, however, a number of
relevant questions still need to be properly handled.

The selection of the most suitable blockchain technology is the first relevant issue. Public/per-
missionless blockchains provide the highest guarantees but could be difficult to be implemented
in an industrial context where some information is necessarily sensitive and private. However,
the natural different interests of Principal and Agents, at least economically-wise, as well as the
participation of different providers competing in the market, are guarantees to the achievement
of a real consensus among the parties, even in less open infrastructure such as the permissioned
blockchains.

The employment of the blockchain, allows us to envision new models of governance, where
trust to individuals is overcome by consensus from a community. However, it is not yet clear
what are the implications in legal terms of this new governance in particular in terms of
accountability. More in general, the applicability of the algorithmic governance provided by the
blockchain should be better investigated in view of current laws, norms and regulations [9].

Finally, the concept of identity on-chain should be better explored, also in view of the
Self-Sovereign Identity [15] concept.
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Abstract
In the Italian craft beer market, many small breweries and pubs propose a large number of products to
beerlovers. In this highly fragmented market, it is hard for the beerlovers to assess the quality of a beer
and it is hard for breweries and pubs to inform the beerlover of the quality of their offer. Supply chain
tracking is an interesting tool to improve transparency of food markets. However, standard tracking
approaches are challenging in highly fragmented contexts for several reasons. In this paper, we show
how it is possible to realize a blockchain-based supply chain tracking tailored for the highly fragmented
sector of the Italian craft beer. We collaborated with one of the players of that market to analyze the
specific problems of that context and we report the results of this analysis. We show a design that
addresses those problems and might be generalized to support tracking in other highly fragmented
sectors. We estimate costs and that turn out to be affordable for that sector.

1. Introduction

In the agriculture and food contexts, the quality of the products is paramount for the final
consumer for obvious reasons. However, the consumer has very little means to assess the quality
of a product in advance. For this reason auditing and certifications play a crucial role in this
context [27]. These approaches rely on the trust that final consumers and market operators pose
on a (usually small) number of subjects that perform the auditing. There are two drawbacks to
this: the rising of costs, which may put out of market small players, and the undue power given
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to the auditors, which may improperly change market rules with their decisions and which may
be the targets of corruption attempts.

Blockchain technologies provide an opportunity to address this problem differently. These
technologies have proven themselves to be valuable tools to address a variety of problems.
They are especially useful when a wide number of actors have competing interests but have
to cooperate to agree on a common view of some kind of shared data. Historically, the first
application of blockchain was cryptocurrency where actors are whoever intend to use the
cryptocurrency (e.g., to buy or sell goods) and shared data are the balances of all accounts.
Blockchain applications flourished in the last ten years in many contexts [3], like finance,
healthcare, logistics, manufacturing, energy, and also agriculture and food. A large part of the
efforts in these last two sectors, focused on the adoption of blockchain with the purpose of
tracking all the production steps of a supply chain in a decentralized manner [36].

In this paper, we focus on the Italian craft beer sector. A highly fragmented context with a
large number of actors and products, and many enthusiast final consumers (beerlovers). Since
craft producers are by definition small, they can hardly comply with costly certifications and
may have difficulties to convey to the final consumer information about the quality of their
products. This situation is known to be unfavorable to high quality producers [2] and, hence,
detrimental for the whole sector, which ends up with an offer with homogeneously low quality.

The objective of this paper is to report our experience in designing a blockchain-based
tracking system for the craft beer supply chain. Since craft beer sector is very fragmented,
approaches that can be applied in more consolidated sectors might fail. For example, we cannot
ask small breweries an investment to host a node of a dedicated private blockchain. Our analysis
was performed with the collaboration of Yhop [39], an Italian startup company that aims to
provide tools to improve visibility and product quality awareness for all the actors in the craft
beer supply chain, in Italy. The challenges we faced in our work were mostly related to costs.
Besides not being able to convince small companies to host nodes, it is equally unaffordable
for them to pay the high fees that a common public blockchain may have [31]. Our solution is
based on the EOSIO public blockchain. A blockchain that, under certain conditions, can greatly
reduce usage costs, and also charge them on a subject that is different from the transaction
submitter. Our design is able to leverage EOSIO peculiar features to provide a solution that is
affordable for the craft beer sector. We think that the same approach might be adopted in other
fragmented sectors, like in the sectors of automotive maintenance, baked food production, or
software production.

In Section 2, we present some definitions about the supply chain of craft beer and its problems.
In Section 3, we provide the current state of the art involved in our scenario, in particular, in
Section 3.1 we show the main approaches for the craft beer market in Italy and in Section 3.2
we provide some information about the adoptions of the blockchain technology for the supply
chain. In Section 4, we highlight our objectives to improve the tracking system. In Section 5,
we discuss the threat model we face. In Section 6, we present our solution supported by cost
analysis. Finally, in Section 7, we provide some conclusions and discuss some future works.
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2. The Supply Chain of Craft Beer

In this section, we describe the structure of the supply chain of craft beer with information
about involved stakeholders and some of its problems that are relevant for this paper.

Like all products in today’s world, beer is driven by new trends. Consumer behavior and
pressure, as well as industry consolidation and restructuring, the growth of third-party services
providers, and technological developments are also changing the beer supply chain. However,
for the sake of simplicity, we can generalize and say that the craft beer supply chain consists of
four main stakeholders.

Growers. The chain start from the growers of raw materials (e.g., hop, malt and yeast). In
Italy, it is estimated about 100 hectares [1] cultivated with hops and 2 malt houses [5].

Breweries. The raw materials are then used in the breweries. Currently, about 1600 small
breweries operates in Italy [28]. Yhop offer services to about 300 of them. Depending on
their size, each of them can produce from about 40 to 150 batches each year.

Pubs. All these batches, are then distributed to the dense network of pubs throughout the
country.

Beerlovers. The last step of the supply chain are represented by the final consumers, i.e., the
beerlovers.

The craft beer market is fragmented [23] and it cannot be otherwise. In fact, its very definition
implies that a multitude of small breweries exists, with scarcely automated production processes.
Further, consumers of craft beer are attracted by the variety of offer, which cannot be obtained
by big producers with large scale industrial processes.

Any market is more or less affected by an asymmetry of information between the con-
sumer/buyer and the producer/seller. This was the topic of very well-known studies in eco-
nomics (see for example [2]). Those studies pointed out that when the buyers do not have
enough information to perform their choice also the producer is not motivated to propose high
quality offers. For big producers, this is mitigated by consumers that can gather and exchange
their opinions. This is especially true if products do not change over time and consumers have
some way to let know their opinion to other consumers (and are motivated to do that). In the
case of highly fragmented markets, as it is the case for the craft beer market, each player is very
small and the number of products available to the consumer is very large. Further, products
may change frequently due to the enthusiast experimental attitude of each brewer or depending
on the availability of ingredients on the market. For this reason, improving the visibility that a
consumer may have upfront over the quality of the production is important in the craft beer
market.

The lack of accurate information along the chain also spreads from the consumers to the
producers. This can cause the so-called bullwhip effect. The bullwhip effect is a distribution
channel event that refers to shifts in inventory levels due to changes in consumers demand.
Demand expectations succumb to supply chain inefficiencies as you go up the supply chain. For
example, consumer forecast demand is 25 units, a retail order that includes safety stock becomes
40 units, wholesale order 60 units to gain wholesale purchasing advantages, and manufacturers’
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raw material order is 70 units to reduce costs. The bullwhip effect in this scenario creates 45
units more than expected consumer demand. By increasing producer visibility across the entire
chain, it can greatly reduce waste, again benefiting the quality of the final product.

Currently, the craft beer production and distribution chain has 3 main limitations.

Inefficiency. Breweries have no tools to manage the production of beer: it can happen that
they produce less beer that what is requested or vice versa. In addition, they have no data
about the consumption of their products and there are no tools to monitor what beer is
preferred by consumers. This may cause the above mentioned bullwhip effect. On the
other side, distributors have no tools to manage their inventory; this leads to the risk to
lose some barrels due to their expiration.

No guarantees of freshness. Breweries have no possibility to track their barrel. Once they
leave the barrels to the distributors, they do not know when and where it is going to be
delivered to the pubs/shops. They have no idea how long the beer is going to remain
in stock to the distributors and have no guarantee of freshness maintenance during the
distribution process.

No product traceability. Currently, there are no systems to track beers’ production. Pubs/shops
receive the products from the distributors, but they have no information about some
important production parameters, such as when it has been produced and how long it
stayed to the distributor before its delivery.

By informal discussion with craft beer market operators, supply chain tracking may be
perceived as a significant value added.

3. State of the Art

3.1. Tracking in the Craft Beer Sector in Italy

At least part of the breweries feel that the perceived quality of the product may be improved
by adopting some supply chain tracking. This is a very common motivation for tracking
and especially for tracking by using blockchain (see Section 3.2). In Italy, some experiences
are already started from big and small players. Currently, a big Italian player [24] has an
experimental project to track the national origin of malt using the Ethereum [42] blockchain. A
small brewery [22] is focusing on a centralized tracking of its production batches. Users can
access data about the batches on the web by specifying the batch number or by scanning a
QR-code on the beer.

For the craft beer sector, Yhop [39] has set up a form of centralized supply chain tracking.
It involves breweries and pubs that have signed up with Yhop and allows them to provide
information for the beerlovers through the Yhop mobile app. Breweries can provide information
about batch productions. Pubs can provide information about what beers they offer and what
beers they currently have attached to the taps. Consumers can express their appreciation for
the products by highlighting their consumption habits.

Institutions are taking steps to build the Italian brewing chain. The sudden development of
this sector made it necessary to fill a regulatory gap in the definition of beer and craft brewery.
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With Art. 35 of Law no. 154 of 28 July 2016, a legislative definition of craft beer was provided,
thus integrating Law no. 1354 of 16 August 1962, identified as “the product obtained from
alcoholic fermentation with Saccharomyces carlbergensins or Saccharomyces Cerevisiae strains
of a must prepared with malt, whether or not roasted, of barley or wheat or their mixtures and
water, amaricated with hops or its derivatives or with both ". Art. 35 defines craft beer “beer
produced by small independent breweries and not subjected, during the production phase, to
pasteurization and microfiltration processes".

The purpose of the request for Italian raw materials, especially from craft beer producers, is to
promote a path that leads to the production of 100% Made in Italy beer, which for the consumer
is synonymous with quality, transparency and identity bond with the product. Furthermore,
compared to what happens for industrial beer, the consumer of craft products wants to exper-
iment with new aromas, new taste experiences and textures [6]. At the same time, it wishes
to rediscover the authenticity of raw materials and establish a link with the territory [37, 4].
Therefore, the area of origin of the product has an identity value and a sense of belonging.
This translates into the opening of market niches as many as the preferences expressed by the
consumer. Craft beer, with its highly differentiated raw materials, lends itself well to this new
trend.

3.2. Blockchain for Supply Chains

Tracking in supply chains is one of the most widespread applications of blockchains. Several
systematic literature reviews exist [10, 12, 13, 26, 33]. Further, a number of research works also
address the specific problem of food supply chain, see for example [9, 11, 25, 34, 38, 40, 41].
Most of the approaches adopt permissioned blockchains. However, this implies to have

• a number of entities that are willing to provide resources to operate the nodes of the
blockchain, and

• a central authority (likely a consortium) that recognizes those subjects as entitled to do
that.

This is possible and convenient only in structured ecosystems where some sort of consortium
is already present or when the number of involved subjects is small and can coordinate for
this purpose. In certain sectors, only a handful of big players can meet the above conditions
which may lead to a quite centralized tracking. On the other hand, solutions that rely on
public blockchains (like [24]) have to face cost problems. In fact, public blockchain costs
may unexpectedly rise due to the adoption of the same blockchain by other applications or
communities for reasons that are completely unrelated with the supply chain and are very
hard to predict. This is a typical issue when adopting a public blockchain to support a specific
business or task. An analysis of these and other problems concerning the interplay of technical
and economical aspects can be found in [31].

Further, transaction costs are usually charged on the actor who send the transaction (like
in Ethereum [42]). This might be economically inconvenient, since the cost of tracking might
be too high, discouraging the supply chain actors to use the tracking service. It might also
be unpractical since each actor have to keep an account on the blockchain for the tracking
expenses and periodically replenish it.
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Some newer unpermissioned blockchains try to lower the fee costs with diverse approaches.
Nano [29] is feeless and assumes that nodes operators have other motivation besides revenues
for operating the node. However, Nano does not support smart contracts. IOTA [32] asks
the users to participate in transaction confirmation. EOSIO [16] adopts an innovative cost
model combined with a staking approach, based on paying only for the maximum amount of
resources that can be used in a period of time (i.e., memory/RAM, CPU and network), instead of
charging for each transaction. It supports smart contracts and adds the possibility of charging
to the contract creator the costs of the resources used by contract-related transactions. Other
approaches achieve low fees for most transactions (e.g., NEO [30]).

It is worth noting that transforming supply contracts into smart contracts could be a particu-
larly effective remedy to problems such as the above mentioned bullwhip effect. Smart contracts
targeted to optimize supply chains are dealt with in [7, 8].

4. Objectives: from Centralized to Blockchan-Based

Yhop [39] operates a centralized platform to connect all stakeholders in the craft beer supply
chain, enable them to exchange information efficiently and create an active community around
the theme of craft beer. The Yhop platform is the starting point of the solution presented in this
paper.

Centralized tracking has some drawbacks. The first and obvious one is that centralized
tracking may be considered not secure (see Section 5). However, this may not be the primary
concern for the beer sector. Nevertheless, any centralized tracker is responsible for the data
that it shows, which may not be desirable for any organization proposing or managing a supply
chain tracking system. Currently, Yhop can centrally track craft beer supply chain starting from
breweries. A brewery kegs the product and makes it available for distribution or directly to the
sales premises to the public. Throughout the supply chain, the information related to the keg
up to the consumption of the beer can be recorded. The objective of the project presented in
this paper is to use the blockchain to certify this information by cryptographic means and make
the actors involved in the process responsible for it. Once the supply chain has been traced in
certified form, it will be possible to trace the authenticity of the information presented for each
barrel sold at any time and the correctness of the time elapsed between the various stages from
production to sale. In addition to giving a guarantee on the authenticity and freshness of the
product, this model also guarantees consumers from fraud on the originality of the product
itself with respect to counterfeits.

Our first objective is to support blockchain-based tracking in the craft beer supply chain with
a reasonable level of security and decentralization. Since the context is made of a large number
of small players, our intent is to make tracking adoption as easy and economically convenient
as possible. Breweries, beerlovers, and pubs should be able to use the system transparently
without the need to explicitly create or manage any blockchain account and without the need
to buy cryptocurrency to pay for transactions. At the same time, it should be possible to get
enough details to be sure of the integrity of the tracked information, even if this is expected to
be asked by a minority of technically-skilled users.

Currently, we intend to focus on the breweries production tracking, but the design should be
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compatible with a future involvement of pubs and raw material producers (primarily malt and
hop). We also intend to make technology choices that may be used for supporting other services
involving tokens targeted to that specific supply chain (e.g., discount coupons or complementary
currency).

Our solution should be managed by a subject that decides the architecture, develops the soft-
ware, deploys it, enrols users, and supports them so that they can easily perform all operations.
We call it the managing operator. In our case, the managing operator is Yhop. Currently, the
only kind of users involved are breweries, entitled to enter tracking records, and beerlovers,
entitled to query tracking records. While enrolment is needed for breweries (and in the future
also pubs and raw material producers), beerlovers do not need enrolment, since tracking records
are public.

5. Security Goals

We assume the integrity of tracking data to be paramount: the beerlover should be able to
get a cryptographic proof that guarantees that data comes directly from the breweries, for the
batch that (s)he is interested in. In fact, in this context, data corruption may lead to a serious
reputational damage or improper competitive advantage. For this reason, it is important for the
data to be cryptographically linked with the brewery so that the brewery is liable for it, both
legally and ethically.

The managing operator should not be involved in the security aspects related to data integrity.
In this sense, all the users should consider the managing operator as untrusted and the system
should allow any user to check the integrity of tracking data at any time. Further, we assume
users do not trust any single subject in the supply chain. However, they can trust subjects that
are not involved in the supply chain and unlikely to collude with any subject involved in a
supply chain, like the nodes of a public blockchain.

Note that, although breweries are legally responsible for stored data, we can not ignore the
possibility of a DoS attack. Even non-malicious breweries may inadvertently deplete resources
by mistake, for example by re-submitting the same record several times. To prevent this type of
attack, we prefer the submission of transactions for the tracking records to be performed by
the managing operator (see Section 6), screening our system by misbehaving breweries. Note
that, the managing operator still cannot tamper the tracking records, since they are signed by
the corresponding brewery, and there is no advantage for the managing operator to stop the
submission of tracking records. A possible evolution of the system might include a protocol in
which the managing operator commits itself to submit one tracking record at least once, so that
a brewery can demonstrate potential malicious behavior by the managing operator. However,
this is not dealt with in this paper.

6. A Practical Design

To meet the goals stated in Section 4, we decided to opt for a public blockchain. This allows us
to avoid the problem to deploy private nodes. In fact, as described in Section 2, it would be very
hard to motivate several small breweries to host nodes. However, as cited in Section 3.2, this
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choice has some drawbacks. In particular, the costs of a public blockchain are hard to control
and may depend on the load of the system. We opted for the EOSIO blockchain [16] for its
peculiar cost and charging model.

6.1. EOSIO Basics

EOSIO (with native token EOS) was started in 2018 by a company named block.one. Its objectives
are to provide a platform supporting the development of efficient and cheap-to-execute smart
contracts. While it is mostly famous for its very short block time (0.5 seconds), for our application,
the most interesting feature is the transaction payment and accounting models. Users put at
stake a certain amount of EOS tokens to reserve CPU and NET resources for the execution of
transactions, comprising calls to smart contracts. EOSIO automatically replenish the available
resources favoring accounts showing lower frequency of transactions [21]. The available resrouce
(CPU or NET) is the resource still available for consumption supposing no replenish is going
to be performed. Persistent memory (called RAM in EOSIO jargon) used by smart contracts
have to be bought on a free market but can be sold when not needed. Essentially, resources for
EOSIO usage follow the CAPEX model. This means that if smart contract calls are performed at
a constant frequency and if smart contracts are designed so that their storage consumption is
bounded, the use of EOSIO has no direct operational costs.

Further, in EOSIO, more users (i.e., public keys) can be associated with an account where
each user can be assigned specific permissions. Since resources are bound to the account, all
users consume resources of that account. The managing operator is also a special user of that
account, which can control the available amount of resources for running the smart contract
and provision more of them when needed, i.e., in case tracking activity increases.

The permission system of EOSIO works as follows (see Figure 1). We limit this description
to what is strictly needed in this paper. Further details can be found in [14]. Each account is
associated with many permissions. Each permission is associated with many public keys, which
in EOSIO jargon are called authorities. One smart contract method is called action in EOSIO
jargon and it is associated with one permission. When an action 𝐴 is associated to a permission
𝑃 , only an authority 𝑢 associated with 𝑃 can call 𝐴. EOSIO natively performs this check by
verifying that the transaction containing the call to 𝐴 is signed by the public key of 𝑢. This
check is performed before charging available resources. Clearly, a smart contract can perform
further checks, but their execution impacts on available resources.

6.2. The Data to Be Tracked

Essentially, our tracking system allows a number of breweries to store in the RAM of a smart
contract in the public EOSIO blockchain, a record for each batch of beer they produced. First,
we note that we can delete from RAM records for batches that are too old, since there is no
point in tracking batches beyond their expiration date. Hence, in a stationary condition, where
the number of breweries and their batch production rate is constant over time, the amount of
storage needed in blockchain is bounded. To further reduce storage, our tracking records are
the 5-tuple ⟨𝐵, 𝑏, ℎ𝑏, 𝑑𝑒, 𝑡𝑠⟩, where 𝐵 is the identifier of the brewery that has submitted the
tracking record, 𝑏 is the identifier of the batch to track among the batches produced by 𝐵, ℎ𝑏 is
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Figure 1: EOSIO Permissions model.

a cryptographic hash of the record describing the batch, 𝑑𝑒 is the expiration date of the batch,
𝑡𝑠 is the timestamp of the submission of this tracking record. As breweries identifiers, we can
choose its public key or we can assign smaller integer numbers to them. Each batch is described
by a batch description, which is a json-represented record containing all data specified by the
brewery. Yhop already collects batch description and stores them in its systems. The hash ℎ𝑏
should be a hash of the batch description. Unfortunately, a json representation is not unique.
For this reason, a canonicalization scheme, like the one described in [35], should be adopted
before applying the cryptographic hash function.

6.3. The Architecture

The architecture is shown in Figures 2 and 3. Since the only subject that have to pay for resource
consumption is the managing operator, breweries have not specific accounts. They are just
represented by their public keys that are associated with the tracking permission. The active
permission is the default EOSIO permission which is dedicated to the managing operator.

The smart contract has an action add, which can be called by breweries to add tracking records.
This call could be in principle be performed by clients used by breweries by directly submitting
the corresponding transaction to the blockchain nodes. However, even non malicious users may
inadvertently deplete resources by mistake, for example, by repeatedly clicking on the submit
button and hence re-submitting the same record multiple times. To filter out these kinds of
mistakes, we prefer to make the managing operator servers to actually perform the submission
of the transaction. We call this service tracking support, also denoted 𝑆 in the following. Note
that, since the transaction is signed by a brewery, the tracking support service cannot modify
it. In principle, the managing operator can block the submission, but this is not in its interest
unless it is a repeated submission. The tracking support service also performs further checks to
be sure that submitted tracking records are consistent with the corresponding batch description,
in particular regarding expiration date and hash.

The smart contract stores tracking records in a so-called kv-table [17], whose size is accounted
as occupied RAM. In EOSIO, a kv-table is made of rows indexed by a key. A kv-table belongs to
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a smart contract and can be queried by an off-chain client using standard node REST API.

6.4. Lifecycle of a Tracking Record Submission

The steps to submit a tracking record for a batch into our blockchain-based system are the
following. Please refer to Figure 3.

1 The brewery owner (whose brewery has ID 𝐵) has a batch description for a (new) batch
(with ID 𝑏).

2 The Brewery Client 𝐶 represents the batch description in a canonized json and send it to
off-chain system for storage.

3 𝐶 obtains a cryptographic hash ℎ𝑏 from the canonized json.

4 𝐶 creates the transaction 𝑡𝑥 for the call of the add action.

5 𝐶 signs the transaction 𝑡𝑥 with the secret key 𝑠𝑘𝐵 of the brewery and send it to the
Tracking Support Service 𝑆.

6 𝑆 stores signed 𝑡𝑥.

7 𝑆 checks that parameters in 𝑡𝑥 are coherent with the corresponding batch description
already stored in the off-chain systems and that this request was not already processing
(case of repeated unintended submissions).
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8 𝑆 submits 𝑡𝑥 to any public EOSIO nodes.

9 𝑆 checks 𝑡𝑥 for confirmation.

10 𝑆 provides the user with feedback on the result of the add action. This is made by any
asynchronous communication mean (e.g., by email).
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6.5. Cost Estimation

We performed some preliminary experiments to estimate the resources needed to run the system
and to devise a methodology to make this estimation when the final version of smart contract
will be ready for production.

We created a very simple smart contract that have a multi-index kv-table, and an action insert
to insert a preliminary form of tracking records in it. For this experiment, our tracking record
has the following structure ⟨𝑖𝑑1, 𝑖𝑑2, ℎ⟩, where 𝑖𝑑1 is an integer, 𝑖𝑑2 is a 7 character string, and
ℎ is a 32 character string. In our experiment, each insertion takes 156 bytes of RAM and 300𝜇𝑠
of CPU to execute the insert action.

Following the number given in Section 2, we suppose to have 300 breweries managed by
Yhop, each inserting at most 150 tracking records per year, which gives a maximum frequency
of 45,000 insertions of tracking records per year. Since the expiration time of a batch of beer
is 1 year, and we do not need to track expired batches, 45,000 is also a good upper bound of
the maximum number of tracking records that our smart contract will need to store to support
tracking for the current breweries coverage of Yhop.

We estimate storage costs as follows. The total storage consumption (RAM) is of about
7020Kbytes. At the time of writing the RAM costs about 0.029 EOS per Kbyte [19], for a total
cost of 203 EOS, currently corresponding to about 400 euro. Note that these are CAPEX.

NET and CPU resources are managed in a similar way in EOSIO. In the following, we focus
on the CPU cost (NET cost turns out to be negligible). As we describe in the following, the
CAPEX model is viable form a theoretic point of view but very expensive in practice and for the
CPU resource we need to choose an OPEX approach supported by the EOS powerup tool [15].

EOSIO keeps an amount of available CPU for each account that is regularly replenished. The
description of the replenishing algorithm given in the EOSIO documentation [21] is not very
clear. However, we checked it with the code [18] and we observed that it takes 24 hours (called
window) to fully replenish the available CPU (and NET) resources. Following what we stated
above, we assume 45,000 tracking records per year and 200 working days per year. Further,
assuming tracking transactions to be homogeneously distributed, we obtain 45, 000/200 = 225
transactions per day. Assuming tracking activity to be uniformly distributed within 10 hours
of work for each day, we obtain a transaction every about 2.6 minutes, on average and a rest
period of 14 hours. The transaction frequency during working hours is very high, so we cannot
expect any notable replenishment there, and the rest hours are not enough for completely
replenishing the CPU (or NET) resource. Further, the replenish rate is not dependent on the
staked amount of resources. Hence, as far as we can tell, there is no way to take advantage of
the EOSIO staking model to support our transaction frequency with a single account. To work
around this oddity, we might tweak the architecture shown in Section 6, so that transactions are
originated from three distinct accounts, which are equally configured regarding permissions
and authorities. We might use each of them to send transactions for more than 12 hours (e.g.,
13 hours) in a round robin fashion. In this way, one account can completely rest for more than
24 hours, to be completely replenished, while the other two work. This makes the CAPEX
approach theoretically viable also for CPU and NET resources. In practice, each of the three
accounts should stake CPU time to execute 225 transactions, corresponding totally to about
200ms of CPU currently costing about 80,000 euros. Even if these are capital expenses, this is
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clearly a very high cost.
Recently EOSIO has introduced a way to rent unused staked resources called powerup

model [15]. Form the point of view of the managing operator, the powerup model is essentially
a way to buy resources under the traditional OPEX model, which is currently very cheap (0.0002
EOS for each millisecond of CPU [20]). In this model, 225 transactions per day can be executed
by spending about 0.10 EUR (at current exchange rates), for a cost of less than 40 euro per
year. In conclusion, for the CPU resource the OPEX model using powerup is definitely more
advisable. The same approach can be adopted for the NET resource, with even lower costs.

7. Conclusions and Future Work

In this paper, we show how it is possible to design a tracking system based on the EOSIO
blockchain that is affordable for the fragmented sector of the Italian craft beer.

To assess the truthfulness and integrity of the tracking information, and to give responsibility
to the actors that created the data, the blockchain is used to store the hashes of the records
that describe production batches. The batch descriptions are stored in a centralized way on the
servers of the managing operator (i.e., Yhop in our use case). We give a cost estimation of our
solution and we show that, at current prices, mixing CAPEX and OPEX cost models is the most
convenient approach.

As a future work, we plan to realize the system and to perform a proof-of-concept in col-
laboration with Yhop and with more than twenty breweries that already have declared their
availability to participate. We plan to extend the functionalities of the system to include pubs
and growers. We also intend to study how to use blockchain in the same context to support
discount coupons or a complementary currency.
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