
Lezione 6
Bioinformatica

Mauro Ceccanti‡ e Alberto Paoluzzi†

†Dip. Informatica e Automazione – Università “Roma Tre”
‡Dip. Medicina Clinica – Università “La Sapienza”

Lab 01: Numerical Python
Installing NumPy
Numerical Python

Quick Tour
The Basics
NumPy for Matlab Users
Introduction to geometric module Pytrsxge

Contents

Lab 01: Numerical Python
Installing NumPy
Numerical Python

Quick Tour
The Basics
NumPy for Matlab Users
Introduction to geometric module Pytrsxge

Installing NumPy
As with a lot of open-source software, the best way to fully exploit and contribute to
Scipy is to compile it from source. This will guarantee you the latest stable releases and
a better support from mailing-lists. However, this can be challenging, and the second
best way to run Scipy is to use binaries

Binaries for Windows and MacOSX available !

NumPy: choose version 1.3.0
Official releases are on SourceForge download site for numpy

SciPy: choose version 0.7.1
Official releases are on SourceForge download site for scipy

Contents

Lab 01: Numerical Python
Installing NumPy
Numerical Python

Quick Tour
The Basics
NumPy for Matlab Users
Introduction to geometric module Pytrsxge

Best way to learn
Browse within the Numpy Example List, with added documentation from doc strings
and arguments specification for methods and functions of Numpy

Numpy Example List With Doc

EXAMPLE:
numpy.sin()

ALSO:
Tentative NumPy Tutorial

Quick Tour

� NumPy is a Python library for working with
multidimensional arrays

� The main data type is an array

� An array is a set of elements, all of the same type, indexed
by a vector of nonnegative integers.

Quick Tour
Arrays can be created in different ways:

>>> from numpy import *

>>> a = array([10, 20, 30, 40])

create an array out of a list

>>> a

array([10, 20, 30, 40])

>>> b = arange(4)

create an array of 4 integers, from 0 to 3

>>> b

array([0, 1, 2, 3])

>>> c = linspace(-pi,pi,3)

create an array of 3 evenly spaced samples from -pi to

pi

>>> c

array([-3.14159265, 0. , 3.14159265])

Quick Tour
New arrays can be obtained by operating with existing arrays:

>>> d = a+b**2 # elementwise operations

>>> d

array([10, 21, 34, 49])

Quick Tour
Arrays may have more than one dimension:

>>> x = ones((3,4))

>>> x

array([[1., 1., 1., 1.],

[1., 1., 1., 1.],

[1., 1., 1., 1.]])

>>> x.shape # a tuple with the dimensions

(3, 4)

>>> y = zeros((3,4))

>>> y

array([[0., 0., 0., 0.],

[0., 0., 0., 0.],

[0., 0., 0., 0.]])

EXERCISE: generate the n × n identity matrix in 3 different
ways

Quick Tour
and you can change the dimensions of existing arrays:

>>> y = arange(12)

>>> y

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

>>> y.shape = 3,4

does not modify the total number of elements

>>> y

array([[0, 1, 2, 3],

[4, 5, 6, 7],

[8, 9, 10, 11]])

REMARK: The evaluation of a statement does not produce an output,
whereas the evaluation of an expression returns its value

Quick Tour
It is possible to operate with arrays of different dimensions as long as they fit well
(broadcasting):

>>> 3*a # multiply each element of a by 3

array([30, 60, 90, 120])

>>> a+y # sum a to each row of y

array([[10, 21, 32, 43],

[14, 25, 36, 47],

[18, 29, 40, 51]])

Quick Tour
Similar to Python lists, arrays can be indexed, sliced and iterated over.

>>> a[2:4] = -7,-3

modify last two elements of a

>>> for i in a: # iterate over a

... print i

10

20

-7

-3

Quick Tour
When indexing more than one dimension, indices are separated by commas:

>>> x[1,2] = 20

>>> x[1,:]

x’s second row

array([1, 1, 20, 1])

>>> x[0] = a

change first row of x

>>> x

array([[10, 20, -7, -3],

[1, 1, 20, 1],

[1, 1, 1, 1]])

REMARK: Indexing and slicing allow access to array elements both in
reading and in writing mode

Quick Tour
Arrays can be created in different ways:

>>> from numpy import *

>>> a = array([10, 20, 30, 40])

create an array out of a list

>>> a

array([10, 20, 30, 40])

>>> b = arange(4)

create an array of 4 integers, from 0 to 3

>>> b

array([0, 1, 2, 3])

>>> c = linspace(-pi,pi,3)

create an array of 3 evenly spaced samples from −π to π

>>> c

array([-3.14159265, 0. , 3.14159265])

Contents

Lab 01: Numerical Python
Installing NumPy
Numerical Python

Quick Tour
The Basics
NumPy for Matlab Users
Introduction to geometric module Pytrsxge

The multidimensional array class is called ndarray

Note that this is not the same as the Standard Python Library class array, which is only
for one-dimensional arrays

The more important attributes of an ndarray object are:

ndarray.ndim the number of axes (dimensions) of the array. In the Python
world, the number of dimensions is often referred to as rank.

ndarray.shape the dimensions of the array. This is a tuple of integers
indicating the size of the array in each dimension. For a
matrix with n rows and m columns, shape will be (n,m). The
length of the shape tuple is therefore the rank, or number of
dimensions, ndim.

ndarray.size the total number of elements of the array. This is equal to the
product of the elements of shape.

The multidimensional array class is called ndarray

ndarray.dtype an object describing the type of the elements in the array.
One can create or specify dtype’s using standard Python
types. NumPy provides a bunch of them, for example: bool_,
character, int_, int8, int16, int32, int64, float_, float8, float16,
float32, float64, complex_, complex64, object_.

ndarray.itemsize the size in bytes of each element of the array. For example,
an array of elements of type float64 has itemsize 8 (=64/8),
while one of type complex32 has itemsize 4 (=32/8). It is
equivalent to ndarray.dtype.itemsize.

ndarray.data the buffer containing the actual elements of the array.
Normally, we won’t need to use this attribute because we will
access to the elements in an array using indexing facilities.

An example
We define the following array:

>>> a = arange(10).reshape(2,5)

>>> a

array([[0, 1, 2, 3, 4],

[5, 6, 7, 8, 9]])

We have just created an array object with a label a attached to it. The array a
has several attributes –or properties. In Python, attributes of a specific object
are denoted name_object.attribute. In our case:

� a.shape is (2,5)

� a.ndim is 2 (which is the length of a.shape)

� a.size is 10

� a.dtype.name is int32

� a.itemsize is 4, which means that an int32 takes 4 bytes in
memory.

Python Short Course
Download the “Lecture2: Numerical Python”, by Richard P. Muller at Caltech

Lecture2: Numerical Python

EXERCISE

Try to execute several simple examples (written in May, 2000)
and adapt them to current version of Numpy

Contents

Lab 01: Numerical Python
Installing NumPy
Numerical Python

Quick Tour
The Basics
NumPy for Matlab Users
Introduction to geometric module Pytrsxge

NumPy for Matlab Users
Look carefully at the first sections of the linked web page

NumPy for Matlab Users

Contents

Lab 01: Numerical Python
Installing NumPy
Numerical Python

Quick Tour
The Basics
NumPy for Matlab Users
Introduction to geometric module Pytrsxge

Pytrsxge: geometric kernel of Plasm language
HPC (hierarchical polyhedral complex) is the name of the geometric type

from math import *

from pytrsxge import *

mkpol (MaKe POLyhedron) in 2D

Plasm.View(Plasm.mkpol(2,[0,0, 1,0 ,1,1, 0,1],

[[0,1,2],[2,0,3]]))

mkpol in 3D

Plasm.View(Plasm.mkpol(3,[0,0,0,1,0,0,1,1,0,0,1,0,

0,0,1,1,0,1,1,1,1,0,1,1],[[0,1,2,3,4,5,6,7]]))

example of structure

args = [Plasm.cube(0), Plasm.translate(Plasm.cube(1),

3,1,1), Plasm.translate(Plasm.cube(2),3,1,2), Plasm.

translate(Plasm.cube(3),3,1,3)]

Plasm.View(Plasm.Struct(args))

Introduction to Pytrsxge package
It is the Python porting of the geometric kernel xge of the Plasm Language

apply a transformation matrix (homogeneous components

in first row/col)

vmat=Matf([1,0,0,0, 0,1,0,1, 0,0,1,1, 0,0,0,1])

Plasm.View(Plasm.transform(Plasm.cube(3),vmat,vmat.

invert()))

scale an hpc

Plasm.View(Plasm.scale(Plasm.cube(3),Vecf(0.0,

1.0,2.0,3.0)))

translate an hpc

Plasm.View(Plasm.translate(Plasm.cube(3),Vecf(0.0,

1.0,2.0,3.0)))

rotate an hpc

Plasm.View(Plasm.Struct([Plasm.cube(3), Plasm.rotate(

Plasm.cube(3), 3,1,2,pi)]))

Graph of the sin() function

from numpy import *

from pytrsxge import *

c = linspace(-pi,pi,16)

points=array(zip(c,sin(c)))

def polyline (points):

n,d = points.shape

points.shape = n*d

return Plasm.mkpol(d,

points,zip(range(n

-1),range(1,n)))

Plasm.View(polyline(points))

>>> print points

[[-3.14159265e+00 -1.22464680e-16]

[-2.72271363e+00 -4.06736643e-01]

[-2.30383461e+00 -7.43144825e-01]

[-1.88495559e+00 -9.51056516e-01]

[-1.46607657e+00 -9.94521895e-01]

[-1.04719755e+00 -8.66025404e-01]

[-6.28318531e-01 -5.87785252e-01]

[-2.09439510e-01 -2.07911691e-01]

[2.09439510e-01 2.07911691e-01]

[6.28318531e-01 5.87785252e-01]

[1.04719755e+00 8.66025404e-01]

[1.46607657e+00 9.94521895e-01]

[1.88495559e+00 9.51056516e-01]

[2.30383461e+00 7.43144825e-01]

[2.72271363e+00 4.06736643e-01]

[3.14159265e+00 1.22464680e-16]]

>>> points.size

32

Graph of the sin() function
REMARK: every graphics object is a linear approximation of the smooth shape ...

from numpy import *

from pytrsxge import *

Plasm.View(polyline(points))

The pytrsxge package is the Python porting of the Plasm language

Pentose and aromatic shape
REMARK: every graphics object is a linear approximation of the smooth shape ...

In organic chemistry, the structures of some rings of atoms are unexpectedly stable. Aromaticity is a chemical property in which a
conjugated ring of unsaturated bonds, lone pairs, or empty orbitals exhibit a stabilization stronger than would be expected by the
stabilization of conjugation alone. It can also be considered a manifestation of cyclic delocalization and of resonance. This is usually
considered to be because electrons are free to cycle around circular arrangements of atoms, which are alternately single- and
double-bonded to one another.
These bonds may be seen as a hybrid of a single bond and a double bond, each bond in the ring identical to every other. This
commonly-seen model of aromatic rings, namely the idea that benzene was formed from a six-membered carbon ring with alternating
single and double bonds (cyclohexatriene), was developed by Kekulé (see History section below). The model for benzene consists of
two resonance forms, which corresponds to the double and single bonds’ switching positions. Benzene is a more stable molecule
than would be expected without accounting for charge delocalization. (From Wikipedia)

Graph of the sin() function
REMARK: every graphics object is a linear approximation of the smooth shape ...

from numpy import *

from pytrsxge import *

circle

c = linspace(-pi,pi,6)

p = array(zip(cos(c), sin(c)))

Plasm.View(polyline(p))

pentagon with legs

a3 = map(polyline, map(array, zip(p, 1.5*p)))

Plasm.View(Plasm.Struct(a3 + [polyline(p)]))

hexagon with legs

c = linspace(-pi,pi,7)

p = array(zip(cos(c), sin(c)))

a3 = map(polyline, map(array, zip(p, 1.5*p)))

q = Plasm.Struct(a3 + [polyline(p)])

Plasm.View(q)

Parametric helix curve
The ‘pitch’ is the (constant) distance between (any) pair of closest points

from numpy import *

from pytrsxge import *

def helixpoints(radius,pitch,nturns):

c = linspace(0,2*pi*nturns,12*nturns)

return array(zip(cos(c),sin(c), c*(pitch

/(2*pi))))

def helix(radius,pitch,nturns):

return polyline(helixPoints(radius,pitch,

nturns))

Plasm.View(helix(1,1.5,6))

Doublehelix
A polyline is a rotated copy of the other

def doubleHelix(radius,pitch,nturns):

p = polyline(helixPoints(radius,pitch,

nturns))

q = Plasm.copy(p)

two_hpc = [p, Plasm.rotate(q, 3,1,2,pi)]

return Plasm.Struct(two_hpc)

Plasm.View(doubleHelix(1,2,4))

DNA structure
The ukpol function returns the vertices of its hpc argument

def dnaStructure(radius,pitch,nturns):

p = helixPoints(radius,pitch,nturns)

q = array(matrix(p) * matrix([[-1,0,0],

[0,-1,0], [0,0,1]]))

diameters = map(polyline, map(array, zip(p.

tolist(),q.tolist())))

return Plasm.Struct(diameters + [polyline(p

),polyline(q)])

Plasm.View(dnaStructure(1,2,4))

3D polylines
The backbone of the 2J5Y protein

