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-->a=-2*%pi;b=1;c=18*%pi;d=1;

-->sl=syslin('c',a,b,c,d);

-->bode(sl,.1,100);

-->s=poly(0,'s');

-->S1=s+2*%pi*(15+100*%i);

-->S2=s+2*%pi*(15-100*%i);

-->h1=1/real(S1*S2)

h1 =

1
-------------------------

2
403666.82 + 188.49556s + s

-->h1=syslin('c',h1);

-->bode(h1,10,1000,.01);

-->h2=ss2tf(sl);

-->bode(h1*h2,.1,1000,.01);
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Chapter 1

Description of the Basic Tools

1.1 Introduction

The purpose of this document is to illustrate the use of the Scilab software package in a signal
processing context. We have gathered a collection of signal processing algorithms which have been
implemented as Scilab functions.

This manual is in part a pedagogical tool concerning the study of signal processing and in part
a practical guide to using the signal processing tools available in Scilab. For those who are already
well versed in the study of signal processing the tutorial parts of the manual will be of less interest.

For each signal processing tool available in the signal processing toolbox there is a tutorial
section in the manual explaining the methodology behind the technique. This section is followed
by a section which describes the use of a function designed to accomplish the signal processing
described in the preceding sections. At this point the reader is encouraged to launch a Scilab
session and to consult the on-line help related to the function in order to get the precise and
complete description (syntax, description of its functionality, examples and related functions). This
section is in turn followed by an examples section demonstrating the use of the function. In general,
the example section illustrates more clearly than the syntax section how to use the di�erent modes
of the function.

In this manual the typewriter-face font is used to indicate either a function name or an
example dialogue which occurs in Scilab.

Each signal processing subject is illustrated by examples and �gures which were demonstrated
using Scilab. To further assist the user, there exists for each example and �gure an executable
�le which recreates the example or �gure. To execute an example or �gure one uses the following
Scilab command

-->exec('file.name')

which causes Scilab to execute all the Scilab commands contained in the �le called file.name.
To know what signal processing tools are available in Scilab one would type

-->disp(siglib)

which produces a list of all the signal processing functions available in the signal processing library.

1.2 Signals

For signal processing the �rst point to know is how to load and save signals or only small portions
of lengthy signals that are to be used or are to be generated by Scilab. Finally, the generation

1



2 CHAPTER 1. DESCRIPTION OF THE BASIC TOOLS

of synthetic (random) signals is an important tool in the development in implementation of signal
processing tools. This section addresses all of these topics.

1.2.1 Saving, Loading, Reading, and Writing Files

Signals and variables which have been processed or created in the Scilab environment can be saved
in �les written directly by Scilab. The syntax for the save primitive is

-->save(file_name[,var_list])

where file name is the �le to be written to and var list is the list of variables to be written. The
inverse to the operation save is accomplished by the primitive load which has the syntax

-->load(file_name[,var_list])

where the argument list is identical that used in save.

Although the commands save and load are convenient, one has much more control over the
transfer of data between �les and Scilab by using the commands read and write. These two
commands work similarly to the read and write commands found in Fortran. The syntax of these
two commands is as follows. The syntax for write is

-->write(file,x[,form])

The second argument, x, is a matrix of values which are to be written to the �le.

The syntax for read is

-->x=read(file,m,n[,form])

The arguments m and n are the row and column dimensions of the resulting data matrix x. and
form is again the format speci�cation statement.

In order to illustrate the use of the on-line help for reading this manual we give the result of
the Scilab command

-->help read

read(1) Scilab Function read(1)

NAME

read - matrices read

CALLING SEQUENCE

[x]=read(file-name,m,n,[format])

[x]=read(file-name,m,n,k,format)

PARAMETERS

file-name : string or integer (logical unit number)

m, n : integers (dimensions of the matrix x). Set m=-1 if you dont

know the numbers of rows, so the whole file is read.
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format : string (fortran format). If format='(a)' then read reads a vec-

tor of strings n must be equal to 1.

k : integer

DESCRIPTION

reads row after row the mxn matrix x (n=1 for character chain) in the file

file-name (string or integer).

Two examples for format are : (1x,e10.3,5x,3(f3.0)),(10x,a20) ( the default

value is *).

The type of the result will depend on the specified form. If form is

numeric (d,e,f,g) the matrix will be a scalar matrix and if form contains

the character a the matrix will be a matrix of character strings.

A direct access file can be used if using the parameter k which is is the

vector of record numbers to be read (one record per row), thus m must be

m=prod(size(k)).

To read on the keyboard use read(%io(1),...).

EXAMPLE

A=rand(3,5); write('foo',A);

B=read('foo',3,5)

B=read('foo',-1,5)

read(%io(1),1,1,'(a)') // waits for user's input

SEE ALSO

file, readb, write, %io, x_dialog

1.2.2 Simulation of Random Signals

The creation of synthetic signals can be accomplished using the Scilab function randwhich generates
random numbers. The user can generate a sequence of random numbers, a random matrix with the
uniform or the gaussian probability laws. A seed is possible to re-create the same pseudo-random
sequences.

Often it is of interest in signal processing to generate normally distributed random variables with
a certain mean and covariance structure. This can be accomplished by using the standard normal
random numbers generated by rand and subsequently modifying them by performing certain linear
numeric operations. For example, to obtain a random vector y which is distributed N(my,�y)
from a random vector x which is distributed standard normal (i.e. N(0,I)) one would perform the
following operation

y = �1=2
y x+my (1.1)

where �
1=2
y is the matrix square root of �y. A matrix square root can be obtained using the chol

primitive as follows



4 CHAPTER 1. DESCRIPTION OF THE BASIC TOOLS

-->//create normally distributed N(m,L) random vector y

-->m=[-2;1;10];

-->L=[3 2 1;2 3 2;1 2 3];

-->L2=chol(L);

-->rand('seed');

-->rand('normal');

-->x=rand(3,1)

x =

! - 0.7616491 !

! 1.4739762 !

! 0.8529775 !

-->y=L2'*x+m

y =

! - 3.3192149 !

! 2.0234185 !

! 12.161519 !

taking note that it is the transpose of the matrix obtained from chol that is used for the square
root of the desired covariance matrix. Sequences of random numbers following a speci�c normally
distributed probability law can also be obtained by �ltering. That is, a white standard normal
sequence of random numbers is passed through a linear �lter to obtain a normal sequence with a
speci�c spectrum. For a �lter which has a discrete Fourier transform H(w) the resulting �ltered
sequence will have a spectrum S(w) = jH(w)j2. More on �ltering is discussed in Section 1.8.

1.3 Polynomials and System Transfer Functions

Polynomials, matrix polynomials and transfer matrices are also de�ned and Scilab permits the
de�nition and manipulation of these objects in a natural, symbolic fashion. Polynomials are easily
created and manipulated. The poly primitive in Scilab can be used to specify the coeÆcients of a
polynomial or the roots of a polynomial.

A very useful companion to the poly primitive is the roots primitive. The roots of a polynomial
q are given by :

-->a=roots(q);

The following examples should clarify the use of the poly and roots primitives.

-->//illustrate the roots format of poly
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--> q1=poly([1 2],'x')

q1 =

2

2 - 3x + x

--> roots(q1)

ans =

! 1. !

! 2. !

-->//illustrate the coefficients format of poly

--> q2=poly([1 2],'x','c')

q2 =

1 + 2x

--> roots(q2)

ans =

- 0.5

-->//illustrate the characteristic polynomial feature

--> a=[1 2;3 4]

a =

! 1. 2. !

! 3. 4. !

--> q3=poly(a,'x')

q3 =

2

- 2 - 5x + x

--> roots(q3)

ans =

! - 0.3722813 !

! 5.3722813 !

Notice that the �rst polynomial q1 uses the 'roots' default and, consequently, the polynomial
takes the form (s� 1)(s� 2) = 2� 3s+ s2. The second polynomial q2 is de�ned by its coeÆcients
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given by the elements of the vector. Finally, the third polynomial q3 calculates the characteristic
polynomial of the matrix a which is by de�nition det(sI � a). Here the calculation of the roots

primitive yields the eigenvalues of the matrix a.

Scilab can manipulate polynomials in the same manner as other mathematical objects such
as scalars, vectors, and matrices. That is, polynomials can be added, subtracted, multiplied,
and divided by other polynomials. The following Scilab session illustrates operations between
polynomials

-->//illustrate some operations on polynomials

--> x=poly(0,'x')

x =

x

--> q1=3*x+1

q1 =

1 + 3x

--> q2=x**2-2*x+4

q2 =

2

4 - 2x + x

--> q2+q1

ans =

2

5 + x + x

--> q2-q1

ans =

2

3 - 5x + x

--> q2*q1

ans =

2 3

4 + 10x - 5x + 3x

--> q2/q1

ans =

2
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4 - 2x + x

----------

1 + 3x

--> q2./q1

ans =

2

4 - 2x + x

----------

1 + 3x

Notice that in the above session we started by de�ning a basic polynomial element x (which should
not be confused with the character string 'x' which represents the formal variable of the polyno-
mial). Another point which is very important in what is to follow is that division of polynomials
creates a rational polynomial which is represented by a list (see help list and help type in
Scilab).

A rational is represented by a list containing four elements. The �rst element takes the value
'r' indicating that this list represents a rational polynomial. The second and third elements of
the list are the numerator and denominator polynomials, respectively, of the rational. The �nal
element of the list is either [] or a character string (More on this subject is addressed later in this
chapter (see Section 1.3.2). The following dialogue illustrates the elements of a list representing a
rational polynomial.

-->//list elements for a rational polynomial

--> p=poly([1 2],'x')./poly([3 4 5],'x')

p =

2

2 - 3x + x

------------------

2 3

- 60 + 47x - 12x + x

--> p(1)

ans =

!r num den dt !

--> p(2)

ans =

2

2 - 3x + x
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--> p(3)

ans =

2 3

- 60 + 47x - 12x + x

--> p(4)

ans =

[]

1.3.1 Evaluation of Polynomials

A very important operation on polynomials is their evaluation at speci�c points. For example,
perhaps it is desired to know the value the polynomial x2 + 3x � 5 takes at the point x = 17:2.
Evaluation of polynomials is accomplished using the primitive freq. The syntax of freq is as
follows

-->pv=freq(num,den,v)

The argument v is a vector of values at which the evaluation is needed.
For signal processing purposes, the evaluation of frequency response of �lters and system transfer

functions is a common use of freq. For example, a discrete �lter can be evaluated on the unit circle
in the z-plane as follows

-->//demonstrate evaluation of discrete filter

-->//on the unit circle in the z-plane

--> h=[1:5,4:-1:1];

--> hz=poly(h,'z','c');

--> f=(0:.1:1);

--> hf=freq(hz,1,exp(%pi*%i*f));

--> hf'

ans =

! 25. !

! 6.3137515 - 19.431729i !

! - 8.472136 - 6.1553671i !

! - 1.9626105 + 1.42592i !

! 2.168D-19 + 8.132D-20i !

! 1. + 2.446D-16i !

! 0.4721360 - 1.4530851i !
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! - 0.5095254 - 0.3701919i !

! 5.421D-20i !

! 0.1583844 + 0.4874572i !

! 1. + 4.898D-16i !

Here, h is an FIR �lter of length 9 with a triangular impulse response. The transfer function of the
�lter is obtained by forming a polynomial which represents the z-transform of the �lter. This is
followed by evaluating the polynomial at the points exp(2�in) for n = 0; 1; : : : ; 10 which amounts
to evaluating the z-transform on the unit circle at ten equally spaced points in the range of angles
[0; �].

1.3.2 Representation of Transfer Functions

Signal processing makes use of rational polynomials to describe signal and system transfer functions.
These transfer functions can represent continuous time signals or systems or discrete time signals or
systems. Furthermore, discrete signals or systems can be related to continuous signals or systems
by sampling.

The function which processes a rational polynomial so that it can be represented as a transfer
function is called syslin:

-->sl=syslin(domain,num,den)

Another use for the function syslin for state-space descriptions of linear systems is described
in the following section.

1.4 State Space Representation

The classical state-space description of a continuous time linear system is :

_x(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

x(0) = x0

where A, B, C, and D are matrices and x0 is a vector and for a discrete time system takes the form

x(n+ 1) = Ax(n) +Bu(n)

y(n) = Cx(n) +Du(n)

x(0) = x0

State-space descriptions of systems in Scilab use the syslin function :

-->sl=syslin(domain,a,b,c [,d[,x0]])

The returned value of sl is a list where s=list('lss',a,b,c,d,x0,domain).
The value of having a symbolic object which represents a state-space description of a system

is that functions can be created which operate on the system. For example, one can combine
two systems in parallel or in cascade, transform them from state-space descriptions into transfer
function descriptions and vice versa, and obtain discretized versions of continuous time systems
and vice versa. The topics and others are discussed in the ensuing sections.
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1.5 Changing System Representation

Sometimes linear systems are described by their transfer function and sometimes by their state
equations. In the event where it is desirable to change the representation of a linear system there
exists two Scilab functions which are available for this task. The �rst function tf2ss converts
systems described by a transfer function to a system described by state space representation. The
second function ss2tf works in the opposite sense.

The syntax of tf2ss is as follows

-->sl=tf2ss(h)

An important detail is that the transfer function h must be of minimum phase. That is, the
denominator polynomial must be of equal or higher order than that of the numerator polynomial.

-->h=ss2tf(sl)

The following example illustrates the use of these two functions.

-->//Illustrate use of ss2tf and tf2ss

-->h1=iir(3,'lp','butt',[.3 0],[0 0])

h1 =

2 3

0.2569156 + 0.7707468z + 0.7707468z + 0.2569156z

------------------------------------------------

2 3

0.0562972 + 0.4217870z + 0.5772405z + z

-->h1=syslin('d',h1);

-->s1=tf2ss(h1)

s1 =

s1(1) (state-space system:)

!lss A B C D X0 dt !

s1(2) = A matrix =

! 0.0223076 0.5013809 0. !

! - 0.3345665 - 0.3797154 - 0.4502218 !

! 0.1124639 0.4085596 - 0.2198328 !

s1(3) = B matrix =

! - 2.3149238 !

! - 2.1451754 !

! 0.2047095 !
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s1(4) = C matrix =

! - 0.2688835 0. 0. !

s1(5) = D matrix =

0.2569156

s1(6) = X0 (initial state) =

! 0. !

! 0. !

! 0. !

s1(7) = Time domain =

d

Here the transfer function of a discrete IIR �lter is created using the function iir (see Section 4.2).
The fourth element of h1 is set using the function syslin and then using tf2ss the state-space
representation is obtained in list form.

1.6 Interconnecting systems

Linear systems created in the Scilab environment can be interconnected in cascade or in parallel.
There are four possible ways to interconnect systems illustrated in Figure 1.1. In the �gure the
symbols s1 and s2 represent two linear systems which could be represented in Scilab by transfer
function or state-space representations. For each of the four block diagrams in Figure 1.1 the
Scilab command which makes the illustrated interconnection is shown to the left of the diagram in
typewriter-face font format.

1.7 Discretizing Continuous Systems

A continuous-time linear system represented in Scilab by its state-space or transfer function de-
scription can be converted into a discrete-time state-space or transfer function representation by
using the function dscr.

Consider for example an input-output mapping which is given in state space form as:

(C)

�
_x(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(1.2)

From the variation of constants formula the value of the state x(t) can be calculated at any time t
as

x(t) = eAtx(0) +

Z t

0
eA(t��)Bu(�)d� (1.3)



12 CHAPTER 1. DESCRIPTION OF THE BASIC TOOLS
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-
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a

a

Figure 1.1: Block Diagrams of System Interconnections

Let h be a time step and consider an input u which is constant in intervals of length h. Then
associated with (1.2) is the following discrete time model obtained by using the variation of constants
formula in (1.3),

(D)

�
x(n+ 1) = Ahx(n) +Bhu(n)
y(n) = Chx(n) +Dhu(n)

(1.4)

where
Ah = exp(Ah)

Bh =

Z h

0
eA(h��)Bd�

Ch = C

Dh = D

Since the computation of a matrix exponent can be calculated using the Scilab primitive exp,
it is straightforward to implement these formulas, although the numerical calculations needed to
compute exp(Ah) are rather involved ([30]).

If we take

G =

8>:A B
0 0

9>;
where the dimensions of the zero matrices are chosen so that G is square then we obtain

exp(Gh) =

8>:Ah Bh

0 I

9>;
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When A is nonsingular we also have that

Bh = A�1(Ah � I)B:

This is exactly what the function dscr does to discretize a continuous-time linear system in state-
space form.

The function dscr can operate on system matrices, linear system descriptions in state-space
form, and linear system descriptions in transfer function form. The syntax using system matrices
is as follows

-->[f,g[,r]]=dscr(syslin('c',a,b,[],[]),dt [,m])

where a and b are the two matrices associated to the continuous-time state-space description

_x(t) = Ax(t) +Bu(t) (1.5)

and f and g are the resulting matrices for a discrete time system

x(n+ 1) = Fx(n) +Gu(n) (1.6)

where the sampling period is dt. In the case where the fourth argument m is given, the continuous
time system is assumed to have a stochastic input so that now the continuous-time equation is

_x(t) = Ax(t) +Bu(t) + w(t) (1.7)

where w(t) is a white, zero-mean, Gaussian random process of covariance m and now the resulting
discrete-time equation is

x(n+ 1) = Fx(n) +Gu(n) + q(n) (1.8)

where q(n) is a white, zero-mean, Gaussian random sequence of covariance r.
The dscr function syntax when the argument is a linear system in state-space form is

-->[sld[,r]]=dscr(sl,dt[,m])

where sl and sld are lists representing continuous and discrete linear systems representations,
respectively. Here m and r are the same as for the �rst function syntax. In the case where the
function argument is a linear system in transfer function form the syntax takes the form

-->[hd]=dscr(h,dt)

where now h and hd are transfer function descriptions of the continuous and discrete systems,
respectively. The transfer function syntax does not allow the representation of a stochastic system.

As an example of the use of dscr consider the following Scilab session.

-->//Demonstrate the dscr function

--> a=[2 1;0 2]

a =

! 2. 1. !

! 0. 2. !

--> b=[1;1]
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b =

! 1. !

! 1. !

--> [sld]=dscr(syslin('c',a,b,eye(2,2)),.1);

--> sld(2)

ans =

! 1.2214028 0.1221403 !

! 0. 1.2214028 !

--> sld(3)

ans =

! 0.1164208 !

! 0.1107014 !

1.8 Filtering of Signals

Filtering of signals by linear systems (or computing the time response of a system) is done by the
function flts which has two formats . The �rst format calculates the �lter output by recursion and
the second format calculates the �lter output by transform. The function syntaxes are as follows.
The syntax of flts is

-->[y[,x]]=flts(u,sl[,x0])

for the case of a linear system represented by its state-space description (see Section 1.4) and

-->y=flts(u,h[,past])

for a linear system represented by its transfer function.
In general the second format is much faster than the �rst format. However, the �rst format

also yields the evolution of the state. An example of the use of flts using the second format is
illustrated below.

-->//filtering of signals

-->//make signal and filter

-->[h,hm,fr]=wfir('lp',33,[.2 0],'hm',[0 0]);

-->t=1:200;

-->x1=sin(2*%pi*t/20);

-->x2=sin(2*%pi*t/3);
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-->x=x1+x2;

-->z=poly(0,'z');

-->hz=syslin('d',poly(h,'z','c')./z**33);

-->yhz=flts(x,hz);

-->plot(yhz);

Notice that in the above example that a signal consisting of the sum of two sinusoids of di�erent
frequencies is �ltered by a low-pass �lter. The cut-o� frequency of the �lter is such that after
�ltering only one of the two sinusoids remains. Figure 1.2 illustrates the original sum of sinusoids
and Figure 1.3 illustrates the �ltered signal.
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Figure 1.2: exec('flts1.code') Sum of Two Sinusoids

1.9 Plotting Signals

Here we describe some of the features of the simplest plotting command. A more complete descrip-
tion of the graphics features are given in the on-line help.

Here we present several examples to illustrate how to construct some types of plots.
To illustrate how an impulse response of an FIR �lter could be plotted we present the following

Scilab session.

-->//Illustrate plot of FIR filter impulse response
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Figure 1.3: exec('flts2.code') Filtered Signal

-->[h,hm,fr]=wfir('bp',55,[.20.25],'hm',[0 0]);

-->plot(h)

Here a band-pass �lter with cut-o� frequencies of .2 and .25 is constructed using a Hamming
window. The �lter length is 55. More on how to make FIR �lters can be found in Chapter 3.

The resulting plot is shown in Figure 1.4.

The frequency response of signals and systems requires evaluating the s-transform on the j!-
axis or the z-transform on the unit circle. An example of evaluating the magnitude of the frequency
response of a continuous-time system is as follows.

-->//Evaluate magnitude response of continuous-time system

-->hs=analpf(4,'cheb1',[.1 0],5)

hs =

161.30794

---------------------------------------------------

2 3 4

179.23104 + 96.905252s + 37.094238s + 4.9181782s + s

-->fr=0:.1:15;

-->hf=freq(hs(2),hs(3),%i*fr);

-->hm=abs(hf);
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Figure 1.4: exec('plot1.code') Plot of Filter Impulse Response

-->plot(fr,hm),

Here we make an analog low-pass �lter using the functions analpf (see Chapter 4 for more details).
The �lter is a type I Chebyshev of order 4 where the cut-o� frequency is 5 Hertz. The primitive
freq (see Section 1.3.1) evaluates the transfer function hs at the values of fr on the j!-axis. The
result is shown in Figure 1.5

A similar type of procedure can be e�ected to plot the magnitude response of discrete �lters
where the evaluation of the transfer function is done on the unit circle in the z-plane by using the
function frmag.

-->[xm,fr]=frmag(num[,den],npts)

The returned arguments are xm, the magnitude response at the values in fr, which contains the
normalized discrete frequency values in the range [0; 0:5].

-->//demonstrate Scilab function frmag

-->hn=eqfir(33,[0,.2;.25,.35;.4,.5],[0 1 0],[1 1 1]);

-->[hm,fr]=frmag(hn,256);

-->plot(fr,hm),
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Figure 1.5: exec('plot2.code') Plot of Continuous Filter Magnitude Response
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Figure 1.6: exec('plot3.code') Plot of Discrete Filter Magnitude Response
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Here an FIR band-pass �lter is created using the function eqfir (see Chapter 3).
Other speci�c plotting functions are bode for the Bode plot of rational system transfer functions

(see Section 2.1.1), group for the group delay (see Section 2.1.2) and plzr for the poles-zeros plot.

-->//Demonstrate function plzr

-->hz=iir(4,'lp','butt',[.25 0],[0 0])

hz =

2 3 4

0.0939809 + 0.3759234z + 0.5638851z + 0.3759234z + 0.0939809z

-------------------------------------------------------------

2 3 4

0.0176648 + 1.630D-17z + 0.4860288z + 1.950D-17z + z

-->plzr(hz)

Here a fourth order, low-pass, IIR �lter is created using the function iir (see Section 4.2). The
resulting pole-zero plot is illustrated in Figure 1.7
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Figure 1.7: exec('plot4.code') Plot of Poles and Zeros of IIR Filter

1.10 Development of Signal Processing Tools

Of course any user can write its own functions like those illustrated in the previous sections. The
simplest way is to write a �le with a special format . This �le is executed with two Scilab primitives
getf and exec. The complete description of such functionalities is given in the reference manual
and the on-line help. These functionalities correspond to the button File Operations.
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Chapter 2

Time and Frequency Representation

of Signals

2.1 Frequency Response

2.1.1 Bode Plots

The Bode plot is used to plot the phase and log-magnitude response of functions of a single complex
variable. The log-scale characteristics of the Bode plot permitted a rapid, \back-of-the-envelope"
calculation of a system's magnitude and phase response. In the following discussion of Bode plots
we consider only real, causal systems. Consequently, any poles and zeros of the system occur in
complex conjugate pairs (or are strictly real) and the poles are all located in the left-half s-plane.

For H(s) a transfer function of the complex variable s, the log-magnitude of H(s) is de�ned by

M(!) = 20 log10 jH(s)s=j!j (2.1)

and the phase of H(s) is de�ned by

�(!) = tan�1[
Im(H(s)s=j!)

Re(H(s)s=j!)
] (2.2)

The magnitude, M(!), is plotted on a log-linear scale where the independent axis is marked in
decades (sometimes in octaves) of degrees or radians and the dependent axis is marked in decibels.
The phase, �(!), is also plotted on a log-linear scale where, again, the independent axis is marked
as is the magnitude plot and the dependent axis is marked in degrees (and sometimes radians).

When H(s) is a rational polynomial it can be expressed as

H(s) = C

QN
n=1(s� an)QM
m=1(s� bm)

(2.3)

where the an and bm are real or complex constants representing the zeros and poles, respectively,
of H(s), and C is a real scale factor. For the moment let us assume that the an and bm are strictly
real. Evaluating (2.3) on the j!-axis we obtain

H(j!) = C

QN
n=1(j! � an)QM
m=1(j! � bm)

= C

QN
n=1

p
!2 + a2ne

j tan�1 !=(�an)QM
m=1

p
!2 + b2me

j tan�1 !=(�bm)
(2.4)

21
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and for the log-magnitude and phase response

M(!) = 20(log10 C + (

NX
n=1

log10
p
!2 + a2n �

MX
m=1

log10
p
!2 + b2m (2.5)

and

�(!) =
NX
n=1

tan�1(!=(�an))�
MX
m=1

tan�1(!=(�bm)): (2.6)

To see how the Bode plot is constructed assume that both (2.5) and (2.6) consist of single terms
corresponding to a pole of H(s). Consequently, the magnitude and phase become

M(!) = �20 log
p
!2 + a2 (2.7)

and
�(!) = �j tan�1(!=(�a)): (2.8)

We plot the magnitude in (2.7) using two straight line approximations. That is, for j!j � jaj we
have thatM(!) � �20 log jaj which is a constant (i.e., a straight line with zero slope). For j!j � jaj
we have that M(!) � �20 log j!j which is a straight line on a log scale which has a slope of -20
db/decade. The intersection of these two straight lines is at w = a. Figure 2.1 illustrates these two
straight line approximations for a = 10.
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Figure 2.1: exec('bode1.code') Log-Magnitude Plot of H(s) = 1=(s� a)

When ! = a we have that M(!) = �20 logp2a = �20 log a� 20 log
p
2. Since 20 log

p
2 = 3:0

we have that at ! = a the correction to the straight line approximation is �3db. Figure 2.1
illustrates the true magnitude response of H(s) = (s � a)�1 for a = 10 and it can be seen that
the straight line approximations with the 3db correction at ! = a yields very satisfactory results.
The phase in (2.8) can also be approximated. For ! � a we have �(!) � 0 and for ! � a we
have �(!) � �90Æ. At ! = a we have �(!) = �45Æ. Figure 2.2 illustrates the straight line
approximation to �(!) as well as the actual phase response.
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Figure 2.2: exec('bode2.code') Phase Plot of H(s) = 1=(s� a)

In the case where the poles and zeros of H(s) are not all real but occur in conjugate pairs (which
is always the case for real systems) we must consider the term

H(s) =
1

[s� (a+ jb)][s � (a� jb)]

=
1

s2 � 2as+ (a2 + b2)
(2.9)

where a and b are real. Evaluating (2.9) for s = j! yields

H(s) =
1

(a2 + b2 � !2)� 2aj!

=
1p

!4 + 2(a2 � b2)!2 + (a2 + b2) exp(j tan�1[ �2a!
a2+b2�!2 ])

: (2.10)

For ! very small, the magnitude component in (2.10) is approximately 1=(a2 + b2) and for !
very large the magnitude becomes approximately 1=!2. Consequently, for small ! the magnitude
response can be approximated by the straight line M(!) � �20 log10 ja2 + b2j and for ! large we
have M(!) � �20 log j!2j which is a straight line with a slope of -40db/decade. These two straight
lines intersect at ! =

p
a2 + b2. Figure 2.3 illustrates

the straight line approximations for a = 10 and b = 25. The behavior of the magnitude plot
when ! is neither small nor large with respect to a and b depends on whether b is greater than a
or not. In the case where b is less than a, the magnitude plot is similar to the case where the roots
of the transfer function are strictly real, and consequently, the magnitude varies monotonically
between the two straight line approximations shown in Figure 2.3. The correction at ! =

p
a2 + b2

is -6db plus �20 log ja=(pa2 + b2)j. For b greater than a, however, the term in (2.10) exhibits
resonance. This resonance is manifested as a local maximum of the magnitude response which
occurs at ! =

p
b2 � a2. The value of the magnitude response at this maximum is �20 log j2abj.



24 CHAPTER 2. REPRESENTATION OF SIGNALS

0

10
1

10
2

10

-80

-65

-50

Figure 2.3: exec('bode3.code') Log-Magnitude Plot of H(s) = (s2 � 2as+ (a2 + b2))�1

The e�ect of resonance is illustrated in Figure 2.3 as the upper dotted curve. Non-resonant behavior
is illustrated in Figure 2.3 by the lower dotted curve.

The phase curve for the expression in (2.10) is approximated as follows. For ! very small
the imaginary component of (2.10) is small and the real part is non-zero. Thus, the phase is
approximately zero. For ! very large the real part of (2.10) dominates the imaginary part and,
consequently, the phase is approximately �180Æ. At ! =

p
a2 + b2 the real part of (2.10) is zero

and the imaginary part is negative so that the phase is exactly �90Æ. The phase curve is shown in
Figure 2.4.

How to Use the Function bode

The description of the transfer function can take two forms: a rational polynomial or a state-space
description .

For a transfer function given by a polynomial h the syntax of the call to bode is as follows

-->bode(h,fmin,fmax[,step][,comments])

When using a state-space system representation sl of the transfer function the syntax of the
call to bode is as follows

-->bode(sl,fmin,fmax[,pas][,comments])

where

-->sl=syslin(domain,a,b,c[,d][,x0])

The continuous time state-space system assumes the following form

_x(t) = ax(t) + bu(t)

y(t) = cx(t) + dw(t)
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Figure 2.4: exec('bode4.code') Phase Plot of H(s) = (s2 � 2as+ (a2 + b2))�1

and x0 is the initial condition. The discrete time system takes the form

x(n+ 1) = ax(n) + bu(n)

y(n) = cx(n) + dw(n)

Examples Using bode

Here are presented examples illustrating the state-space description, the rational polynomial case.
These two previous systems connected in series forms the third example.

In the �rst example, the system is de�ned by the state-space description below

_x = �2�x+ u

y = 18�x+ u:

The initial condition is not important since the Bode plot is of the steady state behavior of the
system.

-->//Bode plot

-->a=-2*%pi;b=1;c=18*%pi;d=1;

-->sl=syslin('c',a,b,c,d);

-->bode(sl,.1,100);

The result of the call to bode for this example is illustrated in Figure 2.5.
The following example illustrates the use of the bode function when the user has an explicit

rational polynomial representation of the system.
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Figure 2.5: exec('bode5.code') Bode Plot of State-Space System Representation

-->//Bode plot; rational polynomial

-->s=poly(0,'s');

-->h1=1/real((s+2*%pi*(15+100*%i))*(s+2*%pi*(15-100*%i)))

h1 =

1

-------------------------

2

403666.82 + 188.49556s + s

-->h1=syslin('c',h1);

-->bode(h1,10,1000,.01);

The result of the call to bode for this example is illustrated in Figure 2.6.

The �nal example combines the systems used in the two previous examples by attaching them
together in series. The state-space description is converted to a rational polynomial description
using the ss2tf function.

-->//Bode plot; two systems in series

-->a=-2*%pi;b=1;c=18*%pi;d=1;

-->sl=syslin('c',a,b,c,d);
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Figure 2.6: exec('bode6.code') Bode Plot of Rational Polynomial System Representation

-->s=poly(0,'s');

-->h1=1/real((s+2*%pi*(15+100*%i))*(s+2*%pi*(15-100*%i)));

-->h1=syslin('c',h1);

-->h2=ss2tf(sl)

h2 =

62.831853 + s

-------------

6.2831853 + s

-->bode(h1*h2,.1,1000,.01);

Notice that the rational polynomial which results from the call to the function ss2tf automatically
has its fourth argument set to the value 'c'. The result of the call to bode for this example is
illustrated in Figure 2.7.

2.1.2 Phase and Group Delay

In the theory of narrow band �ltering there are two parameters which characterize the e�ect that
band pass �lters have on narrow band signals: the phase delay and the group delay.

Let H(!) denote the Fourier transform of a system

H(!) = A(!)ej�(!) (2.11)
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Figure 2.7: exec('bode7.code') Bode Plot Combined Systems

where A(!) is the magnitude of H(!) and �(!) is the phase of H(!). Then the phase delay, tp(!),
and the group delay, tg(!), are de�ned by

tp(!) = �(!)=! (2.12)

and

tg(!) = d�(!)=d!: (2.13)

Now assume that H(!) represents an ideal band pass �lter. By ideal we mean that the magnitude
of H(!) is a non-zero constant for !0 � !c < j!j < !0 + !c and zero otherwise, and that the phase
of H(!) is linear plus a constant in these regions. Furthermore, the impulse response of H(!) is
real. Consequently, the magnitude of H(!) has even symmetry and the phase of H(!) has odd
symmetry.

Since the phase of H(!) is linear plus a constant it can be expressed as

�(!) =

�
�(!0) + �0(!0)(! � !0); ! > 0
��(!0) + �0(!0)(! + !0); ! < 0

(2.14)

where !0 represents the center frequency of the band pass �lter. The possible discontinuity of the
phase at ! = 0 is necessary due to the fact that �(!) must be an odd function. The expression in
(2.14) can be rewritten using the de�nitions for phase and group delay in (2.12) and (2.13). This
yields

�(!) =

�
!0tp + (! � !0)tg; ! > 0
�!0tp + (! + !0)tg; ! < 0

(2.15)

where, now, we take tp = tp(!0) and tg = tg(!0).

Now assume that a signal, f(t), is to be �ltered by H(!) where f(t) is composed of a modulated
band-limited signal. That is,

f(t) = fl(t) cos(!0t) (2.16)
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where !0 is the center frequency of the band pass �lter and Fl(!) is the Fourier transform a the
bandlimited signal fl(t) (Fl(!) = 0 for j!j > !c). It is now shown that the output of the �lter due
to the input in (2.16) takes the following form

g(t) = fl(t+ tg) cos[!0(t+ tp)]: (2.17)

To demonstrate the validity of (2.17) the Fourier transform of the input in (2.16) is written as

F (!) =
1

2
[Fl(! � !0) + Fl(! + !0)] (2.18)

where (2.18) represents the convolution of Fl(!) with the Fourier transform of cos(!0t). The Fourier
transform of the �lter, H(!), can be written

H(!) =

8<
:

e!0tp+(!�!0)tg ; !0 � !c < ! < !0 + !c
e�!0tp+(!+!0)tg ; �!0 � !c < ! < �!0 + !c
0; otherwise

(2.19)

Thus, since G(!) = F (!)H(!),

G(!) =

�
1
2Fl(! � !0)e

!0tp+(!�!0)tg ; !0 � !c < ! < !0 + !c
1
2Fl(! + !0)e

�!0tp+(!+!0)tg ; �!0 � !c < ! < �!0 + !c
(2.20)

Calculating g(t) using the inverse Fourier transform

g(t) =
1

2�

Z 1

�1
F (!)H(!)

=
1

2

1

2�
[

Z !0+!c

!0�!c
Fl(! � !0)e

j[(!�!0)tg+!0tp]ej!td!

+

Z �!0+!c

�!0�!c
Fl(! + !0)e

j[(!+!0)tg�!0tp]ej!td!] (2.21)

Making the change in variables u = ! � !0 and v = ! + !0yields

g(t) =
1

2

1

2�
[

Z !c

�!c
Fl(u)e

j[utg+!0tp]ejutej!0tdu

+

Z !c

�!c
Fl(v)e

j[vtg�!0tp]ejvte�j!0tdv] (2.22)

Combining the integrals and performing some algebra gives

g(t) =
1

2

1

2�

Z !c

�!c
Fl(!)e

j!tgej!t[ej!0tpej!0t + e�j!0tpe�j!0t]d!

=
1

2�

Z !c

�!c
Fl(!) cos[!0(t+ tp)]e

j!(t+tg)d!

= cos[!0(t+ tp)]
1

2�

Z !c

�!c
Fl(!)e

j!(t+tg )d!

= cos[!0(t+ tp)]fl(t+ tg) (2.23)

which is the desired result.
The signi�cance of the result in (2.23) is clear. The shape of the signal envelope due to fl(t)

is unchanged and shifted in time by tg. The carrier, however, is shifted in time by tp (which in
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Figure 2.8: exec('group1 5.code') Modulated Exponential Signal

general is not equal to tg). Consequently, the overall appearance of the ouput signal is changed
with respect to that of the input due to the di�erence in phase shift between the carrier and the
envelope. This phenomenon is illustrated in Figures 2.8-2.12. Figure 2.8 illustrates

a narrowband signal which consists of a sinusoid modulated by an envelope. The envelope is
an decaying exponential and is displayed in the �gure as the dotted curve.

Figure 2.9 shows the band pass �lter used to �lter the signal in Figure 2.8. The �lter magnitude
is plotted as the solid curve and the �lter phase is plotted as the dotted curve.

Notice that since the phase is a constant function that tg = 0. The value of the phase delay is
tp = �=2. As is expected, the �ltered output of the �lter consists of the same signal as the input
except that the sinusoidal carrier is now phase shifted by �=2. This output signal is displayed in
Figure 2.10 as the solid curve. For reference the input signal is plotted as the dotted curve.

To illustrate the e�ect of the group delay on the �ltering process a new �lter is constructed as
is displayed in Figure 2.11.

Here the phase is again displayed as the dotted curve. The group delay is the slope of the phase
curve as it passes through zero in the pass band region of the �lter. Here tg = �1 and tp = 0.
The result of �ltering with this phase curve is display in Figure 2.12. As expected, the envelope is
shifted but the sinusoid is not shifted within the reference frame of the window. The original input
signal is again plotted as the dotted curve for reference.

The Function group

As can be seen from the explanation given in this section, it is preferable that the group delay of
a �lter be constant. A non-constant group delay tends to cause signal deformation. This is due
to the fact that the di�erent frequencies which compose the signal are time shifted by di�erent
amounts according to the value of the group delay at that frequency. Consequently, it is valuable
to examine the group delay of �lters during the design procedure. The function group accepts �lter
parameters in several formats as input and returns the group delay as output. The syntax of the
function is as follows:
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Figure 2.9: exec('group1 5.code') Constant Phase Band Pass Filter
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Figure 2.10: exec('group1 5.code') Carrier Phase Shift by tp = �=2
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Figure 2.11: exec('group1 5.code') Linear Phase Band Pass Filter
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Figure 2.12: exec('group1 5.code') Envelope Phase Shift by tg = �1
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-->[tg,fr]=group(npts,h)

The group delay tg is evaluated in the interval [0,.5) at equally spaced samples contained in fr. The
number of samples is governed by npts. Three formats can be used for the speci�cation of the �lter.
The �lter h can be speci�ed by a vector of real numbers, by a rational polynomial representing the
z-transform of the �lter, or by a matrix polynomial representing a cascade decomposition of the
�lter. The three cases are illustrated below.

The �rst example is for a linear-phase �lter designed using the function wfir

-->[h w]=wfir('lp',7,[.2,0],'hm',[0.01,-1]);

-->h'

ans =

! - 0.0049893 !

! 0.0290002 !

! 0.2331026 !

! 0.4 !

! 0.2331026 !

! 0.0290002 !

! - 0.0049893 !

-->[tg,fr]=group(100,h);

-->plot2d(fr',tg',-1,'011',' ',[0,2,0.5,4.])

as can be seen in Figure 2.13
the group delay is a constant, as is to be expected for a linear phase �lter. The second example

speci�es a rational polynomial for the �lter transfer function:

-->z=poly(0,'z');

-->h=z/(z-0.5)

h =

z

-------

- 0.5 + z

-->[tg,fr]=group(100,h);

-->plot(fr,tg)

The plot in Figure 2.14 gives the result of this calculation.
Finally, the third example gives the transfer function of the �lter in cascade form.
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Figure 2.13: exec('group6 8.code') Group Delay of Linear-Phase Filter
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Figure 2.14: exec('group6 8.code') Group Delay of Filter (Rational Polynomial)
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-->h=[1 1.5 -1 1;2 -2.5 -1.7 0;3 3.5 2 5]';

-->cels=[];

-->for col=h,

--> nf=[col(1:2);1];nd=[col(3:4);1];

--> num=poly(nf,'z','c');den=poly(nd,'z','c');

--> cels=[cels,tlist(['r','num','den'],num,den,[])];

-->end;

!--error 21

invalid index

at line 7 of function %r_e called by :

line 4 of function %s_c_r called by :

cels=[cels,tlist(['r','num','den'],num,den,[])];

-->[tg,fr]=group(100,cels);

!--error 89

argument has incorrect dimensions

at line 54 of function group called by :

[tg,fr]=group(100,cels);

-->//plot(fr,tg)

The result is shown in Figure 2.15. The cascade realization is known for numerical stability.

2.1.3 Appendix: Scilab Code Used to Generate Examples

The following listing of Scilab code was used to generate the examples of the this section.

//exec('group1_5.code')

//create carrier and narrow band signal

xinit('group1.ps');

wc=1/4;

x=sin(2*%pi*(0:54)*wc);

y=exp(-abs(-27:27)/5);

f=x.*y;

plot([1 1 55],[1 -1 -1]),

nn=prod(size(f))

plot2d((1:nn)',f',[2],"000"),

nn=prod(size(y))

plot2d((1:nn)',y',[3],"000"),

plot2d((1:nn)',-y',[3],"000"),

xend(),

xinit('group2.ps');
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Figure 2.15: exec('group6 8.code') Group Delay of Filter (Cascade Realization)

//make band pass filter

[h w]=wfir('bp',55,[maxi([wc-.15,0]),mini([wc+.15,.5])],'kr',60.);

//create new phase function with only phase delay

hf=fft(h,-1);

hm=abs(hf);

hp=%pi*ones(1:28);//tg is zero

hp(29:55)=-hp(28:-1:2);

hr=hm.*cos(hp);

hi=hm.*sin(hp);

hn=hr+%i*hi;

plot([1 1 55],[4 -4 -4]),

plot2d([1 55]',[0 0]',[1],"000"),

nn=prod(size(hp))

plot2d((1:nn)',hp',[2],"000"),

nn=prod(size(hm))

plot2d((1:nn)',2.5*hm',[1],"000"),

xend(),

xinit('group3.ps');

//filter signal with band pass filter

ff=fft(f,-1);

gf=hn.*ff;

g=fft(gf,1);

plot([1 1 55],[1 -1 -1]),
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nn=prod(size(g))

plot2d((1:nn)',real(g)',[2],"000"),

nn=prod(size(f))

plot2d((1:nn)',f',[1],"000"),

xend(),

//create new phase function with only group delay

xinit('group4.ps');

tg=-1;

hp=tg*(0:27)-tg*12.*ones(1:28)/abs(tg);//tp is zero

hp(29:55)=-hp(28:-1:2);

hr=hm.*cos(hp);

hi=hm.*sin(hp);

hn=hr+%i*hi;

plot([1 1 55],[15 -15 -15]),

plot2d([1 55]',[0 0]',[1],"000"),

nn=prod(size(hp))

plot2d((1:nn)',hp',[2],"000"),

nn=prod(size(hm))

plot2d((1:nn)',10*hm',[1],"000"),

xend(),

xinit('group5.ps');

//filter signal with band pass filter

ff=fft(f,-1);

gf=hn.*ff;

g=fft(gf,1);

plot([1 1 55],[1 -1 -1]),

nn=prod(size(g))

plot2d((1:nn)',real(g)',[2],"000"),

nn=prod(size(f))

plot2d((1:nn)',f',[1],"000"),

xend(),

2.2 Sampling

The remainder of this section explains in detail the relationship between continuous and discrete
signals.

To begin, it is useful to examine the Fourier transform pairs for continuous and discrete time
signals. For x(t) and X(
) a continuous time signal and its Fourier transform, respectively, we
have that

X(
) =

Z 1

�1
x(t)e�j
tdt (2.24)
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x(t) =
1

2�

Z 1

�1
X(
)ej
td
: (2.25)

For x(n) and X(!) a discrete time signal and its Fourier transform, respectively, we have that

X(!) =
1X

n=�1
x(n)e�j!n (2.26)

x(n) =
1

2�

Z �

��
X(!)ej!nd!: (2.27)

The discrete time signal, x(n), is obtained by sampling the continuous time signal, x(t), at regular
intervals of length T called the sampling period. That is,

x(n) = x(t)jt=nT (2.28)

We now derive the relationship between the Fourier transforms of the continuous and discrete time
signals. The discussion follows [21].

Using (2.28) in (2.25) we have that

x(n) =
1

2�

Z 1

�1
X(
)ej
nT d
: (2.29)

Rewriting the integral in (2.29) as a sum of integrals over intervals of length 2�=T we have that

x(n) =
1

2�

1X
r=�1

Z (2�r+�)=T

(2�r��)=T
X(
)ej
nTd
 (2.30)

or, by a change of variables

x(n) =
1

2�

1X
r=�1

Z �=T

��=T
X(
 +

2�r

T
)ej
nT ej2�nrd
: (2.31)

Interchanging the sum and the integral in (2.31) and noting that ej2�nr = 1 due to the fact that n
and r are always integers yields

x(n) =
1

2�

Z �=T

��=T
[
1X

r=�1
X(
 +

2�r

T
)]ej
nTd
: (2.32)

Finally, the change of variables ! = 
T gives

x(n) =
1

2�

Z �

��
[
1

T

1X
r=�1

X(
!

T
+
2�r

T
)]ej!nd! (2.33)

which is identical in form to (2.27). Consequently, the following relationship exists between the
Fourier transforms of the continuous and discrete time signals:

X(!) =
1

T

1X
r=�1

X(
!

T
+
2�r

T
)

=
1

T

1X
r=�1

X(
 +
2�r

T
): (2.34)
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From (2.34) it can be seen that the Fourier transform of x(n), X(!), is periodic with period
2�=T . The form of X(!) consists of repetitively shifting and superimposing the Fourier transform
of x(t), X(
), scaled by the factor 1=T . For example, if X(
) is as depicted in Figure 2.16, where
the highest non-zero frequency of X(
) is denoted by 
c = 2�fc, then there are two possibilities
for X(!). If �=T > 
c = 2�fc then X(!) is as in Figure 2.17, and, if �=T < 
c = 2�fc, then X(!)
is as in Figure 2.18. That is to say that if the sampling frequency fs = 1=T is greater than twice
the highest frequency in x(t) then there is no overlap in the shifted versions of X(
) in (2.34).
However, if fs < 2fc then the resulting X(!) is composed of overlapping versions of X(
).
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Figure 2.16: exec('sample1.code') Frequency Response X(
)

to say that if the sampling frequency fs = 1=T is greater than twice the highest frequency in
x(t) then there is no overlap in the shifted versions of X(
) in (2.34). However, if fs < 2fc then
the resulting X(!) is composed of overlapping versions of X(
).

The sampling rate T = 1=(2fc) is the well known Nyquist sampling rate and any signal sampled
at a rate higher than the Nyquist rate retains all of the information that was contained in the
original unsampled signal. It can be concluded that sampling can retain or alter the character
of the original continuous time signal. If sampling is performed at more than twice the highest
frequency in x(t) then the signal nature is retained. Indeed, the original signal can be recuperated
from the sampled signal by low pass �ltering (as is demonstrated below). However, if the signal is
undersampled this results in a signal distortion known as aliasing.

To recuperate the original analog signal from the sampled signal it is assumed that 
c < �=T
(i.e., that the signal is sampled at more than twice its highest frequency). Then from (2.34)

X(
) = TX(!) (2.35)

in the interval ��=T � 
 � �=T . Plugging (2.35) into (2.25) yields

x(t) =
1

2�

Z �=T

��=T
TX(!)ej
td
: (2.36)



40 CHAPTER 2. REPRESENTATION OF SIGNALS

-5 -4 -3 -2 -1 0 1 2 3 4 5

-2.0

-1.3

-0.6

0.1

0.8

1.5

2.2

2.9

3.6

4.3

5.0

pi/T 

X(W) 

W 

X(0)/T 

Figure 2.17: exec('sample2.code') Frequency Response x(!) With No Aliasing
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Figure 2.18: exec('sample3.code') Frequency Response x(!) With Aliasing
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Replacing X(!) by (2.26) and using (2.28) we have that

x(t) =
T

2�

Z �=T

��=T
[
1X
�1

x(nT )e�j
nT ]ej
td
: (2.37)

Interchanging the sum and the integral gives

x(t) =

1X
�1

x(nT )[
T

2�

Z �=T

��=T
ej
(t�nT )d
]: (2.38)

The expression in brackets in (2.38) can be recognized as a time shifted inverse Fourier transform
of a low pass �lter with cut-o� frequency �=T . Consequently, (2.38) is a convolution between the
sampled signal and a low pass �lter, as was stated above.

We now illustrate the e�ects of aliasing. Since square integrable functions can always be de-
composed as a sum of sinusoids the discussion is limited to a signal which is a cosine function. The
results of what happens to a cosine signal when it is undersampled is directly extensible to more
complicated signals.

We begin with a cosine signal as is illustrated in Figure 2.19.
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Figure 2.19: exec('sample4.code') Cosine Signal

The cosine in Figure 2.19 is actually a sampled signal which consists of 5000 samples. One
period of the cosine in the �gure is 200 samples long, consequently, the Nyquist sampling rate
requires that we retain one sample in every 100 to retain the character of the signal. By sampling
the signal at a rate less than the Nyquist rate it would be expected that aliasing would occur.
That is, it would be expected that the sum of two cosines would be evident in the resampled data.
Figure 2.20 illustrates the data resulting from sampling the cosine in Figure 2.19 at a rate of ones
every 105 samples.

As can be seen in Figure 2.20, the signal is now the sum of two cosines which is illustrated by
the beat signal illustrated by the dotted curves.
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Figure 2.20: exec('sample5.code') Aliased Cosine Signal

2.3 Decimation and Interpolation

2.3.1 Introduction

There often arises a need to change the sampling rate of a digital signal. The Fourier transform of a
continuous-time signal, x(t), and the Fourier transform of the discrete-time signal, x(nT ), obtained
by sampling x(t) with frequency 1=T . are de�ned, respectively, in (2.39) and (2.40) below

X̂(!) =

Z 1

�1
x(t)e�j!tdt (2.39)

X(ej!T ) =
1X

n=�1
x(nT )e�j!T : (2.40)

The relationship between these two transforms is (see [21]) :

X(ej!T ) =
1

T

1X
r=�1

X̂(
j!

T
+
j2�r

T
): (2.41)

Figure 2.21 illustrates the magnitude of the Fourier transform X̂(!) of a signal x(t). Figure 2.22
shows two periods of the associated Fourier transform X(ejwT ) of x(nT ) where the sampling fre-
quency was taken to be the Nyquist rate. As indicated by (2.41), the magnitude of X(ejwT ) with
respect to the magnitude of X̂(!) is scaled by 1=T .

Furthermore, X(ejwT ) is periodic with period 2�=T . If we take 1=T � �=
, where 
 is the
highest non-zero frequency of X(!), then no aliasing occurs in sampling the continuous-time signal.
When this is the case one can, in principle, perfectly reconstruct the original continuous-time signal
x(t) from its samples x(nT ) using

x(t) =

1X
n=�1

x(nT )
sin[(�=T )(t � nT )]

(�=T )(t � nT )
: (2.42)
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Figure 2.21: exec('intdec1 4.code') Fourier Transform of a Continuous Time Signal
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Figure 2.22: exec('intdec1 4.code') Fourier Transform of the Discrete Time Signal
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Consequently, one could obtain x(t) sampled at a di�erent sampling rate T 0 from the sampled
signal x(nT ) by using (2.42) to reconstruct x(t) and then resampling. In practice, however, this
is impractical. It is much more convenient to keep all operations in the digital domain once one
already has a discrete-time signal.

The Scilab function intdec accomplishes a sampling rate change by interpolation and decima-
tion. The interpolation takes the input signal and produces an output signal which is sampled at a
rate L (an integer) times more frequently than the input. Then decimation takes the input signal
and produces an output signal which is sampled at a rate M (also an integer) times less frequently
than the input.

2.3.2 Interpolation

In interpolating the input signal by the integer L we wish to obtain a new signal x(nT 0) where
x(nT 0) would be the signal obtained if we had originally sampled the continuous-time signal x(t)
at the rate 1=T 0 = L=T . If the original signal is bandlimited and the sampling rate f = 1=T is
greater than twice the highest frequency of x(t) then it can be expected that the new sampled
signal x(nT 0) (sampled at a rate of f 0 = 1=T 0 = L=T = Lf) could be obtained directly from the
discrete signal x(nT ).

An interpolation of x(nT ) to x(nT 0) where T 0 = T=L can be found by inserting L � 1 zeros
between each element of the sequence x(nT ) and then low pass �ltering. To see this we construct
the new sequence v(nT 0) by putting L� 1 zeros between the elements of x(nT )

v(nT 0) =
�
x(nT=L); n = 0;�L;�2L; : : :
0; otherwise:

(2.43)

Since T 0 = T=L, v(nT 0) is sampled L times more frequently than x(nT ). The Fourier transform of
(2.43) yields

V (ej!T
0
) =

1X
n=�1

v(nT 0)e�j!nT
0

=

1X
n=�1

x(nT )e�j!nLT
0

=
1X

n=�1
x(nT )e�j!nT

= X(ej!T ): (2.44)

From (2.44) it can be seen that V (ej!T
0
) is periodic with period 2�=T and, also, period 2�=T 0 =

2�L=T . This fact is illustrated in Figure 2.23 where L = 3. Since the sampling frequency of V is
1=T 0 we see that by �ltering v(nT 0) with a low

pass �lter with cut-o� frequency at �=T we obtain exactly the interpolated sequence, x(nT 0),
which we seek (see Figure 2.24), except for a scale factor of L (see (2.41)).

2.3.3 Decimation

Where the object of interpolation is to obtain x(nT 0) from x(nT ) where T 0 = L=T , the object of
decimation is to �nd x(nT 00) from x(nT ) where T 00 = MT , M an integer. That is, x(nT 00) should
be equivalent to a sequence obtained by sampling x(t) M times less frequently than that for x(nT ).
Obviously this can be accomplished by keeping only every M th sample of x(nT ). However, if the
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Figure 2.23: exec('intdec1 4.code') Fourier Transform of v(nT 0)
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Figure 2.24: exec('intdec1 4.code') Fourier Transform of x(nT 0)
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x(nT )-
Put

L-1 Zeros
Between

Each Sample

- LPF -
Discard

M-1 of Every
M Samples

- x(nMT=L)

Figure 2.25: Block Diagram of Interpolation and Decimation

sampling frequency 1=T is close to the Nyquist rate then keeping only every M th sample results
in aliasing. Consequently, low pass �ltering the sequence x(nT ) before discarding M � 1 of each
M points is advisable. Assuming that the signal x(nT ) is sampled at the Nyquist rate, the cut-o�
frequency of the low pass �lter must be at �=(MT ).

2.3.4 Interpolation and Decimation

To change the sampling rate of a signal by a non-integer quantity it suÆces to perform a combination
of the interpolation and decimation operations. Since both operations use a low-pass �lter they can
be combined as illustrated in the block diagram of Figure 2.25. The Scilab function intdec begins
by designing a low-pass �lter for the diagram illustrated in the �gure. It accomplishes this by using
the wfir �lter design function. This is followed by taking the Fourier transform of both the input
signal and the low-pass �lter (whose magnitude is �rst scaled by L) by using the fft function.
Care must be taken to obtain a linear convolution between the two sequences by adding on an
appropriate number of zeros to each sequence before the FFT is performed. After multiplying the
two transformed sequences together an inverse Fourier transform is performed. Finally, the output
is obtained by discarding M � 1 of each M points. The cut-o� frequency of the low pass �lter is
�=T if L > M and is (L�)=(MT ) if L < M .

The practical implementation of the interpolation and decimation procedure is as follows. If
the length of the input is N then after putting L� 1 zeros between each element of x the resulting
sequence will be of length (N�1)L+1. This new sequence is then lengthened by K�1 zeros where
K is the length of the low pass �lter. This lengthening is to obtain a linear convolution between
the input and the low pass �lter with the use of the FFT. The cut-o� frequency of the low pass
�lter is chosen to be (:5N)=[(N � 1)L +K] if L > M and (:5NL)=(M [(N � 1)L +K]) if L < M .
The FFT's of the two modi�ed sequences are multiplied element by element and then are inverse
Fourier transformed. The resulting sequence is of length (N � 1)L +K. To obtain a sequence of
length of (N � 1)L+ 1 elements, (K � 1)=2 elements are discarded o� of each end. Finally, M � 1
out of every M elements are discarded to form the output sequence.

2.3.5 Examples using intdec

Here we take a 50-point sequence assumed to be sampled at a 10kHz rate and change it to a
sequence sampled at 16kHz. Under these conditions we take L = 8 and M = 5. The sequence,
x(nT ), is illustrated in Figure 2.26. The discrete Fourier transform of x(nT) is shown in

Figure 2.27. As can be seen, x(nT ) is a bandlimited sequence. A new sequence v(nT 0) is created
by putting 7 zeros between each element of x(nT ). We use a Hamming windowed lowpass �lter of
length 33 (Figure 2.28)

to �lter v(nT 0). The discrete Fourier transform of v(nT 0) is illustrated in Figure 2.29. As is to
be expected, the Fourier transform of v(nT 0) looks like the Fourier transform of x(nT ) repeated 8
times.
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Figure 2.26: exec('intdec5 10.code') The Sequence x(nT )
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Figure 2.27: exec('intdec5 10.code') The DFT of x(nT )
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Figure 2.28: exec('intdec5 10.code') Low Pass Filter
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Figure 2.29: exec('intdec5 10.code') DFT of v(nT 0)



2.4. THE DFT AND THE FFT 49

The result of multiplying the magnitude response of the �lter with that of the sequence v(nT 0)
is shown in Figure 2.30. Since the low pass �lter is not ideal the resulting �ltered sequence has
some additional high frequency energy in it (i.e., the small lobes seen in Figure 2.30).
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Figure 2.30: exec('intdec5 10.code') Filtered Version of V

Finally, after taking the inverse discrete Fourier transform and discarding 4 out of every 5
samples we obtain the sequence illustrated in Figure 2.31.

2.4 The DFT and the FFT

2.4.1 Introduction

The FFT (\Fast Fourier Transform") is a computationally eÆcient algorithm for calculating the
DFT ("Discrete Fourier Transform") of �nite length discrete time sequences. Calculation of the
DFT from its de�nition requires order N2 multiplications whereas the FFT requires order N log2N
multiplications. In this section we discuss several uses of the DFT and some examples of its
calculation using the FFT primitive in Scilab.

We begin with the de�nition of the DFT for a �nite length sequence, x(n), of length N ,

X(k) =

N�1X
n=0

x(n)e�j
2�
N
nk: (2.45)

A careful examination of (2.45) reveals that X(k), the DFT of x(n), is periodic with period N (due
to the fact that for �xed n the term exp(�j2�nk=N) is periodic with period N). That X(k) is
periodic also follows from the fact that (2.45) can be interpreted as samples of the z-transform of
x(n) at N equally spaced spaced samples on the unit circle. For reasons of symmetry, the DFT is
de�ned to consist of the N distinct points of X(k) for k = 0; 1; : : : ; N � 1.

The N points of the sequence x(n) can be recovered from N points of X(k). This recovery is
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Figure 2.31: exec('intdec5 10.code') Sequence x(nMT=L)

called the inverse DFT and takes the form

x(n) =
1

N

N�1X
k=0

X(k)ej
2�
N
nk: (2.46)

It should be noted that (2.46) yields a periodic sequence in n of period N and that it is the N
values of x(n), n = 0; 1; : : : ; N � 1 which yield the desired �nite length sequence.

In order to better understand the DFT, one can think of (2.45) as being represented by a matrix
computation

2
6664

X(1)
X(2)
...

X(N � 1)

3
7775 =

2
66666664

1 1 1 � � � 1

1 e�j
2�
N e�j

4�
N � � � e�j

2(N�1)�
N

1 e�j
4�
N e�j

8�
N � � � e�j

4(N�1)�
N

...
...

...
...

1 e�j
2(N�1)�

N e�j
4(N�1)�

N � � � e�j
(N�1)2�

N

3
77777775

2
6664

x(1)
x(2)
...

x(N � 1)

3
7775 : (2.47)

The inverse DFT can be calculated in a similar fashion, where the matrix used is the Hermitian
transpose of that in (2.47) times a factor of 1=N . From (2.47) it can be seen that the DFT
requires order N2 multiplications. The most direct application of the DFT is the calculation of
the spectrum of �nite length discrete signals. In fact, the DFT is a projection of x(n) onto the
orthogonal basis consisting of the N complex exponentials exp(�j2�nk=N) indexed by k. Another
important property of the DFT has to do with the inverse DFT of the product of two transformed
sequences. Taking x(n) and h(n) to be two sequences of length N the DFT's of these two sequences
are

X(k) =

N�1X
n=0

x(n)e�j
2�
N
nk (2.48)
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and

H(k) =
N�1X
n=0

h(n)e�j
2�
N
nk: (2.49)

Taking the inverse DFT of the product Y (k) = H(k)X(k) yields

y(n) =
1

N

N�1X
k=0

H(k)X(k)ej
2�
N
nk

=

N�1X
m=0

h(m)

N�1X
r=0

x(r)
1

N

N�1X
k=0

ej
2�
N

(n�m�r)k

=
N�1X
m=0

h(m)x(n�m) (2.50)

where the last equality follows from the fact that

1

N

N�1X
k=0

ej
2�
N

(n�m�r)k =
�

1; r = n�m
0; otherwise

: (2.51)

In (2.50) it should be noted that when the argument of x is outside of the the range [0; N � 1]
that the value of x is obtained from evaluating the argument modulo N (which follows from the
periodicity of the x obtained by using the inverse DFT). A very important application of the DFT
is for calculating the interaction of discrete signals and discrete linear systems. When a discrete
signal is introduced to the input of a linear system, the resulting output is a convolution of the
input signal with the impulse response of the linear system. The convolution operation, which is
discussed in more detail in the section on convolution, requires order N2 multiplications where the
signal and system impulse response are both of length N . Calculating the convolution by FFT
requires order N log2N multiplications.

It is equally possible to compute a multi-dimensional DFT. For a multi-dimensional sequence
x(n1; n2; : : : ; nM ) the multi-dimensional DFT is de�ned by

X(k1; k2; : : : ; kM ) =
N1�1X
n1=1

e
�j 2�

N1
n1k1

N2�1X
n2=1

e
�j 2�

N2
n2k2 � � �

NM�1X
nM=1

e
�j 2�

NM
nMkMx(n1; n2; : : : ; nM ): (2.52)

The inverse multi-dimensional DFT is analogous to the calculation above with a change of sign for
the complex exponentials and a factor of 1=(N1N2 � � �NM ).

The FFT algorithm is a computationally eÆcient way of calculating the DFT. The computa-
tional savings realized by the FFT are obtained by exploiting certain symmetries and periodicities
which exist in the calculation of the DFT. To show how the FFT exploits these properties of the
DFT we assume that N = 2 for  a positive integer and we calculate the DFT of x(n) as follows

X(k) =

N�1X
n=0

x(n)e�j
2�
N
nk

=
X

n=even

x(n)e�j
2�
N
nk +

X
n=odd

x(n)e�j
2�
N
nk

=

N
2
�1X

r=0

x(2r)e
�j 2�

N=2
rk
+ ej

2�
N
k

N
2
�1X

r=0

x(2r + 1)e
�j 2�

N=2
rk

(2.53)
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where the �nal equality is obtained by making the change of variables n = 2r. The expression in
(2.53) is composed of a sum of two N=2 point DFT's, one for the N=2 point sequence x(0), x(2),
: : :, x(N � 2), and the other for the N=2 point sequence x(1), x(3), : : :, x(N � 1). An addition to
the two N=2 point DFT's in (2.53), the calculation also requires N additional multiplications for
the N terms exp(j2�k=N), k = 0; 1; : : : ; N � 1.

The purpose of calculating the DFT as in (2.53) is that a computational savings has been
realized. As has already been shown the calculation of the N point DFT from (2.45) requires order
N2 multiplications. Since (2.53) requires the calculation of two N=2 point DFT's plus N additional
multiplications, the computational load is of order 2(N=2)2 + N = N2=2 + N . For  > 1 (i.e.,
for N � 4) we have realized a computational savings by using (2.53). Furthermore, the operation
in (2.53) can be repeated in that each of the N=2 point DFT's can be split into two N=4 point
DFT's plus N additional multiplications. This yields a computational complexity of 4(N=4)2+2N
multiplications. Continuing in this way  = log2N times, the �nal result is an algorithm with
computational complexity of N log2N multiplications.

The above discussion of the computational advantages of the FFT is based on the assumption
that N = 2 . Similar developments of the FFT can be derived based on any prime factorization of
N . The more prime factors N has the greater computational eÆciency can be obtained in using the
FFT. In fact, it may be useful in some applications to arti�cially extend the length of a sequence
(by adding on zeros) in order that the length of the sequence will be more factorable. The FFT
primitive in Scilab automatically accounts for the prime factorization of the sequence length.

2.4.2 Examples Using the fft Primitive

Two examples are presented in this section. The �rst example illustrates how to use the fft

primitive to calculate a one-dimensional DFT. The second example calculates a three-dimensional
DFT.

For the �rst example, data from a cosine function is passed to the fft primitive.

-->//Simple use of fft

-->x=0:63;y=cos(2*%pi*x/16);

-->yf=fft(y,-1);

-->plot(x,real(yf)');

-->xend(),

The cosine data is displayed in Figure 2.32. resulting output from the fft primitive is displayed in
Figure 2.33. Figure 2.33 displays the magnitude of the DFT.

Note, however, that since the cosine function is an even symmetric function, the DFT of the
cosine is strictly real and, thus, the magnitude and the real part of the DFT are the same. Further-
more, since we are calculating a 64-point DFT of a cosine with frequency 2�=16 it is expected that
the DFT should have peaks at k = 4 and k = 60. This follows from the fact that the value k = 64
of the DFT corresponds to a frequency of 2� and, consequently, the value k = 4 must correspond
to the frequency 2�=16, which is the frequency of the signal under examination.

The second example calculates the DFT of a three-dimensional signal. The calculation proceeds
as follows.
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Figure 2.32: exec('fft1.code') Cosine Signal
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Figure 2.33: exec('fft2.code') DFT of Cosine Signal
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-->y1=matrix(1:6,2,3)

y1 =

! 1. 3. 5. !

! 2. 4. 6. !

-->y2=matrix(7:12,2,3)

y2 =

! 7. 9. 11. !

! 8. 10. 12. !

-->y=matrix([y1,y2],1,12)

y =

column 1 to 11

! 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. !

column 12

! 12. !

-->yf=mfft(y,-1,[2 3 2])

yf =

column 1 to 7

! 78. - 6. - 12. + 6.9282032i 0 - 12. - 6.9282032i 0 - 36. !

column 8 to 12

! 0 0 0 0 0 !

-->yf1=matrix(yf(1:6),2,3)

yf1 =

! 78. - 12. + 6.9282032i - 12. - 6.9282032i !

! - 6. 0 0 !

-->yf2=matrix(yf(7:12),2,3)

yf2 =

! - 36. 0 0 !

! 0 0 0 !
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x(t) - h(t) -y(t) =
R
h(t� u)x(u)du

Figure 2.34: Convolution Performed by Linear System

In the above series of calculations the signal y is three-dimensional and is represented by the two
matrices y1 and y2. The �rst dimension of y are the rows of the matrices, the second dimension
of y are the columns of the matrices, and the third dimension of y are the sequence of matrices
represented by y1 and y2. The signal y is represented by the vector y which is in vector form. The
DFT of y is calculated using the function mfft where flag = �1 and dim = [2 3 2]. Naturally, the
DFT of the three-dimensional signal is itself three-dimensional. The result of the DFT calculation
is represented by the two matrices yf1 and yf2.

2.5 Convolution

2.5.1 Introduction

Given two continuous time functions x(t) and h(t), a new continuous time function can be obtained
by convolving x(t) with h(t).

y(t) =

Z 1

�1
h(t� u)x(u)du: (2.54)

An analogous convolution operation can be de�ned for discrete time functions. Letting x(n)
and h(n) represent discrete time functions, by the discrete time convolution gives y(n) is :

y(n) =

1X
k=�1

h(n� k)x(k): (2.55)

If h(t) represents the impulse response of a linear, time-invariant system and if x(t) is an input
to this system then the output of the system, y(t), can be calculated as the convolution between
x(t) and h(t) (i.e., as in (2.54). Figure 2.34 illustrates how convolution is related to linear systems.
If the system, h(t) is causal (i.e., h(t) = 0 for t < 0) and, in addition, the signal x(t) is applied to
the system at time t = 0, then (2.54) becomes

y(t) =

Z t

0
h(t� u)x(u)du: (2.56)

Similarly, for h(n) a time invariant, causal, discrete linear system with input x(n) starting at time
n = 0, the output y(n) is the convolution

y(n) =

nX
k=0

h(n� k)x(k): (2.57)

An important property of the convolution operation is that the calculation can be e�ected by
using Fourier transforms. This is due to the fact that convolution in the time domain is equivalent
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to multiplication in the frequency domain. Let X(!), H(!), and Y (!) represent the Fourier
transforms of x(t), h(t), and y(t), respectively, where

Y (!) =

Z 1

�1
y(t)e�j!tdt: (2.58)

If the relationship in (2.54) is valid, then it also follows that

Y (!) = H(!)X(!): (2.59)

There is an analogous relationship between the Fourier transform and convolution for discrete
time signals. Letting X(ej!), H(ej!), and Y (ej!) be the Fourier transforms of x(n), h(n), and
y(n), respectively, where, for example

Y (ej!) =

1X
n=�1

y(n)e�j!n (2.60)

we have that the discrete time convolution operation can be represented in the Fourier domain as

Y (ej!) = H(ej!)X(ej!): (2.61)

The fact that convolution in the time domain is equivalent to multiplication in the frequency
domain means that the calculations in (2.54) and (2.55) can be calculated (at least approximately)
by a computationally eÆcient algorithm, the FFT. This is accomplished by calculating the inverse
DFT of the product of the DFT's of x(n) and h(n). Care must be taken to ensure that the resulting
calculation is a linear convolution (see the section on the DFT and the FFT). The linear convolution
is accomplished by adding enough zeros onto the two sequences so that the circular convolution
accomplished by the DFT is equivalent to a linear convolution.

The convolution of two �nite length sequences can be calculated by the Scilab function convol.

2.5.2 Use of the convol function

The convol function can be used following two formats. The �rst format calculates a convolution
based on two discrete length sequences which are passed in their entirety to the function. The
second format performs updated convolutions using the overlap-add method described in [21]. It
is used when one of the sequences is very long and, consequently, cannot be passed directly to the
function.

The syntax used for the function under the �rst format is

-->y=convol(h,x)

where both h and x are �nite length vectors and y is a vector representing the resulting convolution
of the inputs. An example of the use of the function under the �rst format is as follows.

-->x=1:3

x =

! 1. 2. 3. !

-->h=ones(1,4)

h =
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! 1. 1. 1. 1. !

-->y=convol(h,x)

y =

! 1. 3. 6. 6. 5. 3. !

The syntax used for the function under the second format is

-->[y,y1]=convol(h,x,y0)

where y0 and y1 are required to update the calculations of the convolution at each iteration and
where the use of the second format requires the following function supplied by the user.

//exec('convol1.code')

x1=getx(xlen_1,xstart_1);

[y,y1]=convol(h,x1);

for k=2:nsecs-1,

xk=getx(xlen_k,xstart_k);

[y,y1]=convol(h,xk,y1);

end,

xn=getx(xlen_n,xstart_n);

y=convol(h,xn,y1);

where, nsecs is the number of sections of x to be used in the convolution calculation and, in
addition, the user must supply a function getx which obtains segments of the data x following the
format.

function [xv]=getx(xlen,xstart)

.

.

.

where xlen is the length of data requested and xstart is the length of the data vector to be used.

2.6 The Chirp Z-Transform

2.6.1 Introduction

The discrete Fourier transform (DFT) of a �nite length, discrete time signal, x(n), is de�ned by

X(k) =

N�1X
n=0

x(n)e�j(2�nk)=N (2.62)

k = 0; 1; : : : ; N � 1
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and the z-transform of x(n) is given by

X(z) =

1X
n=�1

x(n)z�n

=

N�1X
n=0

x(n)z�n (2.63)

The N�1 points of the DFT of x(n) are related to the z-transform of x(n) in that they are samples
of the z-transform taken at equally spaced intervals on the unit circle in the z-plane.

There are applications [25] where it is desired to calculate samples of the z-transform at locations
either o� the unit circle or at unequally spaced angles on the unit circle. The chirp z-transform
(CZT) is an eÆcient algorithm which can be used for calculating samples of some of these z-
transforms. In particular, the CZT can be used to eÆciently calculate the values of the z-transform
of a �nite-length, discrete-time sequence if the z-transform points are of the form

zk = AW�k (2.64)

where

A = A0e
j�

W = W0e
�j� (2.65)

and where A0 and W0 are real valued constants and � and � are angles.
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◊

Figure 2.35: exec('czt1.code') Samples of the z-transform on Spirals

The set of points fzkg lie on a spiral where z0 is at distance A0 from the origin and at angle �
from the x-axis. The remaining points are located at equally spaced angles, �, and approach the
origin for W0 > 1, move away from the origin for W0 < 1, and remain on a circle of radius A0 for
W0 = 1. Figure 2.35 shows the location of samples of the z-transform for W0 < 1 on the left hand
side of the �gure and of W0 < 1 on the right hand side of the �gure. In both parts of the �gure the
position of z0 is indicated by the sample connected to the origin by a straight line.
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x(n) - i- h(n) - i- X(k)
6

1=h(k)

6

A�n=h(n)

Figure 2.36: Filter Realization of CZT

2.6.2 Calculating the CZT

Calculating samples of the z-transform of x(n) at the M points designated in (2.65) requires that

X(zk) =
N�1X
n=0

x(n)A�nW nk; k = 0; 1; : : : ;M � 1 (2.66)

where N is the length of x(n). Using the identity

nk =
1

2
[n2 + k2 � (k � n)2] (2.67)

in (2.66) yields

X(zk) =

N�1X
n=0

x(n)A�nW
1
2
n2W

1
2
k2W� 1

2
(k�n)2

= W
1
2
k2

N�1X
n=0

[x(n)A�nW
1
2
n2W� 1

2
(k�n)2 ]: (2.68)

It can be seen that imbedded in (2.68) is a convolution of two sequences g(n) and h(n) where

g(n) = x(n)A�nW
1
2
n2 (2.69)

and
h(n) =W� 1

2
n2 : (2.70)

Consequently, (2.68) can be represented by the block diagram in Figure 2.36. (The circular junctions
in Figure 2.36 represent multiplication of the two incoming signals).

The convolution in (2.68) can be eÆciently implemented using an FFT. Since the input sequence
is of length N and the output sequence is of length M , it is necessary to use N +M � 1 elements
from h(n). These N+M�1 elements are h(�N +1); h(�N +2); : : : ; h(n); : : : ; h(M �2); h(M �1).
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After taking the product of the N +M �1 point FFT of h(n) and of g(n) (whereM �1 zero points
have been added to the end of g(n)), the inverse FFT yields a circular convolution of h(n) and
g(n). Care must be taken to choose the correct M points corresponding to the linear convolution
desired. The function czt implements the chirp z-transform.

2.6.3 Examples

The �rst example presented here calculates the CZT of the sequence x(n) = n for n = 0; 1; : : : ; 9
where ten points are calculated in the z-plane and the parameter values are W0 = 1, � = 2�=10,
A0 = 1, and � = 0. This example should yield results identical to those obtained by taking the
FFT of the sequence x(n). The sequence of commands is as follows,

-->[czx]=czt((0:9),10,1,2*%pi/10,1,0);

-->czx'

ans =

! 45. + 2.505D-15i !

! - 5. - 15.388418i !

! - 5. - 6.8819096i !

! - 5. - 3.6327126i !

! - 5. - 1.6245985i !

! - 5. - 4.171D-15i !

! - 5. + 1.6245985i !

! - 5. + 3.6327126i !

! - 5. + 6.8819096i !

! - 5. + 15.388418i !

As can be veri�ed using the function fft, the above result is identical to that obtained by taking
the FFT of the sequence x(n) which is shown below,

-->fft((0:9),-1)'

ans =

! 45. !

! - 5. - 15.388418i !

! - 5. - 6.8819096i !

! - 5. - 3.6327126i !

! - 5. - 1.6245985i !

! - 5. - 8.739D-17i !

! - 5. + 1.6245985i !

! - 5. + 3.6327126i !

! - 5. + 6.8819096i !

! - 5. + 15.388418i !
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The second example calculates the DFT of the same sequence, x(n), above, however, just at
�ve equally spaced points in [��=4; �=4] on the unit circle in the z-plane. The spacing between the
points is �=8 for �ve points in [��=4; �=4]. The result is

-->x=0:9;

-->[czx]=czt(x,5,1,%pi/8,1,-%pi/4);

-->czx'

ans =

! 10.363961 + 3.2928932i !

! - 25.451987 - 16.665207i !

! 45. + 3.619D-14i !

! - 25.451987 + 16.665207i !

! 10.363961 - 3.2928932i !

Now taking a sixteen point FFT of the sequence x(n) (accomplished by adding six zeros to the
end of the sequence x(n)) it can be seen that the CZT computed above yields exactly the desired
points on the unit circle in the z-plane. That is to say that the last three points of czx correspond
to the �rst three points of the FFT of x(n) and the �rst two points of czx correspond to the last
two points of the FFT.

-->y=0*ones(1:16);

-->y(1:10)=0:9;

-->fft(y,-1)'

ans =

! 45. !

! - 25.451987 + 16.665207i !

! 10.363961 - 3.2928932i !

! - 9.0640653 - 2.3284927i !

! 4. + 5.i !

! - 1.2790805 - 5.6422012i !

! - 2.363961 + 4.7071068i !

! 3.7951327 - 2.6485014i !

! - 5. !

! 3.7951327 + 2.6485014i !

! - 2.363961 - 4.7071068i !

! - 1.2790805 + 5.6422012i !

! 4. - 5.i !

! - 9.0640653 + 2.3284927i !

! 10.363961 + 3.2928932i !

! - 25.451987 - 16.665207i !



62 CHAPTER 2. REPRESENTATION OF SIGNALS



Chapter 3

Design of Finite Impulse Response

Filters

3.1 Windowing Techniques

In theory, the design of FIR �lters is straightforward. One takes the inverse Fourier transform of
the desired frequency response and obtains the discrete time impulse response of the �lter according
to (3.1)

h(n) =
1

2�

Z �

��
H(!)ej!nd! �1 < n <1 (3.1)

The problem, in practice, is that for many �lters of interest the resulting impulse response is in�nite
and non-causal. An example of this is the low pass �lter which, given its cut-o� frequency, !c, is
de�ned by

H(!j!c) =
�

1; j!j � !c
0; otherwise

(3.2)

The associated impulse response is obtained by applying (3.1) to (3.2) which yields

h(nj!c) = 1

�n
sin(!cn) �1 < n <1 (3.3)

A technique for obtaining a �nite length implementation to (3.3) is to take the N elements of h(n)
which are centered around n = 0 and to discard all the remaining elements. This operation can be
represented by multiplying the sequence in (3.3) by an appropriately shifted version of a rectangular
window of the form

RN (n) =

�
1; 0 � n � N � 1
0; otherwise

(3.4)

The magnitude of the resulting windowed sequence frequency response is depicted in Figure 3.1
superimposed on the ideal frequency response (the dotted curve). The �lter illustrated in Figure 3.1
has length N = 33 and a cut-o� frequency of !c = :2. As can be seen, the

approximation is marked by a ripple in both the pass and stop bands. This ripple �nds its
greatest deviations near the discontinuity at !c. The observed ripple is due to the convolution of
the ideal frequency response given by (3.2) with the frequency response of the rectangular window.
For many applications the ripples in the frequency response of Figure 3.1 are unacceptable.

It is possible to decrease the amount of rippling by using di�erent types of windows. The
performance of a window is governed by its frequency response. Since the frequency response of the
window is convolved with the desired frequency response the objective is to �nd a window which

63
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Figure 3.1: exec('fir1.code') Rectangularly windowed low-pass �lter

has a frequency response which is as impulsive as possible. That is, the frequency response should
have a narrow main lobe with most of the energy in this lobe and side lobes which are as small
as possible. The width of the main lobe governs, for example, the width of the transition band
between the pass and stop bands of a low pass �lter. The side lobes govern the amount ripple in
the pass and stop bands. The area under the main lobe governs the amount of rejection available
in the stop bands.

The choice of window in the design process is a matter of trading o�, on one hand, the e�ects
of transition band width, ripple, and rejection in the stop band with, on the other hand, the �lter
length and the window type.

3.1.1 Filter Types

The Scilab function wfir designs four di�erent types of FIR linear phase �lters: low pass, high pass,
band pass, and stop band �lters. The impulse response of the three latter �lters can be obtained
from the low pass �lter by simple relations and the impulse response of the low pass �lter is given
in (3.3).

To show the relationship between the four �lter types we �rst examine Figure 3.2 which illus-
trates the frequency response of a low pass �lter with cut o� frequency denoted by !l.

The frequency response of a high pass �lter is illustrated in Figure 3.3
where !h denotes, also, the cut o� frequency. Taking the functional form of the low pass �lter

to be H(!j!l) and that of the high pass �lter to be G(!j!h), the relationship between these two
frequency responses is

G(!j!h) = 1�H(!j!h): (3.5)

Using the result in (3.3), the impulse response of the high pass �lter is given by

g(nj!h) = Æ(n)� h(nj!h) (3.6)

= Æ(n)� 1

n�
sin(!hn) (3.7)
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Figure 3.2: exec('fir2 5.code') Frequency response of a low pass �lter
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Figure 3.3: exec('fir2 5.code') Frequency response of a high pass �lter
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where Æ(n) = 1 when n = 0 and is zero otherwise.

For a band pass �lter, as illustrated in Figure 3.4,
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Figure 3.4: exec('fir2 5.code') Frequency response of a band pass �lter

the functional form of the frequency response, F (!j!l; !h) can be obtained by shifting the low
pass �lter two times as follows

F (!j!l; !h) = H(! � !1j!2) +H(! + !1j!2) (3.8)

!1 =
1

2
(!l + !h) (3.9)

!2 =
1

2
(!l � !h): (3.10)

Thus, the impulse response of the band pass �lter is

f(nj!l; !h) = ej!1nh(nj!2) + e�j!1nh(nj!2) (3.11)

=
2

n�
cos(!1n) sin(!2n): (3.12)

Finally, the stop band �lter illustrated in Figure 3.5

can be obtained from the band pass �lter by the relation

D(!j!l; !h) = 1� F (!j!l; !h) (3.13)

where D(!j!l; !h) is the frequency response of the stop band �lter. The impulse response of this
�lter is

d(nj!l; !h) = Æ(n)� f(nj!l; !h) (3.14)

= Æ(n)� 2

n�
cos(!1n) sin(!2n): (3.15)
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Figure 3.5: exec('fir2 5.code') Frequency response of a stop band �lter

3.1.2 Choice of Windows

Four types of windows are discussed here. They are the triangular, generalized Hamming, Kaiser,
and Chebyshev windows. As was noted in the introduction it is the frequency response of a window
which governs its eÆcacy in �lter design. Consequently, for each window type, we try to give its
frequency response and a qualitative analysis of its features with respect to the frequency response
of the rectangular window.

The frequency response of the rectangular window is obtained by taking the Fourier transform
of (3.4)

RN (!) =

N�1X
n=0

e�j!n (3.16)

=
sin(!N=2)

sin(!=2)
e�j(N�1)!=2: (3.17)

The magnitude of (3.17) is plotted as the solid line in Figure 3.6. Evaluating (3.17) at ! = 0 yields
the height of the main lobe which is RN (0) = N . The zeros of RN (!) are located at ! = �2�n=N ,
n = 1; 2; : : :, and, consequently, the base of the main lobe has width 4�=N . The area under the
main lobe can be bounded from above by the area of a rectangle (depicted by a dotted curve in
Figure 3.6) of area 4� and from below by that of a triangle (also shown in Figure 3.6) of area 2�.
Thus, the area under the main lobe is essentially independent of the value of N and the percentage
area under the main lobe decreases with increasing N . This fact is important because it illustrates
that the rectangular window is limited in its ability to perform like an impulse.

By comparison the percentage area under the main lobe of the triangular window is approx-
imately constant as the value of N increases. The impulse response of the triangular window
is

T2N�1(n) =

8<
:

(n+ 1)=N; 0 � n � N � 1
(2N � 1� n)=N; N � n � 2N � 2
0; otherwise:

(3.18)
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Figure 3.6: exec('fir6.code') Magnitude of rectangular window

Since the impulse response for the triangular window can be obtained by scaling the rectangular
window by 1=

p
N and convolving it with itself, the frequency response, T2N�1(!), is the square of

RN (!)=N or

T2N�1(!) =
sin2(!N=2)

N sin2(!=2)
e�j(N�1)! : (3.19)

As can be seen from (3.19), the width of the main lobe of the triangular window is the same width
as that of the rectangular window (i.e. 4�=N). However, the impulse response of the triangular
window is twice as long as that of the rectangular window. Consequently, the triangularly windowed
�lter shows less ripple but broader transition bands than the rectangularly windowed �lter.

The Hamming window is like the triangular window in that its main lobe is about twice as
wide as that of a rectangular window for an equal length impulse response. All but :04% of the
Hamming windows energy is in the main lobe. The Hamming window is de�ned by

HN (n) =

�
�+ (1� �) cos(2�nN ); �(N � 1)=2 � n � (N � 1)=2
0; otherwise:

(3.20)

where � = :54. Other values for � are possible. For example when � = :5 then (3.20) is known as
the Hanning window.. The frequency response of (3.20) can be obtained by noting that HN (n) is
a rectangularly windowed version of the constant � and an in�nite length cosine. Thus

HN (!) = RN (!) � (3.21)

[�Æ(!) +
1

2
(1� �)Æ(! � 2�

N
) +

1

2
(1� �)Æ(! +

2�

N
)] (3.22)

= �RN (!) + (
1� �

2
)RN (! +

2�

N
) + (

1� �

2
)RN (! � 2�

N
): (3.23)

where the \�" symbol denotes convolution.
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The Kaiser window is de�ned as

KN (n) =

(
Io(�

p
1�[2n=(N�1)]2)
Io(�)

; �(N � 1)=2 � n � (N � 1)=2

0; otherwise:
(3.24)

where Io(x) is the modi�ed zeroth-order Bessel function and � is a constant which controls the
trade-o� of the side-lobe heights and the width of the main lobe. The Kaiser window yields an
optimal window in the sense that the side lobe ripple is minimized in the least squares sense for
a certain main lobe width. A closed form for the frequency response of the Kaiser window is not
available.

The Chebyshev window is obtained as the inverse DFT of a Chebyshev polynomial evaluated
at equally spaced intervals on the unit circle. The Chebyshev window uniformly minimizes the
amount of ripple in the side lobes for a given main lobe width and �lter length. A useful aspect
of the design procedure for the Chebyshev window is that given any two of the three parameters:
the window length, N ; half the main lobe width, Æf ; the side lobe height, Æp, the third can be
determined analytically using the formulas which follow. For Æf and Æp known, N is obtained from

N � 1 +
cosh�1((1 + Æp)=(Æp))

cosh�1(1=(cos(�Æf )))
: (3.25)

For N and Æp known, Æf is obtained from

Æf =
1

�
cos�1(1= cosh(cosh�1((1 + Æp)=Æp)=(N � 1))): (3.26)

Finally, for N and Æf known, Æp is obtained from

Æp = [cosh((N � 1) cosh�1(1= cos(�Æf )))� 1]�1: (3.27)

3.1.3 How to use wfir

The syntax for the function wfir is as follows can take two formats. The �rst format is as follows:

--> [wft,wfm,fr]=wfir()

where the parentheses are a required part of the name. This format of the function is interactive
and will prompt the user for required input parameters such as the �lter type (lp='low pass',
hp='high pass', bp='band pass', sb='stop band'), �lter length (an integer n > 2), window type
(re='rectangular', tr='triangular', hm='hamming', kr='kaiser', ch='chebyshev') and other special
parameters such as � for the the generalized Hamming window (0 < � < 1) and � for the Kaiser
window (� > 0). The three returned arguments are:

� wft: A vector containing the windowed �lter coeÆcients for a �lter of length n.

� wfm: A vector of length 256 containing the frequency response of the windowed �lter.

� fr: A vector of length 256 containing the frequency axis values (0 � fr� :5) associated to the
values contained in wfm.

The second format of the function is as follows:

--> [wft,wfm,fr]=wfir(ftype,forder,cfreq,wtype,fpar)
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This format of the function is not interactive and, consequently, all the input parameters must be
passed as arguments to the function. The �rst argument ftype indicates the type of �lter to be
constructed and can take the values 'lp', 'hp', 'bp', and sb' representing, respectively the �lters
low-pass, high-pass, band-pass, and stop-band. The argument forder is a positive integer giving
the order of the desired �lter. The argument cfreq is a two-vector for which only the �rst element
is used in the case of low-pass and high-pass �lters. Under these circumstances cfreq(1) is the
cut-o� frequency (in normalized Hertz) of the desired �lter. For band-pass and stop-band �lters
both elements of cfreq are used, the �rst being the low frequency cut-o� and the second being the
high frequency cut-o� of the �lter. Both values of cfreq must be in the range [0; :5) corresponding
to the possible values of a discrete frequency response. The argument wtype indicates the type
of window desired and can take the values 're', 'tr', 'hm', 'hn', 'kr', and 'ch' representing,
respectively, the windows rectangular, triangular, Hamming, Hanning, Kaiser, and Chebyshev.
Finally, the argument fpar is a two-vector for which only the �rst element is used in the case of
Kaiser window and for which both elements are used in the case of a Chebyshev window. In the
case of a Kaiser window the �rst element of fpar indicates the relative trade-o� between the main
lobe of the window frequency response and the side-lobe height and must be a positive integer. For
more on this parameter see [24]. For the case of the Chebyshev window one can specify either the
width of the window's main lobe or the height of the window sidelobes. The �rst element of fpar
indicates the side-lobe height and must take a value in the range [0; 1) and the second element
gives the main-lobe width and must take a value in the range [0; :5). The unspeci�ed element of
the fpar-vector is indicated by assigning it a negative value. Thus, fpar=[.01,-1] means that the
Chebyshev window will have side-lobes of height :01 and the main-lobe width is left unspeci�ed.

Note: Because of the properties of FIR linear phase �lters it is not possible to design an even
length high pass or stop band �lter.

3.1.4 Examples

This section gives several examples of windowed �lter design. In the �rst example we choose a
low pass �lter of length n = 33 using a Kaiser window with parameter � = 5:6. The resulting
magnitude of the windowed �lter is plotted in Figure 3.7 where the magnitude axis is given on a
log scale.

The second example is a stop band �lter of length 127 using a Hamming window with param-
eter � = :54. The resulting magnitude of the windowed �lter is plotted in Figure 3.8 where the
magnitude is given on a log scale.

The third example is a band pass �lter of length 55 using a Chebyshev window with parameter
dp = :001 and df = :0446622. The resulting magnitude of the windowed �lter is plotted in Figure 3.9
where the magnitude is given on a log scale.

3.2 Frequency Sampling Technique

This technique is based on speci�cation of a set of samples of the desired frequency response at N
uniformly spaced points around the unit circle, where N is the �lter length. The z-transform of an
FIR �lter is easily shown to be :

H(z) =
1� z�N

N

N�1X
k=0

H(k)

(1� z�1ej(2�=N)k)
(3.28)

This means that one way of approximating any continuous frequency response is to sample in

frequency, at N equi-spaced points around the unit circle (the frequency samples), and interpolate
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Figure 3.7: exec('fir7.code') Low pass �lter with Kaiser window, n = 33, � = 5:6
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Figure 3.8: exec('fir8.code') Stop band �lter with Hamming window, n = 127, � = :54
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Figure 3.9: exec('fir9.code') Band pass �lter with Chebyshev window, n = 55, dp = :001,
df = :0446622

between them to obtain the continuous frequency response. Thus, the approximation error will be
exactly zero at the sampling frequencies and �nite between them. This fact has to be related to
the reconstruction of a continuous function from its samples, as exposed in section 2.2 for the case
of a continuous-time signal.

The interpolation formula for an FIR �lter, that is its frequency response, is obtained by eval-
uating (3.28) on the unit circle:

H(ej!) =
e�j!(N�1)=2

N

N�1X
k=0

H(k)e�jk�=N sin(N!=2)

sin(!=2� k�=N)

=
e�j!(N�1)=2

N

N�1X
k=0

H(k)S(!; k) (3.29)

where

S(!; k) = e�jk�=N
sin(N!=2)

sin(!=2 � k�=N)

= �e�jk�=N sin(N(!=2) � k�=N)

sin(!=2� k�=N)
(3.30)

are the interpolating functions. Thus, the contribution of every frequency sample to the continuous
frequency response is proportional to the interpolating function sin(N!=2)= sin(!=2) shifted by
k�=N in frequency. The main drawback of this technique is the lack of exibility in specifying the
transition band width, which is equal to the number of samples the user decides to put in times �=N ,
and thus is strongly related to N . Moreover, the speci�cation of frequency samples in transition
bands, giving minimum ripple near the band edges, is not immediate. Nevertheless, it will be seen,
in a later chapter on �lter optimization techniques, that simple linear programming techniques can
be used to drastically reduce the error approximation by optimizing only those samples located in
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the transition bands. To illustrate this point, Figure 3.10 shows the response obtained for a type 1
band pass �lter with length 65 : �rst with no sample in the transition bands and second (dashed
curve) with one sample of magnitude .5 in each of these bands. It is worth noting at this point that
the linear-FIR design problem with arbitrary frequency response speci�cation is more eÆciently
solved using a minmax approximation approach, which is exposed in the next section.
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Figure 3.10: exec('fstyp121.code')Type 1 band pass �lter with no sample or one sample in each
transition band

Finally, depending on where the initial frequency sample occurs, two distinct sets of frequency
samples can be given, corresponding to the so-called type 1 and type 2 FIR �lters :

fk =
k

N
k = 0; : : : ; N � 1 for type 1 �lters

fk =
k + 1=2

N
k = 0; : : : ; N � 1 for type 2 �lters

The type of design is at user's will and depends on the application: for example, a band edge
may be closer to a type 1 than to a type 2 frequency sampling point. This point is illustrated in
Figure 3.11 for the case of a low pass �lter with length 64 and no sample in the transition band.

The full line (resp. the dashed line) gives the approximated response for the type 1 (resp. type
2) FIR linear �lter. We give now the way the two previous examples have been generated and the
code of the function fsfir which calculates the approximated response. Figure 3.10 was obtained
with the following set of instructions :

-->hd=[0*ones(1,15) ones(1,10) 0*ones(1,39)];//desired samples
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Figure 3.11: exec('fstyp122.code')Type 1 and type 2 low pass �lter

-->hst1=fsfirlin(hd,1);//filter with no sample in the transition

-->hd(15)=.5;hd(26)=.5;//samples in the transition bands

-->hst2=fsfirlin(hd,1);//corresponding filter

-->pas=1/prod(size(hst1))*.5;

-->fg=0:pas:.5;//normalized frequencies grid

-->n=prod(size(hst1))

n =

257.

-->plot(fg(1:n),hst1);

-->plot2d(fg(1:n)',hst2',[3],"000");

and Figure 3.11 with :

-->hd=ones(1,32);hd(65)=0;//definition of samples

-->hst1=fsfirlin(hd,1);//type 1 filter
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-->hst2=fsfirlin(hd,2);//type 2 filter

-->pas=1/prod(size(hst1))*.5;

-->fg=pas:pas:.5;//normalized frequencies grid

3.3 Optimal �lters

The design of FIR linear phase �lters is a topic addressed in some detail in the section on windowed
�lter design. The essential idea behind the techniques of windowed �lter design is to obtain a �lter
which is close to a minimum squared error approximation to the desired �lter. This section is
devoted to the description of a �lter design function which seeks to optimize such an alternative
criterion : the minimax or Chebyshev error approximation.

3.3.1 Minimax Approximation

To illustrate the problem of minimax approximation we propose an overspeci�ed system of N linear
equations in M unknowns where N > M . If x represents the unknown M -vector then the system
of equations can be written as

Ax = b (3.31)

where A is an N �M matrix and b is an N -vector. In general, no solution will exist for (3.31) and,
consequently, it is reasonable to seek an approximation to x such that the error vector

r(x) = Ax� b (3.32)

is in some way minimized with respect to x.
Representing the N components of r(x) as rk(x), k = 1; 2; : : : ; N the minimax approxima-

tion problem for the system of linear equations in (3.31) can be posed as follows. The minimax
approximation, x̂1, is obtained by �nding the solution to

x̂1 = argmin
x
jjrk(x)jj1 (3.33)

where
jjrk(x)jj1 = max

k
jrk(x)j: (3.34)

Equation (3.34) de�nes the supremum norm of the vector r(x). The supremum norm of r(x) for a
particular value of x is the component of r(x) (i.e., the rk(x)) which is the largest. The minimax
approximation in (3.33) is the value of x which, out of all possible values for x, makes (3.34) the
smallest.

The minimax approximation can be contrasted by the minimum squared error approximation,
x̂2, as de�ned by

x̂2 = argmin
x
jjr(x)jj2 (3.35)

where

jjr(x)jj2 = [

NX
k=1

rk
2(x)]1=2: (3.36)
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There is a relationship between (3.34) and (3.36) which can be seen by examining the class of norms
de�ned on r(x) by

jjr(x)jjn = [

NX
k=1

rk
n(x)]1=n: (3.37)

For n = 2 the expression in (3.37) is the squared error norm in (3.36) and for n!1 the norm in
(3.37) becomes the supremum norm in (3.34) (which explains the notation jj � jj1). If r(x) was a
continuous function instead of a discrete component vector then the sum in (3.36) would become an
integral and the interpretation of the approximation in (3.35) would be that the best approximation
was the one which minimized the area under the magnitude of the error function r(x). By contrast
the interpretation of the approximation in (3.33) would be that the best approximation is the one
which minimizes the maximum magnitude of r(x).

As an example, consider the system of four linear equations in one unknown:

x = 2
1

3
x = 1

x = 4
6

15
x = 3 (3.38)

The plot of the magnitude of the four error functions jrk(x)j, k = 1; 2; 3; 4 is shown in Figure 3.12.
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Figure 3.12: exec('remez1.code') Minimax Approximation for Linear Equations

Also shown in Figure 3.12 is a piece-wise continuous function denoted by the cross-hatched seg-
ments of the rk(x). This is the function which represents jjr(x)jj1 as a function of x. Consequently,
it is easy to see which value of x minimizes jjr(x)jj1 for this problem. It is the value of x which
lies at the cross-hatched intersection of the functions jx� 2j and j 615x� 3j, that is x̂1 = 3:571. The
maximum error at this value is 1:571.
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By comparison the mean squared error approximation for a system of linear equations as in
(3.31) is

x̂2 = (ATA)�1AT b (3.39)

where T denotes the transpose (and assuming that ATA is invertible). Consequently, for the
example in (3.38) we have that A = [1; 13 ; 1;

6
15 ]

T and that b = [2; 1; 4; 3]T and thus x̂2 = 3:317. The
maximum error here is 1:673. As expected the maximum error for the approximation x̂2 is bigger
than that for the approximation x̂1.

3.3.2 The Remez Algorithm

The Remez algorithm seeks to uniformly minimize the magnitude of an error function E(f) on
an interval [f0; f1]. In the following discussion the function E(f) takes the form of a weighted
di�erence of two functions

E(f) =W (f)(D(f)�H(f)) (3.40)

where D(f) is a single-valued function which is to be approximated by H(f), andW (f) is a positive
weighting function. The Remez algorithm iteratively searches for the H�(f) such that

H�(f) = arg min
H(f)

kE(f)k1 (3.41)

where
kE(f)k1 = max

f0�f�f1
jE(f)j (3.42)

is known as both the Chebyshev and the minimax norm of E(f). The details of the Remez algorithm
can be found in [5].

The function H(f) is constrained, for our purposes, to the class of functions

H(f) =

NX
n=0

an cos(2�fn): (3.43)

Furthermore, we take the interval of approximation to be [0; :5]. Under these conditions the posed
problem corresponds to digital �lter design where the functions H(f) represent the discrete Fourier
transform of an FIR, linear phase �lter of odd length and even symmetry. Consequently, the
function H(f) can be written

H(f) =

NX
n=�N

hne
�j2�fn (3.44)

The relationship between the coeÆcients in (3.43) and (3.44) is an = 2hn for n = 1; 2; : : : ; N and
a0 = h0.

With respect to the discussion in the previous section the problem posed here can be viewed
as an overspeci�ed system of linear equations in the N + 1 unknowns, an, where the number of
equations is uncountably in�nite. The Remez algorithm seeks to solve this overspeci�ed system of
linear equations in the minimax sense. The next section describes the Scilab function remezb and
how it can be used to design FIR �lters.

3.3.3 Function remezb

The syntax for the function remezb is as follows:

--> an=remezb(nc,fg,df,wf)
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where df and wf are vectors which are sampled values of the functions D(f) and W (f) (see the
previous section for de�nition of notation), respectively. The sampled values of D(f) andW (f) are
taken on a grid of points along the f -axis in the interval [0; :5]. The values of the frequency grid are
in the vector fg. The values of fg are not obliged to be equi-spaced in the interval [0; :5]. In fact,
it is very useful, for certain problems, to specify an fg which has elements which are equi-spaced in
only certain sub-intervals of [0; :5] (see the examples in the following section). The value of nc is the
number of cosine functions to be used in the evaluation of the approximating function H(f) (see
(3.43)). The value of the variable nc must be a positive, odd integer if the problem is to correspond
to an FIR �lter. The an are the values of the coeÆcients in (3.43) which correspond to the optimal
H(f).

To obtain the coeÆcients of the corresponding FIR �lter it suÆces to create a vector hn using
the Scilab commands:

//exec('remez8.code')

hn(1:nc-1)=an(nc:-1:2)/2;

hn(nc)=an(1);

hn(nc+1:2*nc-1)=an(2:nc)/2;

Even length �lters can be implemented as follows. For an even length �lter to have linear phase
the �lter must have even symmetry about the origin. Consequently, it follows that the �lter must
take values at the points n = �1

2 ;�3
2 ; : : : ;�N�1

2 and that the frequency response of the �lter has
the form

H(f) =

N+ 1
2X

n=�N� 1
2

hne
�j2�fn: (3.45)

Due to the even symmetry of the frequency response, H(f), (3.45) can be put into the form

H(f) =

NX
n=1

bn cos[2�(n� 1

2
)f ] (3.46)

where the relationship between the hn in (3.45) and the bn in (3.46) is h(n) = 1
2b(N � n) for

n = 1; 2; : : : ; N .
The expression for H(f) in (3.46) can be rewritten so that

H(f) = cos(�f)

N�1X
n=0

~bn cos(2�nf): (3.47)

where b(n) = 1
2 [
~b(n�1)+~b(n)] for n = 2; 3; : : : ; N�1 and b(1) = ~b(0)+ 1

2
~b(1) and b(N) = 1

2
~b(N�1).

Since the expression in (3.47) is identical to that in (3.43) all that is required to make the function
remezb work is a change in the values of the desired and weight vectors by the factor cos�1(�f).
That is, the arguments given to the function remezb are ddf and wwf where ddf = df= cos(�f)
and wwf = wf cos(�f). Caution must be used in choosing the values of fg since for f = :5 the
division of df by cos(�f) = 0 is not acceptable. The output, an, of the function can be converted
to the �lter coeÆcients hn by using the Scilab commands

//exec('remez2.code')

hn(1)=.25*an(nc);

hn(2:nc-1)=.25*(an(nc:-1:3)+an(nc-1:-1:2));
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hn(nc)=.5*an(1)+.25*an(2);

hn(nc+1:2*nc)=hn(nc:-1:1);

Noting that the form of (3.47) has the term cos(�f) as a factor, it can be seen that H(:5) = 0
regardless of the choice of �lter coeÆcients. Consequently, the user should not attempt to design
�lters which are of even length and which have non-zero magnitude at f = :5.

3.3.4 Examples Using the function remezb

Several examples are presented in this section. These examples show the capabilities and properties
of the function remezb. The �rst example is that of a low-pass �lter with cut-o� frequency .25. The
number of cosine functions used is 21. The input data to the function are �rst created and then
passed to the function remezb. The subsequent output of cosine coeÆcients is displayed below.

Notice that the frequency grid fg is a vector of frequency values which are equally spaced in
the interval [0; :5]. The desired function ds is a vector of the same length as fg and which takes
the value 1 in the interval [0; :25] and the value 0 in (:25; :5]. The weight function wt is unity for
all values in the interval.

-->nc=21;

-->ngrid=nc*250;

-->fg=.5*(0:(ngrid-1))/(ngrid-1);

-->ds(1:ngrid/2)=ones(1:ngrid/2);

-->ds(ngrid/2+1:ngrid)=0*ones(1:ngrid/2);

-->wt=ones(fg);

-->an=remezb(nc,fg,ds,wt)'

an =

! 0.5000000 !

! 0.6369345 !

! 1.405D-07 !

! - 0.2131882 !

! - 1.037D-07 !

! 0.1289952 !

! 6.083D-08 !

! - 0.0933182 !

! - 2.101D-07 !

! 0.0738747 !

! 3.184D-07 !

! - 0.0618530 !

! - 0.0000011 !

! 0.0538913 !
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! 0.0000022 !

! - 0.0484436 !

! - 0.0000100 !

! 0.0447016 !

! - 0.0000202 !

! - 0.5168409 !

! 0.0000417 !

! 0. !

As described in the previous section the cosine coeÆcients an are converted into the coeÆcients for
a even symmetry FIR �lter which has frequency response as illustrated in Figure 3.13.

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Figure 3.13: exec('remez2 4.code') Low Pass Filter with No Transition Band

The error of the solution illustrated in Figure 3.13 is very large; it can become reasonable by
leaving a transition band when giving the speci�cation of the frequency grid. The following example
shows how this is done; remezb is speci�ed as follows :

-->nc=21;

-->ngrid=nc*16;

-->fg=(0:-1+ngrid/2)*.24*2/(ngrid-2);

-->fg(ngrid/2+1:ngrid)=fg(1:ngrid/2)+.26*ones(1:ngrid/2);

-->ds(1:ngrid/2)=ones(1:ngrid/2);
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-->ds(ngrid/2+1:ngrid)=0*ones(1:ngrid/2);

-->wt=ones(fg);

Here the frequency grid fg is speci�ed in the intervals [0; :24] and [:26; :5] leaving the interval
[:24; :26] as an unconstrained transition band. The frequency magnitude response of the resulting
�lter is illustrated in Figure 3.14. As can be seen the response in Figure 3.14 is much more
acceptable than that in Figure 3.13.
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Figure 3.14: exec('remez2 4.code') Low Pass Filter with Transition Band [:24; :26]

A third and �nal example using the function remezb is illustrated below. In this example the
desired function is triangular in shape. The input data was created using the following Scilab
commands

-->nc=21;

-->ngrid=nc*16;

-->fg=.5*(0:(ngrid-1))/(ngrid-1);

-->ds(1:ngrid/2)=(0:-1+ngrid/2)*2/(ngrid-2);

-->ds(ngrid/2+1:ngrid)=ds(ngrid/2:-1:1);

-->wt=ones(fg);
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The resulting frequency magnitude response is illustrated in Figure 3.15.This example illustrates
the strength of the function remezb. The function is not constrained to standard �lter design
problems such as the class of band pass �lters. The function is capable of designing linear phase
FIR �lters of any desired magnitude response.
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Figure 3.15: exec('remez2 4.code') Triangular Shaped Filter

3.3.5 Scilab function eqfir

For the design of piece-wise constant �lters (such as band pass, low pass, high pass, and stop
band �lters) with even or odd length the user may use the function eqfir which is of simpler
manipulation. Three examples are presented here. The �rst two examples are designs for a stopband
�lter. The third example is for a design of a high pass �lter.

The �rst design for the stop band �lter uses the following Scilab commands to create the input
to the function eqfir:

-->nf=32;

-->bedge=[00.2;.220.28;.30.5];

-->des=[1 0 1];

-->wate=[1 1 1];

The resulting magnitude response of the �lter coeÆcients is shown in Figure 3.16. As can be seen
the design is very bad. This is due to the fact that the design is made with an even length �lter
and at the same time requires that the frequency response at f = :5 be non-zero.
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Figure 3.16: exec('remez5 7.code') Stop Band Filter of Even Length
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Figure 3.17: exec('remez5 7.code') Stop Band Filter of Odd Length
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The same example with nf = 33 is run with the result shown in Figure 3.17.
The �nal example is that of a high pass �lter whose input parameters were created as follows:

-->nf=33;

-->bedge=[00.35;.380.5];

-->des=[0 1];

-->wate=[1 1];

The result is displayed in Figure 3.18.
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Figure 3.18: exec('remez5 7.code') High Pass Filter Design



Chapter 4

Design of In�nite Impulse Response

Filters

4.1 Analog �lters

In this section we review some of the most classical analog (or \continuous time") �lters. These
are de�ned in frequency domain as rational transfer functions of the form:

H(s) =

Pm
i=0 bis

i

1 +
Pn

i=1 ais
i

The problem is then to determine the ai and bi coeÆcients or equivalently the zeros zi and poles
pi of H in order to meet given speci�cations of the (squared) magnitude response de�ned as:

h2(!) = jH(i!)j2 = H(s)H(�s)js=i! (4.1)

Thus, h(!) is the spectrum of the output of a linear �lter which admits a white noise as input.
We shall consider in this section only prototype lowpass �lters, i.e., ideally we want to obtain
h(!) = 0 for ! > !c and h(!) = 1 for ! < !c. Highpass, bandpass and stopband �lters are then
easily constructed by a simple change of variables.

The construction consists of �nding a function H2 of the complex variable s such that H2(s) =
H(s)H(�s) (i.e., is symmetric with respect to the imaginary axis and such that H2(i!) = h2(!)
along the imaginary axis). Furthermore, the function H2(s) will be chosen to be rational and,
consequently, de�ned by its poles and zeros.

The transfer function of the �lter, H(s), will then be de�ned by selecting all the poles and zeros
which lie in the left hand side of the complex s-plane. In this way we obtain a stable and minimum
phase �lter.

4.1.1 Butterworth Filters

The squared-magnitude response that we want to realize is given by:

h2n(!j!c) =
1

1 + (
!

!c
)
2n (4.2)

Here, !c is the cuto� frequency and n the order. A typical response can be plotted with the
function buttmag (see Figure 4.1):

The following code gives an example of the squared magnitude of a Butterworth �lter of order
13 (see Figure 4.1).

85



86 CHAPTER 4. IIR FILTERS

-->//squared magnitude response of Butterworth filter

-->h=buttmag(13,300,1:1000);

-->mag=20*log(h)'/log(10);

-->plot2d((1:1000)',mag,[1],"011"," ",[0,-180,1000,20]),
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Figure 4.1: exec('analog1.code') Magnitude in dB. n = 13; !c = 300

From Figure 4.1 we see that the magnitude is a decreasing function of the frequency. Also we
see that

h2n(!cj!c) =
1

2

independently of the order n.
Let us de�ne now the stable transfer function H(s) (Butterworth �lter) by:

H(s) =
k0Qn

k=1 (s� pk)

where
pk = ei�[1=2+(2k�1)=2n] k = 1; : : : ; n

This is done by the small function zpbutt which computes the poles pk and the gain k0:
For instance, with n=7 and !c = 3, we obtain the following transfer function:

-->n=7;



4.1. ANALOG FILTERS 87

-->omegac=3;

-->[pols,gain]=zpbutt(n,omegac);

-->h=poly(gain,'s','coeff')/real(poly(pols,'s'))

h =

2187

------------------------------------------------------------------

2 3 4

2187 + 3276.0963s + 2453.7738s + 1181.9353s + 393.97843s

5 6 7

+ 90.880512s + 13.481878s + s

The poles pk of H are located on the unit circle and are symmetric with respect to the real axis
as is illustrated in Figure 4.2. The �gure was obtained as follows:

-->//Butterworth filter; 13 poles

-->n=13;

-->angles=ones(1,n)*(%pi/2+%pi/(2*n))+(0:n-1)*%pi/n;

-->s=exp(%i*angles); //Location of the poles

-->xset("mark",0,1);

-->lim=1.2*sqrt(2.);

-->plot2d(real(s)',imag(s)',[-3],"012"," ",[-lim,-1.2,lim,1.2]);

-->xarc(-1,1,2,2,0,360*64);

-->xsegs([-lim,0;lim,0],[0,-1.2;0,1.2])

-->xtitle('Pole positions of Butterworth filter');

We note the symmetry of the coeÆcients in H(s) i.e., that H(s) = ~H(s) = snH(
1

s
) , which

follows from the fact that for each pole pk there corresponds the pole
1

pk
= pk. Also, we see

that H(�s) is obtained in the same way as H(s) by selecting the (unstable) poles �pk instead of
the pk. Since the set f(pk;�pk) k = 1; : : : ; ng is made with the 2n roots of the polynomial
p(s) = 1 + (�s2)n. Thus, we have:

H(s)H(�s) = 1

1 + (�s2)n
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Pole positions of Butterworth filter 

Figure 4.2: exec('analog2.code') Butterworth �lter: pole positions. n = 13

It follows immediately from (4.1) that H(s) realizes the response (4.2).We see that H(s) is obtained
by a very simple spectral factorization of p(s), which here can be done analytically.

Order determination: The �lter order, n, completely speci�es a Butterworth �lter. In general
n is determined by giving a desired attenuation 1

A at a speci�ed \normalized" frequency f = !r
!c
.

The �lter order, n, is given by the solution of 1
A2 = h2n(f). We obtain immediately:

n =
log10(A

2 � 1)

2 log10(f)
(4.3)

4.1.2 Chebyshev �lters

The nth order Chebyshev polynomial Tn(x) is de�ned recursively by:�
Tn+1(x) = 2xTn(x)� Tn�1(x)
T0(x) = 1 T1(x) = x

It may be shown that Tn(x) is given more explicitly by:

Tn(x) =

�
cos(n cos�1(x)) if jxj < 1
cosh(n cosh�1(x)) otherwise

(4.4)

The recursive function chepol implements this computation: We note that the roots of Tn are
real and symmetric with respect to the imaginary axis. These polynomials are used to analytically
de�ne the squared-magnitude of the frequency response for a class of analog �lters.

Type 1: Ripple in the passband

For type I Chebyshev �lters the squared-magnitude function that we want to realize is:

h21;n(! j !c; �) =
1

1 + �2T 2
n(

!
!c
)

(4.5)
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This function is completely speci�ed once its three parameters (!c; �; n) are given.

Using chepol, it is easy to compute the squared-magnitude response (4.5). The function
cheb1mag evaluates h21;n(! j !c; �) for a given sample vector of !0s. Note that for any value of
n one has

h21;n(!c j !c; �) =
1

1 + �2

The function h1 is decreasing for ! > !c with \fast" convergence to zero for \large" values of the
order n. The number of oscillations in the passband is also increasing with n. If at ! = !r > !c
, h21;n reaches the value 1

A2 then the parameters (!c; �; n) and (A;!r) are linked by the equation

h21;n(!rj!c; �) = 1
A2 which may be written also as

A2 = 1 + �2T 2
n(
!r
!c

) (4.6)

Using (4.4) this latter equation may be solved more explicitly: n cosh�1(f) = cosh�1(g) with

f =
!r
!c

and g = A2�1
� .

Below is an example of the magnitude plotted in Figure 4.3.

-->//Chebyshev; ripple in the passband

-->n=13;epsilon=0.2;omegac=3;sample=0:0.05:10;

-->h=cheb1mag(n,omegac,epsilon,sample);

-->plot(sample,h,'frequencies','magnitude')
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Figure 4.3: exec('analog3.code') Magnitude of a Type 1 Chebyshev �lter
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Let us now calculate the transfer function of a Type 1 Chebyshev �lter. The transfer function is
all-pole and the poles lie on an ellipse which can be determined totally by specifying the parameter
�, the order n and the cuto� frequency !c. The horizontal and vertical rays a and b of this ellipse

are given by: a = !c
 � �1

2
and b = !c

 + �1

2
where

 = (
1 +

p
1 + �2

�
)

1=n

The poles (pk = �k + i
k; k = 1; 2; : : : ; n) are simple and, in order to have a stable �lter, are
regularly spaced over the left hand side of the ellipse. The function zpch1 computes the poles (and
the gain) of a Type 1 Chebyshev �lter.

With the function zpch1 we can now calculate the transfer function which realizes the preceding
example and recover the desired magnitude. Compare Figures 4.3 and 4.4, the latter �gure being
obtained as follows:

-->n=13;epsilon=0.2;omegac=3;sample=0:0.05:10;

-->[p,gain]=zpch1(n,epsilon,omegac);

-->//Transfer function computation tr_fct(s)=gain/deno(s)

-->tr_fct=poly(gain,'s','coef')/real(poly(p,'s'))

tr_fct =

1946.1951

-----------------------------------------------------------------

2 3 4

1946.1951 + 7652.7444s + 14314.992s + 18875.541s + 17027.684s

5 6 7 8

+ 13282.001s + 7398.971s + 3983.2216s + 1452.2192s

9 10 11 12 13

+ 574.73496s + 131.30929s + 39.153835s + 4.4505809s + s

-->//Magnitude of the frequency response computed along the

-->//imaginary axis for the values %i*sample...

-->rep=abs(freq(tr_fct(2),tr_fct(3),%i*sample));

-->plot(sample,rep,'frequencies','magnitude')

-->xend()
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Figure 4.4: exec('analog4.code') Chebyshev �lter: frequency response in magnitude

Order determination: We have seen that the parameter � speci�es the size of the passband
ripple and !c is the passband edge, thus, one has

1

1 + �2
� h21;n(! j !c) � 1 for 0 � ! � !c

The order n is generally determined by specifying a desired attenuation 1
A at a given \normalized"

frequency f = !r
!c
. As in (4.6), n is given by the solution of 1

A2 = h21;n(f j!c; �):

n =
cosh�1(

p
A2�1
� )

cosh�1(f)
=

log(g +
p
(g2 � 1))

log(f +
p
(f2 � 1)

where g =
p
(A

2�1
�2

)

Type 2: Ripple in the stopband

The squared-magnitude response of a Type 2 Chebyshev �lter is de�ned by:

h22;n(! j !r; A) =
1

1 + A2�1
T 2
n(

!r
!
)

Here !r is the passband edge and A the attenuation at !r. The function cheb2mag computes the
squared-magnitude response. Note that the sample vector must not include the value zero. Also,
for any value of the order n one has:

h22;n(!r j !r; A) =
1

A2

The function is decreasing for 0 < ! < !r and displays ripple for ! > !r.
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Also note that when the equation (4.6) is satis�ed both Type 1 and type 2 functions h1;n and
h2;n take the same values at !c and !r:

h21;n(!rj!c; �) = h22;n(!rj!r; A) =
1

A2

h22;n(!cj!c; �) = h22;n(!cj!r; A) =
1

1 + �2

We can now plot for example a squared-magnitude response for the following speci�cations:
1=A = 0:2; !r = 6; and n = 10. The sample vector of !'s is chosen as 0:0.05:10. The magnitude
plotted in dB is given by Figure 4.5, and was generated by the following code:

-->//Chebyshev; ripple in the stopband

-->n=10;omegar=6;A=1/0.2;sample=0.0001:0.05:10;

-->h2=cheb2mag(n,omegar,A,sample);

-->plot(sample,log(h2)/log(10),'frequencies','magnitude in dB')

-->//Plotting of frequency edges

-->minval=(-maxi(-log(h2)))/log(10);

-->plot2d([omegar;omegar],[minval;0],[1],"000");

-->//Computation of the attenuation in dB at the stopband edge

-->attenuation=-log(A*A)/log(10);

-->plot2d(sample',attenuation*ones(sample)',[2],"000")

The transfer function of a type 2 Chebyshev �lter has both poles and zeros. The zeros are
imaginary and are located at

zk = i
!r

cos( (2k�1)�2n )
k = 1; 2; : : : ; n

The poles pk = �k + i
k k = 1; 2; : : : ; n are found by solving for the singularities of the
denominator of h. They are de�ned by:

�k =
�k

�k2 + �k
2


k =
��k

�k2 + �k
2

where

�k = �a sin((2k � 1)�

2n
)
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Figure 4.5: exec('analog5.code') Magnitude of a Type 2 Chebyshev �lter

�k = b cos(
(2k � 1)�

2n
)

and

a =
 � �1

2

b =
 + �1

2

 = (A+
p
A2 � 1)

1=n

The function zpch2 computes the poles and zeros of a type 2 Chebyshev �lter, given its parameters
(!r; A; n), according to the preceding formulas.

Let us consider the preceding example: we had n = 10, !r = 6, A = 5.

-->n=10;

-->omegar=6;

-->A=1/0.2;

-->[z,p,gain]=zpch2(n,A,omegar);

-->num=real(poly(z,'s')); //Numerator

-->den=real(poly(p,'s')); //Denominator

-->transf=gain*num./den //Transfer function
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transf =

2 4 6 8 10

6.192D+09 + 4.300D+08s + 10450944s + 103680s + 360s + 0.2s

----------------------------------------------------------------

2 3 4

6.192D+09 + 1.526D+09s + 6.179D+08s + 1.069D+08s + 20878805s

5 6 7 8

+ 2494608.7s + 282721.94s + 21546.997s + 1329.062s

9 10

+ 50.141041s + s

Order determination: We have seen that the parameter A speci�es the size of the passband
ripple and !r is the stopband edge. Thus, one has

0 � h22;n(! j !r; A) �
1

A2
for !r � !

The order n is generally determined by specifying a desired attenuation 1
1+�2

at a given \normalized"
frequency f = !r

!c
(remember that in order to de�ne a type 2 Chebyshev �lter !r must be given).

In a similar way as in (4.6), n is given by the solution of 1
1+�2

= h22;n(f j!r; A). Because of the
symmetry in � and A we obtain the same solution as for type 1 �lters:

n =
cosh�1(

p
A2�1
� )

cosh�1(f)
=

log(g +
p
(g2 � 1))

log(f +
p
(f2 � 1)

where g =

r
A2 � 1

�2

4.1.3 Elliptic �lters

The elliptic �lter presents ripple in both the passband and stopband. It is based on the properties
of the Jacobian elliptic function (see [8],[1]) that we briey introduce now.

Elliptic integral

Let us de�ne for z in the complex plane the function

u(z) =

Z z

0

dt

(1� t2)1=2(1�mt2)1=2
(4.7)

where m is a real constant 0 < m < 1. (We will also use the notation u(z;m) when necessary.)

We may assume that the functions u1 = (1� t2)
1
2 and u2 = (1�mt2)

1
2 are de�ned e.g. in the

domain D made of the complex plane cut along the lines fz;Re(z) = �1 and Im(z) < 0g and
fz;Re(z) = � 1p

m
and Im(z) < 0g. In other words we may choose for these complex functions the

determination of the phase between ��=2 and 3�=2. These functions are then completely speci�ed
in D by analytic continuation once we have �xed their values at 0 as being +1.
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Let us de�ne now in the above open connected domain D the function

�(t) =
1

u1(t)u2(t)
=

1

(1� t2)
1
2 (1�mt2)

1
2

and consider the path S which encircles the positive right quarter of the complex plane composed
of the positive real axis, the point at in�nity and the imaginary axis traversed from 1 to zero.

As t increases along the positive real axis the function �(t) �rst assumes positive real values for
0 � t < 1, then for 1 < t < 1=

p
m, �(t) assumes purely imaginary values and for t > 1=

p
m, �(t)

assumes real negative values. At 1 we have �(t) = 0 and as t decreases from 1 to 0 along the
imaginary axis �(t) assumes purely imaginary values.

Let us examine now the consequences of these properties on the function u. When z traces
the same path S the function u(z) traces the border of a rectangle R0 with corners at (O;K;K +
iK 0; iK 0), each side being the image of the four parts of the strip S de�ned above. This follows
from the identities:

K(m) =

Z 1

0
�(t)dt = �

Z 1

1p
m

�(t)dt

and

iK 0(m) =

Z 1p
m

1
�(t)dt =

Z 1

0
�(it)dt

Thus the points (0; 1; 1p
(m)

;1) of the real axis are respectively mapped by u into the points

(0;K;K + iK 0; iK 0) of the complex plane and the intervals (0; 1),(1; 1p
m
),( 1p

m
;1) are respectively

mapped into the intervals (0;K),(K;K + iK 0),(K + iK 0; iK 0).
It may be shown that u realizes a conformal mapping of the �rst quadrant of the complex plane

into the rectangle R0. In particular any point z with Re(z) � 0 and Im(z) � 0 admits an unique
image in the rectangle. In a similar way we can map, under u, each of the four quadrants of the
complex plane into a rectangle R (called the \fundamental rectangle of periods") with corners at
(�K � iK 0;K � iK 0;K + iK 0;�K + iK 0), made of four smaller rectangles de�ned as R0 above
and having the origin as common point. The function u de�nes a one-to-one correspondence of the
complex plane into R.

The function u has been implemented as the %asn function. This function may receive a
real vector x as argument. The calculation is made componentwise. A speci�c algorithm [4] is
implemented in fortran. We note that it suÆcient to be able to compute u(x) for x 2 (0; 1) to
have u(z) for all nonnegative real and purely imaginary values z thanks to the following changes of
variable: Z x

1

dt

(t2 � 1)1=2(1�mt2)1=2
=

Z y

0

dt

(1� t2)1=2(1�m1t2)
1=2

with m1 = 1�m , y2 = 1
m1

x2�1
x2

and x 2 (1; 1=
p
m)

Z x

1p
m

dt

(t2 � 1)1=2(mt2 � 1)1=2
=

Z y

0

dt

(1� t2)1=2(1�mt2)1=2

with y2 = 1
mx2

and x 2 (1=
p
m;1)

Z x

0

dt

(1 + t2)1=2(1 +mt2)1=2
=

Z y

0

dt

(1� t2)1=2(1�m1t2)
1=2
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with m1 = 1�m and y2 = x2

1+x2
, which gives u for purely imaginary values of its argument.

We can now for example use %asn to plot three sides of the rectangle R0 as the image by %asn

of the three associated real intervals (see Figure 4.6). Here m = 0:8 and we see that how a linear
scale is transformed by %asn (parametric plot). In particular at x = 10 the point iK 0 is not reached
(as expected).

-->//The rectangle R0

-->m=0.8+%eps;

-->z=%asn(1/sqrt(m),m);

-->K=real(z);KT=imag(z);

-->x2max=1/sqrt(m);

-->x1=0:0.05:1;x2=1:((x2max-1)/20):x2max;x3=x2max:0.05:10;

-->x=[x1,x2,x3];

-->rect=[0,-KT,1.1*K,2*KT]

rect =

! 0. - 1.6596236 2.4829259 3.3192472 !

-->y=%asn(x,m);

-->plot2d(real(y)',imag(y)',[1],"011"," ",rect);

-->xtitle(' ','real(y)','imag(y)')

-->[n1,n2]=size(x)

n2 =

220.

n1 =

1.

-->x1=0:0.5:1;x2=1:0.3:x2max;x3=x2max:1:10;

-->x1=[0,0.25,0.5,0.75,1.0,1.1,1.2,1.3,1.4,2,3,4,10]

x1 =

column 1 to 10

! 0. 0.25 0.5 0.75 1. 1.1 1.2 1.3 1.4 2. !
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column 11 to 13

! 3. 4. 10. !

-->rect=[0,-KT,1.1*K,2*KT]

rect =

! 0. - 1.6596236 2.4829259 3.3192472 !

-->y1=%asn(x1,m);

-->xnumb(real(y1),imag(y1)+0.1*ones(imag(y1)),x1)

0.000 0.248 0.497 0.745 0.993 1.241 1.490 1.738 1.986 2.235 2.483

-1.66

-1.16

-0.66

-0.17

0.33

0.83

1.33

1.83

2.32

2.82

3.32
imag(y) 

real(y) 

  

0    0.25 0.5  0.75 1    

1.1  

1.2  1.3  1.4  2    3    4    10   

Figure 4.6: exec('analog6.code') The rectangle R0 , image by u of the positive real axis.

The integrals K and K 0 are known as the \complete" elliptic integral: they may be calculated
by %asn since we have K(m) + iK 0(m) = u( 1p

(m)
;m). These numbers may also be calculated by

the Arithmetic-Geometric-Mean algorithm which is implemented as the %K function. Note that
here m can be vector-valued and %K computes K(m) componentwise (this fact will be useful later).

Elliptic function

For y inside the fundamental rectangle R the Jacobian elliptic function sn is de�ned as the inverse
function of u i.e. we have for a �xed value of the parameter m:

u(z) = y , z = sn(y)

In particular we have for the corners of the rectangle R0 de�ned above: sn(0) = 0, sn(K) = 1,
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sn(K + iK 0) = 1p
m
, sn(iK 0) = 1. In fact, the function sn may be extended to the full complex

plane as a meromorphic function.
Indeed,the \symmetry principle" states that if f is an analytic function de�ned in an open set

D whose boundary contains an interval L of the complex plane and if in addition this interval is
itself mapped by f into another interval L0 = f(L) of the complex plane, then f can be extended
to the set �(D), symmetric set of D with respect to L, by the formula f(�(z)) = �0(f(z)) where �
and �0 are the symmetries with respect to L and L0 respectively.

Since the sides of the fundamental rectangle are mapped into intervals of the real and imaginary
axis of the complex plane by sn, it may be easily shown that the function sn may be extended to
the full complex plane by successive symmetries leading to a doubly periodic function with periods
4K and 2iK 0.

For real values of its argument, sn(y) \behaves" like the sine function and for purely imaginary
values of its argument, sn(y) is purely imaginary and has poles at : : : ;�3iK 0;�iK 0; iK 0; 3iK 0; : : :.
For y in the interval (�iK 0;+iK 0), sn(y) \behaves" like i times the tan function and this pattern
is repeated periodically. For m = 0, one has K = �=2, K 0 = 1 and sn coincides with the sin
function. For m = 1, one has K =1, K 0 = �=2 and sn coincides with the tanh function.

The function sn has been implemented by the following function %sn which calls a fortran
routine for real values of the argument, and use the addition formulas ([1]) for imaginary values of
the argument. Note that x is allowed to be complex and vector-valued.

Let us plot for example the real and imaginary behavior of sn; this is done by the following
commands which produce the Figures 4.7 and 4.8 and give respectively sn(x) for 0 � x � 4K and
sn(iy) for 0 � y � 3K 0=2.

-->m=0.36; //m=k^2

-->K=%k(m);

-->P=4*K; //Real period

-->real_val=0:(P/50):P;

-->plot(real_val,real(%sn(real_val,m)),'x real','sn(x)')

For imaginary values of the argument we must take care of the pole of sn(z) at z = iK 0:

-->m=0.36; //m=k^2

-->KT=%k(1-m);

-->Ip=2*KT; //Imaginary period

-->ima_val1=[0.:(Ip/50):(KT-0.01)];

-->ima_val2=[(KT+0.01):(Ip/50):(Ip+KT)];

-->z1=%sn(%i*ima_val1,m);z2=%sn(%i*ima_val2,m);

-->rect=[0,-30,Ip+KT,30];
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Figure 4.7: exec('analog7.code') Behavior of the sn function for real values

-->plot2d([KT,KT]',[-30,30]',[1],"011",' ',rect);

-->xtitle(' ','x imaginary','sn(x)') //asymptote

-->plot2d([-30,30]',[0,0]',[1],"000");

-->plot2d(ima_val1',imag(z1)',[1],"000");

-->plot2d(ima_val2',imag(z2)',[1],"000");

Squared Magnitude Response of Elliptic Filter

The positions of poles and zeros of the sn function will allow to de�ne the squared magnitude
response of a prototype lowpass elliptic �lter. The zeros of the sn function are located at 2pK+2qiK 0

,where p and q are arbitrary integers and its poles are located at 2pK + (2q + 1)K 0.
For a �xed value of the parameter m = m1, let us consider a path �n joining the points

(0; nK1; nK1+ iK
0
1; iK

0
1) with n an odd integer and denoting K1 = K(m1) and K

0
1 = K(1�m1).

From the discussion above we see that for z 2 (0; nK1) the function sn(z) oscillates between 0 and
1 periodically as shown in Figure 4.7. For z 2 (nK1; nK + iK 0

1), sn(z) assumes purely imaginary
values and increases in magnitude, with (real) limit values sn(nK1) = 1 and sn(nK1+iK

0
1) =

1p
m1

.

Finally for z 2 (nK + iK1
0; iK1

0), sn(z) oscillates periodically between sn(nK1+ iK1
0) = 1p

m1
and

1.
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Figure 4.8: exec('analog8.code') Behavior of the sn function for imaginary values

For z in the contour �n, let us consider now the function:

v(z) =
1

1 + �2sn2(z;m1)
(4.8)

Clearly, v(z) oscillates between 1 and 1
1+�2

for z 2 (0; nK1) and between 0 and 1

1+ �2

m1

for z 2
(nK1 + iK1

0; iK1
0). Also, clearly v(z) is a continuous function of z, which is real-valued for z in

the path �n and if we chose the parameter m1 =
�2

A2�1 we can obtain an interesting behavior. The
function ell1mag computes v(z) for a given sample vector z in the complex plane and for given
parameters � and m1.

Now, we de�ne the vector z = [z1; z2; z3] as a discretization of the path �n, with z1 a dicretization
of (0; nK1), z2 a discretization of (nK1; nK1 + ik1

0) and z3 a discretization of (nK1 + iK1
0; iK1

0).
Then we can produce Figure 4.9 which clearly shows the behavior of v(z) for the above three parts
of z.

-->n=9;eps=0.2;A=3;m1=eps*eps/(A*A-1);

-->K1=%k(m1);K1T=%k(1-m1);

-->z1max=n*K1;z2max=K1T;

-->z1=0:(z1max/100):z1max;

-->z2=%i*(0:(z2max/50):z2max);z2=z2+z1max*ones(z2);

-->z3=z1max:-(z1max/100):0;z3=z3+%i*z2max*ones(z3);
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-->plot(ell1mag(eps,m1,[z1,z2,z3]));

-->omc=prod(size(z1));

-->omr=prod(size([z1,z2]));

-->plot2d([omc,omc]',[0,1]',[2],"000");

-->plot2d([omr,omr]',[0,1]',[2],"000");
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Figure 4.9: exec('analog9.code') v(z) for z in �n, with n = 9

Of course, many other paths than �n are possible, giving a large variety of di�erent behaviors.
Note that the number of oscillations in both the passband and stopband is n, an arbitrary odd
integer and the amplitudes of the oscillations are entirely speci�ed by the choice of the parameter
m1.

Thus, we have obtained a function v whose behavior seems to correspond to a \good" squared
magnitude for the prototype �lter that we want to realize. However, this function is de�ned along
the path �n of the complex plane. Since frequencies, !, are given as positive real values we must
�nd a mapping of the positive real axis onto the path �n. But this is precisely done by the function
u(z) = sn�1(z) given in (4.7) or more generally, after scaling by the function �sn�1( z

!c
;m) + �.

Indeed, as we have seen, such a function maps the positive real axis into the border of a rectangle
R(�; �;m). The size of this rectangle depends on the parameter m and we have to chose m;�; �
such that R(�; �;m) = �n.

To be more speci�c, we have to choose now the value of the parameter m such that:

�sn(nK1;m) + � = !c (4.9)

�sn(nK1 + iK 0
1;m) + � = !r (4.10)
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Recalling that sn�1(1;m) = K(m) and sn�1( 1p
m
;m) = K(m) + iK 0(m) we see that to satisfy

these equations we must chose

� =
nK1

K
=
K1

0

K 0

and

� =

�
0 if n is odd
K1 if n is even

In particular, we obtain that the parameters n, m1 =
�2

A2�1 and m = !c2

!r2
of the �lter cannot be

chosen independently but that they must satisfy the equation:

n =
K 0(m1)

K(m1)

K(m)

K 0(m)
=
�1
�

(4.11)

(We note �1 =
K0(m1)
K(m1)

= K(1�m1)
K(m1)

and � = K0(m)
K(m) = K(1�m)

K(m) ). Usually m1 is \small" (close to 0)

which yields �1 \large", and m is \large" (close to 1) which yields � \large".

In practice very good speci�cations are obtained with rather low orders. In order to plot the
frequency response magnitude of an elliptic prototype lowpass �lter we can proceed as follows: �rst

select the ripple parameters � and A and compute m1 =
�2

A2�1 and �1 =
K0
1

K1 , then for various integer
values of n compute m such that equation (4.11) is satis�ed or until the ratio !r

!c
is acceptable.

See Figure 4.10

-->mm1=0:0.01:1;mm1(1)=0.00000001;mm1(101)=0.9999;

-->m=0*mm1;n=3;i=1;

-->anorm=1.-2.*%eps;

-->for m1=mm1,

--> y=%asn(anorm/sqrt(m1),m1);

--> K1=real(y);

--> K12=imag(y);

--> chi1=K12/K1;

--> m(i)=findm(chi1/n);

--> i=i+1;

-->end,

-->plot(real(log(mm1)),real(log(m))),

Much exibility is allowed in the choice of the parameters, provided that equation (4.11) is
satis�ed. The functions find freq and find ripple may be used to �nd the stopband edge !r
when !c, �, A, and n are given and to �nd � when the parameters n, !c, !r, and A are given.

The following code shows how to �nd compatible parameters and produce Figure 4.11.

-->deff('[alpha,beta]=alpha_beta(n,m,m1)',...
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Figure 4.10: exec('analog10.code') log(m) versus log(m1) for order n �xed

-->'if 2*int(n/2)=n then, beta=K1; else, beta=0;end;...

-->alpha=%k(1-m1)/%k(1-m);')

Warning: obsolete use of = instead of ==

if 2*int(n/2)=n then, beta=K1; else, beta=0;end;alpha=%k(1-m1)/%k(1-m);

!

at line 2 of function alpha_beta called by :

beta=0;end;alpha=%k(1-m1)/%k(1-m);'

-->epsilon=0.1;

-->A=10; //ripple parameters

-->m1=(epsilon*epsilon)/(A*A-1);n=5;omegac=6;

-->m=find_freq(epsilon,A,n);

-->omegar = omegac/sqrt(m)

omegar =

6.8315017

-->%k(1-m1)*%k(m)/(%k(m1)*%k(1-m))-n //Check...

ans =

1.776D-15
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-->[alpha,beta]=alpha_beta(n,m,m1)

beta =

0.

alpha =

3.5754638

-->alpha*%asn(1,m)-n*%k(m1) //Check

ans =

3.553D-15

-->sample=0:0.01:20;

-->//Now we map the positive real axis into the contour...

-->z=alpha*%asn(sample/omegac,m)+beta*ones(sample);

-->plot(sample,ell1mag(epsilon,m1,z))
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Figure 4.11: exec('analog11.code') Response of Prototype Elliptic Filter
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Construction of the elliptic �lter

The design of an elliptic �lter is more complex than for the �lters that we have de�ned until now.
First the parameters n, m1, and m which characterize the squared magnitude response cannot be
chosen independently (see (4.11)). We have seen how to solve this diÆculty. Second, the squared
magnitude response is not a rational function and moreover it has an in�nite number of poles and
zeros.

The construction is accomplished in two steps: �rst a transformation is made in the complex
plane which maps the real axis to the imaginary axis and transforms the rectangular path �n to
a rectangular path �0n in the LHS of the complex plane. Then the elliptic function sn is used to
perform a transformation which maps the imaginary axis into �0n. Finally, only poles and zeros
which are inside �0n are kept for the transfer function.

Let us consider the pole-zero pattern of the function v(z). Clearly, the poles of sn(z) become
double zeros of v(z) and the poles of v(z) are found by solving the equation:

1 + �2 sn2(z) = 0

Thus the zeros of v(z) in �n are located at iK 0; iK 0 + 2K; iK 0 + 4K; : : : ; iK 0 + 2pK and the
poles of v(z) in �n are located at i u0; i u0 + 2K; i u0 + 4K; : : : ; i u0 + 2pK with 2p + 1 = n and
where we have noted u0 = sn�1( i� ;m1).

Consider now the transformation � = i K0(m)
K0(m1)

u = i K(m)
nK(m1)

u (n being given in (4.11)). The
above pole-zero pole pattern is mapped inside the LHS of the complex plane and the contour �n

is mapped into �0n = (0; iK;�iK 0 +K;�K 0), and these points are respectively the image of the
points (0; i !c; i !r; i1) of the imaginary axis by the function z ! i !c sn(�iz;m).

The function zpell performs these transformations and computes the poles and zeros of a
prototype elliptic �lter.

We illustrate the use of this function by the following example which uses the preceding numer-
ical values of the parameters �, A, !c, !r. The code produces Figure 4.12.

-->//Filter with zpell

-->epsilon=0.1;A=10; //ripple parameters

-->m1=(epsilon*epsilon)/(A*A-1);n=5;omegac=6;

-->m=find_freq(epsilon,A,n);

-->omegar = omegac/sqrt(m)

omegar =

6.8315017

-->[z,p,g]=zpell(epsilon,A,omegac,omegar);

-->//Now computes transfer function

-->num=real(poly(z,'s'));den=real(poly(p,'s'));

-->transfer=g*num/den

transfer =



106 CHAPTER 4. IIR FILTERS

2 4

10783.501 + 340.56384s + 2.4548839s

---------------------------------------------------------------

2 3 4 5

10783.501 + 3123.7307s + 773.85348s + 120.79402s + 11.89508s + s

-->//Plot of the response

-->sample=0:0.01:20;

-->rep=freq(g*num,den,%i*sample);

-->plot(sample,abs(rep))
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Figure 4.12: exec('analog12.code') Example of response of a �lter obtained by zpell

4.2 Design of IIR Filters From Analog Filters

One way of designing IIR �lters is by making discrete approximations to analog �lters. If an ap-
proximation method is to be used then it is desirable to verify that important design characteristics
of the analog �lter are preserved by the approximation. A stable, causal analog �lter design should
yield a stable, causal digital �lter under any approximation technique. Furthermore, essential char-
acteristics of the analog �lter should be preserved. For example, an analog low pass �lter satis�es
certain design characteristics such as the location of the cut-o� frequency, the width of the transi-
tion band, and the amount of error in the pass and stop bands. The approximation of an analog
�lter should preserve these design speci�cations.



4.3. APPROXIMATION OF ANALOG FILTERS 107

One approach to approximating an analog �lter design is to sample the impulse response of the
analog �lter. This is known as the impulse invariance approximation. The relationship between
the analog and discrete transfer functions under this approximation is

H(z)jz=esT =
1

T

1X
k=�1

H(s+ j
2�k

T
): (4.12)

The approximation in (4.12) takes z = esT . Consequently, the left half s-plane maps into the unit
circle in the z-plane, the right half s-plane maps outside the unit circle, and the j!-axis in the
s-plane maps to the unit circle in the z-plane. Thus, this approximation technique preserves causal,
stable �lters. However, since (4.12) consists of a superposition of shifted versions of H(s) along the
j!-axis, aliasing can occur if the analog �lter is not bandlimited.

Because most analog �lter design techniques do not yield bandlimited �lters aliasing is a prob-
lem. For example, a high pass �lter cannot be bandlimited. Furthermore, because of aliasing
distortion, �lter speci�cations pertaining to band widths and errors are not necessarily preserved
under the impulse invariance approximation.

In the following section two alternative approximation techniques are discussed. Each of these
techniques avoids problems associated with aliasing.

4.3 Approximation of Analog Filters

4.3.1 Approximation of the Derivative

Consider an analog �lter which can be represented by a rational transfer function, H(s), where

H(s) = B(s)=A(s) (4.13)

and A(s) and B(s) are polynomial functions of s. The relationship between the input, X(s), and
the output, Y (s), of the �lter in (4.13) can be expressed as

Y (s) = H(s)X(s) (4.14)

or because of the rational nature of H(s)

[

NX
n=0

ans
n]Y (s) = [

MX
m=0

bms
m]X(s) (4.15)

where the fang and the fbmg are the coeÆcients of the polynomial functions A(s) and B(s),
respectively.

The relationship between the input and the output in the time domain is directly inferred from
(4.15),

NX
n=0

an
dn

dtn
y(t) =

MX
m=0

bm
dm

dtm
x(t): (4.16)

The di�erential equation in (4.16) can be approximated by using the Backward Di�erence Formula
approximation to the derivative. That is, for T small we take

y0(t)jnT � y(nT )� y(nT � T )

T
: (4.17)
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Because the operation in (4.17) is linear and time-invariant the approximation can be represented
by the z-transform,

Zfy0(n)g = (
1� z�1

T
)Zfy(n)g (4.18)

where Zf�g represents the z-transform operation and y0(n) and y(n) are sampled sequences of the
time functions y0(t) and y(t), respectively.

Higher order derivatives can be approximated by repeated application of (4.17) which in turn
can be represented with the z-transform by repeated multiplication by the factor (1 � z�1)=T .
Consequently, the result in (4.16) can be approximately represented by the z-transform as

[
NX
n=0

an(
1� z�1

T
)n]Y (z) = [

MX
m=0

bm(
1� z�1

T
)m]X(z): (4.19)

Comparing (4.19) to (4.15) allows an identi�cation of a transform from the s-plane to the z-plane,

s =
1� z�1

T
: (4.20)

Solving (4.20) for z yields

z =
1

1� sT
: (4.21)

which can be rewritten and evaluated for s = j
 as

z =
1

2
[1 +

1 + j
T

1� j
T
]: (4.22)

From (4.22) it can be seen that the j
-axis in the s-plane maps to a circle of radius 1=2 centered
at 1=2 on the real axis in the z-plane. The left half s-plane maps to the interior of this circle and
the right half s-plane maps to the exterior of the circle. Figure 4.13 illustrates this transformation.
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Figure 4.13: exec('iir1.code') Transform s = (1 � z�1)=T
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The transform in (4.20) yields stable causal discrete �lters when the analog �lter is stable and
causal. However, since the j
-axis in the s-plane does not map to the unit circle in the z-plane it
is clear that the frequency response of the digital �lter will be a distorted version of the frequency
response of the analog �lter. This distortion may be acceptable in the case where the frequency
response of the analog �lter is bandlimited and the sampling period, T , is much higher than the
Nyquist rate. Under these conditions the transformed frequency response is concentrated on the
small circle in Figure 4.13 near the point z = 1 and the frequency response on the unit circle is less
distorted.

4.3.2 Approximation of the Integral

An alternative approach to approximating the derivative of y(t) is to approximate the integral of
y0(t). For example if y(t)jnT�T is known, then y(t)jnT can be approximated by the trapezoidal
approximation rule

y(t)jnT =
T

2
[y0(t)jnT � y0(t)jnT�T ] + y(t)jnT�T : (4.23)

Taking the z-transform of the sequences y0(n) and y(n) yields the relationship

Zfy0(n)g = 2

T
[
1� z�1

1 + z�1
]Zfy(n)g (4.24)

and as before, we can substitute (4.24) into (4.16) and then make a correspondence with (4.15)
yielding the transform

s =
2

T
[
1� z�1

1 + z�1
] (4.25)

between the s-plane and the z-plane. The expression in (4.25) is known as the bilinear transform.

Solving (4.25) for z yields

z =
1 + (sT=2)

1� (sT=2)
(4.26)

and evaluating (4.26) for s = j
 gives

z =
1 + (j
T=2)

1� (j
T=2)
: (4.27)

The expression in (4.27) is an all-pass transformation which has unit magnitude and phase which
takes values from �� to � on the unit circle as 
 goes from �1 to1. The transformation in (4.26)
maps the left half s-plane into the unit circle in the z-plane and the right half s-plane outside of
the unit circle in the z-plane. Consequently, stable causal analog �lters yield stable causal digital
�lters under this transformation. Furthermore, the j
-axis in the s-plane maps to the unit circle
in the z-plane. The mapping of the j
-axis onto the unit circle is not linear and, thus, there is a
frequency warping distortion of the analog �lter design when this transform is used.

Because many �lters of interest, such as low pass, band pass, band pass, and stop band �lters
have magnitudes which are piece-wise constant, frequency warping distortion is of no consequence.
That is, the bilinear transformation maintains the characteristics of the analog �lter design. How-
ever, if, in addition, the phase of the analog �lter is linear, the bilinear transformation will destroy
this property when used to obtain a digital �lter.
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4.4 Design of Low Pass Filters

For piece-wise constant speci�cations, the bilinear transform is the best of the three possible trans-
forms discussed for converting analog �lter designs into digital �lter designs. Here we discuss how
to use the bilinear transform to design a standard digital low pass �lter. The next section presents
a series of other transformations which can be used to convert a digital low pass �lter into a high
pass, band pass, stop band, or another low pass �lter.

To e�ectively use the bilinear transform to design digital �lters, it is necessary to transform the
digital �lter constraints into analog �lter constraints. Evaluating (4.25) at z = ej! yields

s =
2j

T
tan(!=2) = � + j
: (4.28)

Thus, a digital �lter constraint at ! corresponds to an analog �lter constraint at


 =
2

T
tan(!=2): (4.29)

Consequently, to design a digital low pass �lter with cut-o� frequency !c �rst requires an analog
low pass �lter design with cut-o� frequency


c = 2 tan(!c=2): (4.30)

(where we have used (4.29) with T = 1).
Any of the analog low pass �lter design techniques already discussed (such as the Butterworth,

Chebyshev, and elliptic �lter designs) can be used to obtain the digital low pass �lter design. The
choice of model order can be made by specifying additional constraints on the �lter design. For
example, speci�cation of a certain amount of attenuation at a speci�ed frequency in the stop band
can be used to obtain the model order of a Butterworth Filter. Such a speci�cation for a digital
�lter would be converted to an analog �lter speci�cation using (4.29) before designing the analog
�lter. More on �lter order speci�cation can be found in the section on analog �lter design.

An example of a typical digital low-pass �lter design from a Chebyshev analog �lter design of
the �rst type is as follows. The digital low-pass �lter is to have a cut-o� frequency of �=2. This
constraint is transformed to an analog constraint using (4.30). The resulting analog constraint takes
the cut-o� frequency to be 2 tan(�=4) = 2. Now the function zpch1 is used to design the Chebyshev
�lter of the �rst type of order 3 and passband ripple of .05. Since the ripple of a Chebyshev �lter is
1=(1 + �2) it follows that for a ripple of .05 in the passband that � =

p
(1=:95) � 1 = :22942. Thus,

the call to the function looks like

-->[pols,gn]=zpch1(3,.22942,2);

-->gn

gn =

8.7176358

-->pols'

ans =

! - 0.7915862 - 2.2090329i !

! - 1.5831724 - 1.562D-16i !
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! - 0.7915862 + 2.2090329i !

-->hs=gn/real(poly(pols,'s'))

hs =

8.7176358

---------------------------------------

2 3

8.7176358 + 8.0128698s + 3.1663448s + s

where the transfer function hs is calculated from the gain and the poles returned from the function.
The magnitude of the the transfer function can be plotted as follows

gn =

8.7176358

ans =

! - 0.7915862 - 2.2090329i !

! - 1.5831724 - 1.562D-16i !

! - 0.7915862 + 2.2090329i !

hs =

8.7176358

---------------------------------------

2 3

8.7176358 + 8.0128698s + 3.1663448s + s

-->fr=0:.05:3*%pi;

-->hsm=abs(freq(hs(2),hs(3),%i*fr));

-->plot(fr,hsm)

which is displayed in Figure 4.14.

Now the analog low-pass �lter design can be transformed to a digital �lter design using the
bilinear transform as follows

gn =

8.7176358

ans =

! - 0.7915862 - 2.2090329i !
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Figure 4.14: exec('iir2 3.code') Magnitude of Analog Filter

! - 1.5831724 - 1.562D-16i !

! - 0.7915862 + 2.2090329i !

hs =

8.7176358

---------------------------------------

2 3

8.7176358 + 8.0128698s + 3.1663448s + s

-->z=poly(0,'z');

-->hz=horner(hs,2*(z-1)/(z+1))

hz =

2 3

8.7176358 + 26.152907z + 26.152907z + 8.7176358z

------------------------------------------------

2 3

- 2.6427245 + 21.461789z + 5.5132676z + 45.408755z

The result of the transform yields a �lter which has a magnitude as shown in Figure 4.15.

4.5 Transforming Low Pass Filters

The previous section discussed the design of IIR low-pass �lters based on the bilinear transform
approximation to an analog low-pass �lter. It is possible to transform a digital low-pass �lter to a
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Figure 4.15: exec('iir2 3.code') Magnitude of Digital Filter

high-pass �lter, band-pass �lter, stop-band �lter, or to another low-pass �lter by using transforms
similar to the bilinear transformation. This section presents the necessary transformations for each
of the above �lter types. The development follows [24].

Assuming that the cut-o� frequency of the original digital low-pass �lter is !c a new low-pass
�lter of cut-o� frequency !u can be created using the following transformation

z ! z � �

1� z�
(4.31)

where

� =
sin[(!c � !u)=2]

sin[(!c + !u)=2]
: (4.32)

For a high-pass �lter of cut-o� frequency !u one can use the transformation

z ! � z + �

1 + z�
(4.33)

where

� = �cos[(!c � !u)=2]

cos[(!c + !u)=2]
: (4.34)

For a band-pass �lter with !u and !l the upper and lower band edges, respectively, one would
use the transformation

z ! � z2 � (2�k=(k + 1))z + ((k � 1)=(k + 1))

1� (2�k=(k + 1))z + ((k � 1)=(k + 1))z2
(4.35)

where

� =
cos[(!u + !l)=2]

cos[(!u � !l)=2]
(4.36)

and
k = cot[(!u � !l)=2] tan(!c=2): (4.37)
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Finally, for a stop-band �lter with !u and !l the upper and lower band edges, respectivly, the
following transformation is used

z ! z2 � (2�=(k + 1))z � ((k � 1)=(k + 1))

1� (2�=(k + 1))z � ((k � 1)=(k + 1))z2
(4.38)

where

� =
cos[(!u + !l)=2]

cos[(!u � !l)=2]
(4.39)

and

k = tan[(!u � !l)=2] tan(!c=2): (4.40)

4.6 How to Use the Function iir

The call to the function iir has the following syntax

--> [hz]=iir(n,ftype,fdesign,frq,delta)

The argument n is the �lter order which must be a positive integer. The argument ftype is the
�lter type and can take values 'lp' for a low-pass �lter, 'hp' for a high-pass �lter, 'bp' for a
band-pass �lter, or 'sb' for a stop-band �lter.

The argument fdesign indicates the type of analog �lter design technique is to be used to
design the �lter. The value of fdesign can be 'butt' for a Butterworth �lter design, 'cheb1'
for a Chebyshev �lter design of the �rst type, 'cheb2' for a Chebyshev �lter design of the second
type, or 'ellip' for an elliptic �lter design.

The argument frq is a two-vector which contains cut-o� frequencies of the desired �lter. For
low-pass and high-pass �lters only the �rst element of this vector is used. The �rst element indicates
the cut-o� frequency of the desired �lter. The second element of this vector is used for band-pass
and stop-band �lters. This second element is the upper band edge of the band-pass or stop-band
�lter, whereas the �rst element of the vector is the lower band edge.

The argument delta is a two-vector of ripple values. In the case of the Butterworth �lter, delta
is not used. For Chebyshev �lters of the �rst type, only the �rst element of this vector is used and
it serves as the value of the ripple in the pass band. Consequently, the magnitude of a Chebyshev
�lter of the �rst type ripples between 1 and 1-delta(1) in the pass band. For a Chebyshev �lter
of the second type only the second element of delta is used. This value of delta is the ripple in
the stop band of the �lter. Consequently, the magnitude of a Chebyshev �lter of the second type
ripples between 0 and delta(2) in the stop band. Finally, for the elliptic �lter, both the values
of the �rst and second elements of the vector delta are used and they are the ripple errors in the
pass and stop bands, respectively.

The output of the function, hz, is a rational polynomial giving the coeÆcients of the desired
�lter.

4.7 Examples

In this section we present two examples using the iir �lter design function. We remind the user
that an important part of the �lter design process is that there is always a trade-o� between the
performance and the expense of a �lter design. For a �lter with a small error in the pass and stop
bands and with a narrow transition band it will be necessary to implement a �lter of higher order
(which requires more multiplies). Consequently, the �lter design procedure is iterative. The user
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speci�es a model order and then examines the magnitude of the resulting �lter to see if the design
speci�cations are met. If speci�cations are not satis�ed, then the user must start again with a �lter
of higher model order. Another important point to keep in mind when using the function is that
band pass and stop band �lters will generate transfer functions of twice the model order speci�ed.
This is due to that transformation of the prototype low pass �lter using an all pass �lter of order
two (see Section 4.5).

The �rst example is of a low-pass �lter design using a Chebyshev �lter of the �rst type for the
analog design. The cut-o� frequency of the digital �lter is !c = :2, the �lter order is n = 5, and
the ripple in the passband is Æ = :05. The call to the function is as follows

-->hz=iir(5,'lp','cheb1',[.2 0],[.050.05])

hz =

2 3 4

0.0103696 + 0.0518480z + 0.1036960z + 0.1036960z + 0.0518480z

5

+ 0.0103696z

------------------------------------------------------------------

2 3 4

- 0.2213294 + 0.9336888z - 1.9526644z + 2.5422088z - 1.9700766z

5

+ z

The result of the �lter design is displayed in Figure 4.16
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Figure 4.16: exec('iir4.code') Digital Low-Pass Filter

The second example is of a band-pass �lter designed from a third order analog elliptic �lter
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with cut-frequencies !l = :15 and !h = :25 and ripples in the pass and stop bands, respectively, as
Æp = :08 and Æs = :03. The call to Scilab looks like

-->hz=iir(3,'bp','ellip',[.150.25],[.080.03])

hz =

2 3 4

- 0.0476402 + 0.0423997z - 0.0013489z + 1.058D-17z + 0.0013489z

5 6

- 0.0423997z + 0.0476402z

------------------------------------------------------------------

2 3 4

0.5045339 - 1.0411237z + 2.4255266z - 2.6216751z + 2.9974049z

5 6

- 1.646036z + z

and the resulting magnitude of the transfer function is illustrated in Figure 4.17.
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Figure 4.17: exec('iir5.code') Digital Band-Pass Filter

Notice that the transfer function here is of order six whereas the speci�ed order was three. For
band pass and stop band �lters the user must specify a �lter order of half the desired order to
obtain the desired result.



4.8. ANOTHER IMPLEMENTATION OF DIGITAL IIR FILTERS 117

4.8 Another Implementation of Digital IIR Filters

4.8.1 The eqiir function

The eqiir function is an interface between Scilab and the Fortran routine syredi which is a
modi�cation of the well known eqiir code [23]. The eqiir function allows one to design four
di�erent types of �lters, namely lowpass, highpass, symmetric stopband, and symmetric passband
�lters. The algorithm is based on the bilinear transform of analog �lters as described in the previous
sections. The �lter obtained is a product of second order cells. The order of the �lter is computed
automatically to meet the �lter speci�cations.

The �lter is given either by the set of its poles and zeros (output variables zpoles and zzeros

of the eqiir function) or equivalently by a the representation:

H(z) = fact
NY
1

ni(z)=di(z)

where the rational fraction ni(z)=di(z) is the i-th element of cells.

4.8.2 Examples

Example 1 (Lowpass elliptic �lter): Design of a lowpass elliptic �lter with maximum ripples
Æp = 0:02, Æs = 0:001 and cuto� frequencies !1 = 2 �

10 and !2 = 4 �
10 .

-->[cells,fact,Zeros,Zpoles]=...

-->eqiir('lp','ellip',[2*%pi/10,4*%pi/10],0.02,0.001);

-->Zpoles'

ans =

! 0.6906008 - 0.5860065i !

! 0.6906008 + 0.5860065i !

! 0.6373901 - 0.3437403i !

! 0.6373901 + 0.3437403i !

! 0.6247028 !

-->Zeros'

ans =

! 0.2677115 - 0.9634991i !

! 0.2677115 + 0.9634991i !

! - 0.1744820 - 0.9846604i !

! - 0.1744820 + 0.9846604i !

! - 1. !

-->cells'

ans =

! 2 !

! 1 - 0.5354229z + z !
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! -------------------------- !

! 2 !

! 0.8203331 - 1.3812015z + z !

! !

! 2 !

! 1 + 0.3489640z + z !

! -------------------------- !

! 2 !

! 0.5244235 - 1.2747803z + z !

! !

! 1 + z !

! ------------- !

! - 0.6247028 + z !

-->transfer=fact*poly(Zeros,'z')/poly(Zpoles,'z')

transfer =

2 3

(0.0059796) + (0.0048646)z + (0.0097270)z + (0.0097270)z

4 5

+ 0.0048646z + 0.0059796z

-----------------------------------------------------------

2 3

(-0.2687484) + (1.5359753)z + (-3.7100842)z + (4.7646843)z

4 5

- 3.2806846z + z

Example 2 (Lowpass Butterworth �lter): Design of a lowpass Butterworth �lter with the
following speci�cations:
- 5dB passband attenuation at the normalized cuto� frequencies :25�=10 and - 120dB attenuation
at the stopband edge 0:5�=10.

-->om=[.25*%pi/10,4*%pi/10];

-->pdB=5;

-->sdB=120;

-->deltap=(1.0-10.0**(-0.05*pdB));

-->deltas=10.00**(-0.05*sdB);

-->[cells,fact,zers,pols]=eqiir('lp','butt',om,deltap,deltas);

-->cells

cells =
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column 1 to 2

! 2 2 !

! 1 + 2z + z 1 + 2z + z !

! -------------------------- -------------------------- !

! 2 2 !

! 0.9450100 - 1.9368524z + z 0.8621663 - 1.8543562z + z !

column 3

! 1 + z !

! ------------- !

! - 0.9123352 + z !

-->n=prod(cells(2));

-->d=prod(cells(3));

-->tr=n./d

tr =

2 3 4 5

1 + 5z + 10z + 10z + 5z + z

---------------------------------------------------------------

2 3 4 5

- 0.7433304 + 3.937017z - 8.3477808z + 8.8576437z - 4.7035438z + z

Example 3 (Lowpass type 1 Chebyshev �lter): Design of a lowpass type 1 Chebyshev �lter
with 2dB ripple in the passband and -30 dB attenuation at the stopband edge. The sampling
frequency is assumed to be 3000Hz and the cuto� frequencies at 37.5Hz and 75Hz respectively.

-->sf=3000;

-->f1=37.5;

-->f2=75;

-->as=30;

-->ap=2;

-->om=[f1*(2*%pi)/sf,f2*(2*%pi)/sf];

-->deltas=10.00**(-0.05*as);
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-->deltap=(1.0-10.0**(-0.05*ap));

-->[cells,fact,zers,pols]=...

-->eqiir('lp','ch1',om,deltap,deltas);

-->cells

cells =

! 2 2 !

! 1 - 1.9711824z + z 1 - 1.8376851z + z !

! -------------------------- -------------------------- !

! 2 2 !

! 0.9995251 - 1.9942623z + z 0.9988526 - 1.9979487z + z !

Example 4 (Elliptic symmetric bandpass �lter): Design of a symmetric bandpass �lter with
edges at !1 = 0:251463; !2 = �=10; !3 = 2�=10; !4 = 0:773302 and ripples in the passband and
stopband given respectively by Æp = 0:022763, Æs = 0:01.

-->//Elliptic bandpass filter

-->om=[0.251463,1*%pi/10,2*%pi/10,0.773302];

-->deltap=0.022763;

-->deltas=0.01;

-->[cells,fact,zers,pols]=eqiir('bp','el',om,deltap,deltas);

-->n=prod(cells(2));d=prod(cells(3));

-->rep=freq(n,d,exp(%i*(0:0.01:%pi)));

-->rep=fact*abs(rep);

-->n=prod(size(rep))

n =

315.

-->plot(20*log(rep(2:n))/log(10))

The preceding example shows how to compute the magnitude response by using the freq

primitive. The example is plotted in Figure 4.18.
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Figure 4.18: exec('eqiir4.code') Example of response obtained with eqiir
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Chapter 5

Spectral Estimation

5.1 Estimation of Power Spectra

The power spectrum of a deterministic, �nite length, discrete-time signal, x(n), is de�ned to be the
magnitude squared of the signal's Fourier transform

Sx(!) =
1

N
j
N�1X
n=0

x(n)e�j!nj2: (5.1)

In an analogous fashion the cross-spectrum of two signals x(n) and y(n) is de�ned to be

Sxy(!) =
1

N
(
N�1X
n=0

x(n)e�j!n)(
N�1X
n=0

y(n)e�j!n)�: (5.2)

The power spectra of random, zero-mean, wide sense stationary signals are obtained from the
Fourier transform of the correlation functions of these signals. Thus, for Rx representing the
autocorrelation function of x and Rxy representing the cross-correlation function of x with y we
have by de�nition that

Rx(m) = Efx(n+m)x�(n)g (5.3)

Rxy(m) = Efx(n+m)y�(n)g: (5.4)

Consequently, the power spectrum and cross-power spectrum of x(n) and of x(n) with y(n) are,
respectively,

Sx(!) =
1X

m=�1
Rx(m)e�j!m (5.5)

Sxy(!) =

1X
m=�1

Rxy(m)e�j!m: (5.6)

The formulas (5.5) and (5.6) require estimates of the correlation functions. Possible candidates
for the estimates of the auto and cross correlation functions of �nite length random signals (i.e.,
x(n) 6= 0 and y(n) 6= 0 for n = 0; 1; : : : ; N � 1) are

R̂x(m) =
1

N

N�1�mX
n=0

x(n+m)x�(n) (5.7)

R̂xy(m) =
1

N

N�1�mX
n=0

x(n+m)y�(n): (5.8)

123
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The estimates in (5.7) and (5.8) are unbiased, consistent estimators in the limit as N ! 1.
Furthermore, in the case where the random signals are jointly Gaussian, these estimators are the
maximum likelihood estimates of the correlation functions. Another interesting property of the
estimators in (5.7) and (5.8) is that when substituted, respectively, into the expressions in (5.5)
and (5.6), after some algebraic manipulation, yield exactly the expressions in (5.1) and (5.2).

Unfortunately, there is a serious problem with the above power spectrum estimation scheme.
This problem is that the resulting power spectral estimates, in the limit, are not consistent. That
is, the error variance of the estimate does not decrease with increasing data. Consequently, power
spectral estimates obtained by taking the magnitude squared of the Fourier transform are high-
variance, low-quality estimates.

In the sections which follow two techniques are discussed which yield improved spectral esti-
mates. These techniques are both based on averaging spectral estimates obtained from the classical
approach just described. This averaging, although introducing some biasing, yields greatly improved
estimates in that, in the limit, these estimates become consistent.

The �rst averaging technique also sections the data into overlapping segments. However, in
this case the magnitude squared of the Fourier transform is calculated from each segment and then
these are averaged together to yield the spectral estimate. This technique is called the modi�ed
periodogram method for spectral estimation.

The second averaging technique sections the data into overlapping segments. For each segment
an estimate of the correlation function is calculated. These estimates are then averaged and the
estimated power spectral density is the Fourier transform of the average. This technique is known
as the correlation method for spectral estimation.

Both techniques use windows to diminish the e�ects that �nite data has on spectral estimation.
These e�ects are identical to the problems encountered in FIR �lter design, and, consequently,
the reader is referred to the FIR �lter design section for an explanation of the issues involved in
the choice of windows. In the discussion which follows cross-spectral estimation is not discussed
considering that the cross-spectral estimate can be obtained as a simple modi�cation of the auto-
spectral estimation techniques.

5.2 The Modi�ed Periodogram Method

The modi�ed periodogram method of spectral estimation repeatedly calculates the periodogram of
windowed sub-sections of the data. These periodograms are then averaged together and normalized
by an appropriate constant to obtain the �nal spectral estimate. It is the averaging process which
reduces the variance in the estimate.

The periodogram of a �nite data sequence is de�ned by

I(!) =
1

U
j
N�1X
n=0

w(n)x(n)e�j!nj2: (5.9)

where w(n) is a window function which has energy U . Consequently, if K sub-segments of length N
are used to calculate the spectrum of the signal then the modi�ed periodogram spectral estimate,
Ŝx, is just the average of the K periodograms

Ŝx(!) =
1

K

K�1X
k=0

Ik (5.10)

where each of the Ik is the periodogram (calculated as in (5.9)) of the kth segment of data.
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Normally, the K segments of data are taken so that there is a regular pattern of overlap in
the successive segments. That is, the kth and (k + 1)th segments overlap by D points. Figure 5.1
illustrates three consecutive overlapping segments of a data sequence.
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Figure 5.1: exec('spect1.code') Overlapping Data

It can be shown that an overlap of �fty percent in the data segments results in an approximately
�fty percent reduction in the variance of the estimate of the power spectrum [24]. Normally, one
chooses the length of the data segments to reect the a priori knowledge of the correlation length
of the data. That is to say that if the correlation between two data samples separated by more
than M points is considered negligible then the data segment should be of a length on the order
of M . The number of data segments used determines the variance of the spectral estimate. The
variance decreases proportionally to the number of independent segments. Of course, with a limited
quantity of data the number of data segments must also be limited.

The function pspect calculates an estimate of the power spectrum using the modi�ed peri-
odogram method.

5.2.1 Example Using the pspect function

In this section, we demonstrate the use of the pspect macro. The data used is generated by passing
zero-mean white noise of unit variance through a low-pass �lter. Consequently, the spectrum of
the data should be the magnitude square of the �lter frequency response. The low-pass �lter is an
FIR �lter of length 33 generated using the function eqfir .

The data was generated using the following Scilab commands,

-->//test modified periodogram method

-->//generate white data

-->rand('normal');
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-->rand('seed',0);

-->x=rand(1:1024-33+1);

-->//make low-pass filter with eqfir

-->nf=33;

-->bedge=[00.1;.1250.5];

-->des=[1 0];

-->wate=[1 1];

-->hn=eqfir(nf,bedge,des,wate);

-->//filter white data to obtain colored data

-->h1=[hn 0*ones(1:maxi(size(x))-1)];

-->x1=[x 0*ones(1:maxi(size(hn))-1)];

-->hf=fft(h1,-1);

-->xf=fft(x1,-1);

-->yf=hf.*xf;

-->y=real(fft(yf,1));

As can be seen, a total of 1024 data points are available for the estimation of the spectrum. The
logarithm of the magnitude squared of the �lter frequency response is shown in Figure 5.2.

The data obtained above are used to estimate the power spectrum in the following way

-->[sm]=pspect(100,200,'tr',y);

The log-magnitude of the power spectrum (sm) is plotted in Figure 5.3. It should be pointed out
here that the value of the section lengths was chosen to be 200 in this example to obtain additional
resolution in the plot of the Fourier transform of the estimated power spectrum in Figure 5.3.
However, there is very acceptable behavior of the spectral estimate when the section length is on
the order of twice the �lter length. This is due to the fact that one does not expect correlations in
the data that are much longer than the �lter length. Normally, the section lengths are chosen to
reect the a priori knowledge of the correlation length in the data.

As can be seen the estimated spectrum matches the theoretical spectrum (Figure 5.2) very well.
In particular, the peaks of the spectrum in both the pass and stop bands matches well with those
of the �lter magnitude response. Furthermore, the normalization of the estimate is accurate with
respect to the �lter response.
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Figure 5.2: exec('spect2 4.code') Log Magnitude Squared of Filter
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Figure 5.3: exec('spect2 4.code') Estimate of Spectrum
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5.3 The Correlation Method

The correlation method for power spectral estimation calculates the spectral estimate as the Fourier
transform of a modi�ed estimate of the autocorrelation function. This modi�ed estimate of the
autocorrelation function consists of repeatedly calculating estimates of the autocorrelation function
as in (5.7) from overlapping sub-segments of the data, and then averaging these estimates to obtain
the modi�ed estimate.

Consequently, referring again to Figure 5.1, for each length N sub-segment of the data xk(n)
the estimate of 2M points of the autocorrelation function is calculated by

R̂k(m) =
N�1�mX
n=0

x(n+m)x�(n) (5.11)

for m = 0;�1;�2; : : : ;�M . For K estimates of the autocorrelation function calculated as in (5.11)
the power spectral estimate is obtained from

Ŝx(!) = Ff ~Rx(m)w(m)g (5.12)

where Ff�g represents the Fourier transform operation, w(m) is a window function, and ~Rx(m) is
the average of the K estimates

~Rx =
1

K

KX
k=1

R̂k: (5.13)

The correlation method of spectral estimation is based on the corr primitive in Scilab. The
primitive corr is useful for any application requiring correlations or cross-correlations. Documen-
tation on this primitive can be found in the introductory manual for Scilab.

The function cspect calculates an estimate of the power spectrum using the correlation method
for spectral estimation.

5.3.1 Example Using the function cspect

Here, for comparison purposes, the same example as used in the case of the pspect macro is
examined using the cspect macro. The data used is identical to that used in the previous example.
These data are used to estimate the power spectrum in the following way

-->[sm]=cspect(100,200,'tr',y);

The log-magnitude of the power spectrum (sm) is plotted in Figure 5.4.
It should be pointed out here that the value of the the number of lags (100) and the number of

transform points (200) were chosen to match the previous example where the pspect macro was
used. A plot of the estimated power spectrum is illustrated in Figure 5.4.

As can be seen the estimated spectrum also matches the theoretical spectrum (Figure 5.2 very
well. There are some di�erences, however, between the estimates obtained using the two di�erent
macros. The primary di�erence to keep in mind is the di�erence in how the windows are used for
the two di�erent techniques. In the correlation method the magnitude of the window is convolved
with the spectrum of the signal. In the modi�ed periodogram method the square of the magnitude
of the window is convolved with the spectrum of the signal. Consequently, the e�ects of windows
are di�erent in each of the two cases (for example, the side-lobes of the window are lower in the
case of the modi�ed periodogram method due to the squaring of its magnitude). The quantitative
di�erences between the two techniques are diÆcult to address here due to the complexity of the
question. There are some relevant questions concerning which technique may be the best in any
one application. For more information on how to choose between the techniques the user is referred
to [24] and the relevant references found within.
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Figure 5.4: exec('spect2 4.code') Estimate of Spectrum

5.4 The Maximum Entropy Method

5.4.1 Introduction

The power spectrum of a deterministic signal is de�ned to be the squared magnitude of the signal's
Fourier transform. That is, for x(n) a discrete time signal, the power spectrum, Sx(!), is

Sx(!) = jX(!)j2 (5.14)

where

X(!) =

1X
n=�1

xne
�j!n: (5.15)

In many applications it is very useful to know the power spectrum of a signal, however, it is rare
that the obtained signal can be characterized as being deterministic. Often the signal is present in
a noisy environment and, in addition, is obtained with instrumentation which degrades the signal
with measurement noise. Consequently, for a non-deterministic signal one seeks to estimate the
power spectrum. It can be shown [21] that taking the Fourier transform of a non-deterministic
signal in order to estimate its power spectrum is a very poor approach. The problem is that
the resulting power spectrum is a highly variable estimate of the true power spectrum and that
the variance does not decrease to zero as one increases the data length (i.e., the estimator is not
consistent).

The problem of estimating the power spectrum can be modi�ed as follows. Let x(n) be a
zero-mean, stationary signal and let rx(n) be the autocorrelation function of the signal (that is,
rx(n) = Efx(k)x�(n + k)g). Then the power spectrum Sx(n) of x(n) is taken to be the Fourier
transform of rx(n)

Sx(!) =

1X
n=�1

rx(n)e
�j!n: (5.16)
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Assuming that statistical averages of the signal x(n) are equal to time averages we can take as an
estimate for rx(n)

r̂x(n) = lim
N!1

1

2N + 1

NX
m=�N

x(m)x(m� n): (5.17)

However, after plugging (5.17) into (5.16) and performing some algebraic manipulation it can be
seen that (5.16) is just the magnitude squared of the Fourier transform of x(n). Consequently,
(5.16) is not any more useful than (5.14) for estimating the power spectrum of a non-deterministic
signal.

One can improve the statistical properties of the power spectrum estimate by smoothing the
result obtained in (5.16) or by breaking the input, x(n), into pieces, performing the calculation in
(5.17) and (5.16) for each piece, and then averaging these results together. These approaches are
the classical methods of power spectral estimation.

These classical methods of power spectral estimation are undesirable for two reasons. The
estimate obtained from these methods is based on a �nite (i.e., windowed) segment of the autocor-
relation function. This means that the resulting estimated power spectrum is a convolution of the
true power spectrum and of the Fourier transform of the window. Consequently, the resolution of
spectral features is diminished and the estimate of the power spectrum at any point is biased by
leakage from other parts of the power spectrum through the window sidelobes.

The maximum entropy spectral estimate (MESE) of the power spectrum yields an improved
spectral density estimate. That's to say that for MESE the resolution is improved and the bias is
decreased in comparison with the classical spectral estimation methods. This improvement is due
to the fact that the MESE uses a model based estimation procedure.

5.4.2 The Maximum Entropy Spectral Estimate

The maximum entropy spectral estimate (MESE) is designed to produce high-resolution, low-bias
spectral estimates from �nite length discrete signals. The formulation of the MESE problem is as
follows. It is assumed that only a �nite number, N , of autocorrelation lags (estimated from a �nite
length discrete signal) are available. The MESE yields the function Ŝx(!) which has maximum
entropy and whose inverse Fourier transform exactly matches the N lags, r̂x(n). This can be
expressed by the equation

Ŝx(!) = max
S(!)

f�
Z �

��
S(!) log[S(!)]d!g (5.18)

where
1

2�

Z �

��
Ŝx(!)e

j!nd! = r̂x(n); n = 0; 1; : : : ; N � 1: (5.19)

Equation (5.18) expresses the optimality condition of maximizing the entropy of S(!) subject to
the N constraints posed in (5.19).

Since entropy is a measure of randomness, the MESE is the spectral estimate which is maximally
random given the constraints in (5.19). Intuitively, the MESE incorporates no information in the
estimated spectrum other than the knowledge of the autocorrelation lags. That is to say that the
bias should be eliminated (or at least minimized in some sense) since no non-data related constraints
are imposed on the spectrum. As was discussed in the introduction, windowed-autocorrelation
spectral estimates su�ered from bias due to the leakage from the window sidelobes. The window
imposes a non-data related constraint on the power spectrum estimate in that the autocorrelation
function is assumed to be identically zero outside of the support of the window.
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Furthermore, as is discussed in [16], it can be shown that the MESE is equivalent to the Fourier
transform of an in�nite length autocorrelation sequence which is obtained by extrapolating the
sequence of length N in (5.19). The extrapolation is accomplished using an auto-regressive, all-
pole model of order N � 1 given by

r̂x(n) = �
N�1X
k=1

akr̂n�k; n � N: (5.20)

Any autocorrelation sequence can be modeled by (5.20) given a large enough model order, N .
Consequently, in principle, the resolution of the MESE should be much better than that of a
windowed spectral estimate since the MESE uses an in�nite length autocorrelation sequence.

The solution to (5.18) and (5.19) can be found by using the calculus of variations [11] and, as
demonstrated in [16], the solution takes the form

Ŝx(!) =
�2

j1 +PN�1
n=1 an expf�j!ngj2

(5.21)

where the parameter set f�2; a1; a2; : : : ; aN�1g is obtained by solving the system of linear equations2
6664

r̂x(0) r̂x(1) � � � r̂x(N � 1)
r̂x(1) r̂x(0) � � � r̂x(N � 2)
...

...
...

r̂x(N � 1) r̂x(N � 2) � � � r̂x(0)

3
7775
2
6664

1
a1
...

aN�1

3
7775 =

2
6664
�2

0
...
0

3
7775 (5.22)

where the Toeplitz matrix in (5.22) is composed of the N estimated correlation lags r̂x(n). The
system of N linear equations in (5.22) are known as the Yule-Walker equations and an eÆcient
algorithm for their solution is described in the next section.

5.4.3 The Levinson Algorithm

An eÆcient recursive solution to the Yule-Walker equations in (5.22) exists and is known as the
Levinson algorithm. The algorithm requires O(N2) complex multiplications and additions. The
solution to the kth order problem is obtained from the solution to the (k�1)th order problem using
the following equations

akk = �[r̂x(k) +
k�1X
j=1

ak�1;j r̂x(k � j)]=�2k�1 (5.23)

aki = ak�1;i + akka
�
k�1;k�i (5.24)

�2k = (1� jakkj2)�2k�1: (5.25)

The solution to the 1st order problem is

a11 = �r̂x(1)=r̂x(0) (5.26)

�21 = (1� ja11j2)r̂x(0): (5.27)

5.4.4 How to Use mese

The syntax for the macro mese is as follows,

-->[sm,fr]=mese(x)

where one wants to obtain a power spectral estimate of x, the input data sequence, and sm is the
resulting estimate obtained on the normalized frequency axis (0 �fr� :5).
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5.4.5 How to Use lev

The syntax for the macro lev is as follows,

-->[ar,sigma2,rc]=lev(r)

where r is a vector of auto-correlation coeÆcients (r(0); r(1); : : : ; r(N � 1)), ar is the vector which
satis�es the Yule-Walker equations, sigma2 is the scalar which satis�es the Yule-Walker equations,
and rc is a vector of reection coeÆcients.

5.4.6 Examples

Here we give an example of estimating the power spectrum of a very short data sequence using the
MESE and also using the magnitude squared of the Fourier transform. The data is eleven samples
of the sum of two sinusoids in additive, uniformly distributed, white noise. The functional form of
the data sequence is

x(n) = sin(2�n=20) + sin(3:5�n=20) + :2w(n) (5.28)

where w(n) is the white noise sequence which takes on values in [�1; 1] and n = 0; 1; :::; 10. Fig-
ure 5.5 shows the input data sequence, x(n). Figures 5.6 and 5.7 show the maximum entropy and
magnitude squared estimates of the power spectrum, respectively.
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Figure 5.5: exec('mem1 3.code') Input Data Sequence, x(n)

As can be seen, the MESE resolves two peaks according to the two sinusoidal frequences in
x(n). The squared magnitude of the Fourier transform of x(n) does not have a long enough signal
to resolve the two peaks of the spectrum. Furthermore, the power spectrum estimate in Figure 5.7
shows spurious sidelobes which have nothing to do with the data.
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Figure 5.6: exec('mem1 3.code') Maximum Entropy Spectral Estimate of x(n)
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Figure 5.7: exec('mem1 3.code') Squared Magnitude of the Fourier Transform of x(n)
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Chapter 6

Optimal Filtering and Smoothing

6.1 The Kalman Filter

Consider the following discrete-time system,

xk+1 = Fkxk +Gkwk

yk = Hkxk + vk (6.1)

where

wk � N(0; Qk)

vk � N(0; Rk)

x0 � N(m0;�0)

(6.2)

and x0, fwkg, and fvkg are independent random vectors. The state vector, xk, has dimension N
and the observation vector, yk, has dimension M . Furthermore, it is assumed that Rk > 0.

The problem to be addressed here is the estimation of the state vector, xk, given observations
of the vectors Yk = fy0; y1; : : : ; ykg. Because the collection of variables fxk; y0; y1; : : : ; ykg are
jointly Gaussian one could estimate xk by maximizing the likelihood of the conditional probability
distribution p(xkjYk) given the values of the conditional variables. Equivalently, one could search
the estimate, x̂k, which minimized the mean square error, �k = xk � x̂k. In either case it is known
that the optimal estimate (maximum likelihood or least squares) for the jointly Gaussian variables
is the conditional mean. The error in the estimate is the conditional covariance.

In what follows, the conditional mean and covariance of xk given Yk is developed. This is followed
by a description of the Kalman �lter, an extremely practical recursive method for calculating
the conditional mean and covariance. Several di�erent implementations of the Kalman �lter are
discussed here: The steady-state Kalman �lter which can be used when the system matrices in (6.1)
and (6.3) are non-time varying, the non-stationary Kalman �lter for use when the system matrices
in (6.1) and (6.3) are time-varying, and, �nally, the square-root Kalman �lter which is used (for
time-varying and non-time-varying system matrices) when greater numerical accuracy is required.

6.1.1 Conditional Statistics of a Gaussian Random Vector

The minimum mean square estimate of a Gaussian random vector given observations of some of its
elements is the conditional mean of the remaining elements. The error covariance of this estimate is

135
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the conditional covariance. Consequently, assuming that z is a Gaussian random vector composed
of two sub-vectors x and y, then

z =

�
x
y

�
� N

��
mx

my

�
;

�
�x �xy

�yx �y

��
(6.3)

where mx denotes the mean of x, �xy denotes the covariance of x with y, and �x is the covariance
of x with itself.

It is known that the marginal and conditional distributions of a Gaussian random vector are
also Gaussian. In particular, the conditional distribution of x given y, p(xjy), is

p(xjy) = N(mxjy;�xjy) (6.4)

where mxjy denotes the conditional mean and �xjy denotes the conditional covariance. These two
quantities may be calculated by

mxjy = mx +�xy�
�1
y (y �my)

�xjy = �x � �xy�
�1
y �yx: (6.5)

(It is useful to note the x and y are not necessarily of the same dimension). Equation (6.5) is very
important in our development of the Kalman �lter equations.

With regard to the problem posed in the introduction to this section, the minimummean square
error is calculated in a straight forward manner. One stacks the individual observation vectors into
a single vector, Yk, and then, since xk and Yk are jointly Gaussian , one applies (6.5) to obtain
the conditional mean and covariance of xk given Yk. The problem with this approach is that for
increasing k the vector Yk is of increasing dimension, and consequently, the matrix inverse and
multiplication operations in (6.5) become increasingly burdensome.

The next few sections are devoted to showing how the linear system of (6.1) and the special
properties of (6.5) can be used to obtain a recursive update to the estimation of xk. That is, given
the best estimate of xk based on the observations Yk (we denote this estimate by x̂kjk) and a new
observation yk+1, it is shown how to obtain the best estimate of x̂k+1jk+1 and its error covariance
matrix Pk+1jk+1.

6.1.2 Linear Systems and Gaussian Random Vectors

Given a random vector, x, with a probability distribution p(x), the minimum mean square error
estimate of x is denoted here by x̂ and consists of the mean of x. That is, x̂ = mx. The associated
error covariance of the estimate, denoted Px, is the covariance of x. Now assume that x is passed
through a linear system and is disturbed by an independent, zero-mean Gaussian vector, v, of
covariance R. This yields an output which can be represented by

y = Hx+ v: (6.6)

Since (6.6) is a linear combination of independent Gaussian random vectors, y is also a Gaussian
random vector. The mean and covariance of y are calculated as follows,

my = Efyg
= EfHx+ vg
= Hmx (6.7)
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and

�y = Ef(y �my)(y �my)
T g

= Ef[H(x �mx) + v][H(x�mx) + v]T g
= H�xH

T +R: (6.8)

Consequently, the minimum mean square error estimate of y is ŷ = Hmx and the associated error
covariance of this estimate is Py = H�xH

T +R = HPxH
T +R.

6.1.3 Recursive Estimation of Gaussian Random Vectors

Now we assume that we have a Gaussian random vector which is composed of three sub-vectors x,
y, and z. This is represented by0

@ x
y
z

1
A � N

0
@
2
4 mx

my

mz

3
5 ;
2
4 �x �xy �xz

�yx �y �yz

�zx �zy �z

3
5
1
A : (6.9)

From (6.5) the minimum mean square error estimate of x given observation of y is

x̂(y) = mx +�xy�
�1
y (y �my) (6.10)

and the associated error covariance is

Px(y) = �x � �xy�
�1
y �yx: (6.11)

It is valuable to note here that
Efx̂(y)g = mx: (6.12)

If z is also observed, then the minimum mean squared error estimate of x given y and z is

x̂(y; z) = mx + [ �xy �xz ]

�
�y �yz

�zy �z

��1 �
y �my

z �mz

�
(6.13)

with error covariance

Px(y; z) = �x � [ �xy �xz ]

�
�y �yz

�zy �z

��1 �
�yx

�zx

�
: (6.14)

Now note that if y and z were independent that �yz would be zero and then (6.13) could be written
as

x̂(y; z) = mx +�xy�
�1
y (y �my) + �xz�

�1
z (z �mz)

= x̂(y) + �xz�
�1
z (z �mz): (6.15)

The result in (6.15) is a recursive method for calculating x̂(y; z) given x̂(y) and z. The problem
is that (6.15) depends on y and z being independent random vectors. Fortunately, by a change
of variables, one can always change the estimation procedure in (6.13) into that in (6.15). This is
accomplished as follows. Let � be a random vector de�ned by

� = z � ẑ(y)

= z � [mz +�zy�
�1
y (y �my)]

= (z �mz)� �zy�
�1
y (y �my) (6.16)
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where ẑ(y) is the minimum mean square estimate of z given observation of y (obtained by using
(6.5)).

The new random vector, �, has several interesting properties. First, because

m� = Ef(z �mz)� �zy�
�1
y (y �my)g = 0 (6.17)

� is a zero-mean random variable. Also, since

��y = Ef�(y �my)
T g

= Ef(z �mz)(y �my)
T � �zy�

�1
y (y �my)(y �my)

T g
= �zy � �zy�

�1
y �y

= 0 (6.18)

and

��x̂(y) = Ef�(mx +�xy�
�1
y (y �my)�mx)

T g
= Ef�(y �my)

T��1y �yxg
= 0 (6.19)

it follows that � is independent of both y and x̂(y) These properties are very useful for developing
the Kalman �lter equations of the next section.

Now (6.15) can be rewritten so that

x̂(y; z) = x̂(y; �)

= mx + [ �xy �x� ]

�
�y 0
0 ��

��1 �
y �my

�

�
= mx +�xy�

�1
y (y �my) + �x��

�1
� �

= x̂(y) + �x��
�1
� � (6.20)

where, from (6.16) we obtain

�x� = Ef(x�mx)(z �mz � �zy�
�1
y (y �my))

T g
= �xz � �xy�

�1
y �yz (6.21)

and

�� = Ef(z �mz � �zy�
�1
y (y �my))(z �mz � �zy�

�1
y (y �my))

T g
= �z � �zy�

�1
y �yz: (6.22)

(Note that the equality of x̂(y; z) and x̂(y; �) is due to the fact that no information is lost in making
the change of variables in (6.16). We are simply adding a constant vector to z which renders � and
y independent of each other). The error covariance, Px(y; �), associated with (6.20) is

Px(y; �) = �x � [ �xy �x� ]

�
�y 0
0 ��

��1 �
�yx

��x

�
= �x � �xy�

�1
y �yx � �x��

�1
� ��x

= Px(y)� �x��
�1
� ��x: (6.23)
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6.1.4 The Kalman Filter Equations

Here the results of the previous two sections are combined to �nd the recursive estimation procedure
referred to in the introduction. Before detailing the procedure we introduce some notation. We
denote by x̂kjl the minimum mean square estimate of xk given the observations Yl = fy0; y1; : : : ; ylg.
Furthermore, Pkjl represents the error covariance associated with x̂kjl.

Now, the estimate x̂kjk can be obtained from the estimate x̂kjk�1 and the new observation yk in
the following manner. From (6.20) and (6.23) we have

x̂kjk = x̂kjk�1 +�xk�k�
�1
�k
�k

Pkjk = Pkjk�1 � �xk�k�
�1
�k
��kxk (6.24)

where from (6.1), (6.7), and (6.8)
�k = yk �Hkx̂kjk�1: (6.25)

The covariance matrices in (6.24) may be calculated by

��k = Ef�k�Tk g
= Ef(yk �Hkx̂kjk�1)(yk �Hkx̂kjk�1)T g
= Ef[Hk(xk � x̂kjk�1) + vk][Hk(xk � x̂kjk�1) + vk]

T g
= HkPkjk�1HT

k +Rk (6.26)

(where the �nal equality follows from the fact that vk and xk are independent random vectors),
and

�xk�k = Ef(xk �Efxkg)�Tk g
= Ef(xk �Efxkg+Efxkg � x̂kjk�1)�Tk g
= Ef(xk � x̂kjk�1)�Tk g
= Ef(xk � x̂kjk�1)(yk �Hkx̂kjk�1)T g
= Ef(xk � x̂kjk�1)(xk � x̂kjk�1)THT

k g
= Pkjk�1HT

k (6.27)

(where the second equality follows from (6.13) and (6.19)). Substituting (6.25), (6.26), and (6.27)
into (6.24) yields

x̂kjk = x̂kjk�1 +Kk(yk �Hkx̂kjk�1)
Pkjk = Pkjk�1 �KkHkPkjk�1 (6.28)

where Kk = Pkjk�1HT
k [HkPkjk�1HT

k + Rk]
�1 is called the Kalman gain of the �lter. (Note: Since

the model proposed in the �rst section of this chapter assumes that Rk > 0 it follows that Kk

always exists. However, when Rk is not strictly positive de�nite there may be problems performing
the matrix inverse necessary to calculate Kk). Using (6.7) and (6.8) in conjunction with (6.1) gives
the two auxiliary equations

x̂k+1jk = Fkx̂kjk
Pk+1jk = FkPkjkF T

k +GkQkG
T
k : (6.29)

Combining the equations in (6.28) and (6.29) yields one set of recursive equations

x̂k+1jk = Fkx̂kjk�1 + FkKk(yk �Hkx̂kjk�1)

Pk+1jk = FkPkjk�1F T
k � FkKkHkPkjk�1F T

k +GkQkG
T
k : (6.30)
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The only remaining detail is to identify the initial conditions of the Kalman �lter which are obtained
from the a priori statistics of x0

x̂0j�1 = m0

P0j�1 = �0: (6.31)

6.1.5 Asymptotic Properties of the Kalman Filter

Depending on the problem formulation posed in (6.1) there are situations where the Kalman �lter
does not perform well. That is to say, that for certain formulations, the Kalman �lter could provide
state estimates which diverge from the actual evolution of the state vector. This divergence is by
no means a fault of the Kalman �lter, but, rather, is due to the process model provided by the user.
Consequently, in such a case where the Kalman �lter diverges, the user may wish to re-examine
the model formulation so that it is better posed for the estimation problem. The following results
concerning the e�ectiveness of the Kalman �lter are only valid for time invariant formulations of
the model in (6.1). That is to say that Fk = F , Gk = G, Hk = H, Qk = Q, and Rk = R for all k.

We state the following properties of the asymptotic behavior of the Kalman �lter without
proof. The desirable asymptotic properties of the Kalman �lter depend on the controllability and
observability of the system model in (6.1). A necessary and suÆcient condition for the system in
(6.1) to be controllable is that

rank[ G FG � � � FN�1G ] = N (6.32)

(recall that F is an N � N matrix). A necessary and suÆcient condition that the system be
observable is that

rank

2
6664

H
HF
...

HFN�1

3
7775 = N (6.33)

Now if the system in (6.1) is both controllable and observable then

lim
k!1

Pkjk�1 = P <1 (6.34)

and if Q > 0 then

P > 0: (6.35)

These results state that the error covariance matrix, Pkjk�1, converges to a �nite, positive
de�nite constant matrix when the system in (6.1) is controllable and observable. Consequently, the
error in the estimate x̂kjk�1 is bounded as k ! 1 since P < 1. Furthermore, because P > 0 the
Kalman �lter gain is also positive de�nite. Consequently, the new observations are always included
in the new state estimate.

Another consequence of steady-state analysis of the Kalman �lter is that one can use the steady-
state Kalman gain in place of the time varying Kalman gain. The advantage of such an approach is
that considerable computational savings are possible due to the fact that one is not re-calculating
the Kalman gain for each new observation. It is important to realize, however, that using the
steady-state Kalman gain does not yield the optimal estimate of the state until after the transient
behavior of the �lter has died away.

To use the steady-state Kalman gain to implement the Kalman �lter algorithm there exists,
in Scilab, a function and a primitive which when used in tandem yield the estimated state. The
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function is optgain and the primitive is ltitr. The function optgain calculates the steady-state
error covariance matrix and the steady-state Kalman gain given the system matrices and the noise
covariance matrices. The primitive ltitr generates the state vectors from a linear dynamic system
in state space form given the system matrices of this system and the input vectors. In the case of
the Kalman �lter, the input vectors are the observations yk and the system dynamics are

x̂kjk = (I �KH)F x̂k�1jk�1 +Kyk (6.36)

The following section describes how to use sskf the steady-state Kalman �lter function. This is
followed by an example using sskf. The following section describes the use of kalm the time-varying
version of the Kalman �lter function. Finally, several sections follow describing the square-root
Kalman �lter algorithm and how to use the associated function srkf.

6.1.6 How to Use the Macro sskf

The syntax of the sskf is as follows

[xe,pe]=sskf(y,f,h,q,r,x0)

where the system is assumed to take the following form

xk+1 = fxk + wk

yk = hxk + vk

where

wk � N(0; q)

vk � N(0; r)

x0 � N( x0;�0):

The remaining input, y = [y0; y1; : : : ; yn], is a matrix where the individual observations yk are
contained in the matrix as column vectors.

The outputs xe and pe are the estimated state and the steady-state error covariance matrix.
The form of the estimates is xe = [x̂0j0; x̂1j1; : : : ; x̂njn] where each x̂kjk is a column in the matrix.
The steady-state error covariance matrix is a square matrix of the dimension of the state.

6.1.7 An Example Using the sskf Macro

The example uses the following system model and prior statistics:

xk+1 =

�
1:1 :1
0 :8

�
xk +

�
1 0
0 1

�
wk

yk =

�
1 0
0 1

�
xk + vk

where

Efwkw
T
k g =

�
:03 :01
:01 :03

�

EfvkvTk g =

�
2 0
0 2

�
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and

Efx0g =

�
10
10

�

Ef(x0 �m0)(x0 �m0)
T g =

�
2 0
0 2

�

Observations from the above system were generated synthetically using the primitive ltitr. The
results of the steady-state Kalman �lter estimates are shown in Figure 6.1
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Figure 6.1: exec('kf1.code') Steady-State Kalman Filter Tracking

where the dotted line marked by stars indicates the actual state path and the solid line marked
by circles marks the estimated state path.

6.1.8 How to Use the Function kalm

The function kalm takes as input the system description matrices, the statistics of the noise pro-
cesses, the prior estimate of the state and error covariance matrix, and the new observation. The
outputs are the new estimates of the state and error covariance matrix. The call to kalm is as
follows:

--> [x1,p1,x,p]=kf(y,x0,p0,f,g,h,q,r)

where y is the new observation, x0 and p0 are the prior state and error covariance estimates at
time t = 0 based on observations up to time t = �1, f, g and h are the dynamics, input, and
observation matrices, respectively, and q and r are the noise covariance matrices for the dynamics
and observations equations, respectively. The outputs x1 and p1 are the new state and error
covariance estimates at time t = 1 given observations up to time t = 0, respectively, and x and p

are the new state and error covariance estimates at time t = 0 given observations up to time t = 0,
respectively.
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6.1.9 Examples Using the kalm Function

Three examples are illustrated in this section. All three examples are for two-dimensional state
vectors. The �rst example illustrates Kalman tracking for a system model which is controllable and
observable. The second and third examples show the results of uncontrollable and unobservable
system models, respectively.

The �rst example uses the following system model and prior statistics:

xk+1 =

�
1:1 :1
0 :8

�
xk +

�
1 0
0 1

�
wk

yk =

�
1 0
0 1

�
xk + vk

where

Efwkw
T
k g =

�
:03 :01
:01 :03

�

EfvkvTk g =

�
2 0
0 2

�

and

Efx0g =

�
10
10

�

Ef(x0 �m0)(x0 �m0)
T g =

�
2 0
0 2

�

Observations from the above system were generated synthetically using the system formulation and
values from a random number generator for the dynamics and observations noise. These observa-
tions were then used as input to the Kalman �lter. The result of ten observations is illustrated in
Figure 6.2.

The �gure shows the actual state path and the Kalman estimate of the state path as a dotted
and solid line, respectively. The actual locations of the state and estimated values are indicated by
the star and circle symbols on the respective paths. The ellipses in the �gure are centered about the
positions of the actual state path and their borders represent two standard deviations of estimation
error calculated from the error covariance matrices. The values of the standard deviations for the
above example are displayed below:

-->//initialize state statistics (mean and err. variance)

-->m0=[10 10]';p0=[2 0;0 2];

-->//create system

-->f=[1.10.1;00.8];g=[1 0;0 1];h=[1 0;0 1];

-->//noise statistics

-->q=[.030.01;.010.03];r=2*eye(2);
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Figure 6.2: exec('kf2.code') Kalman Filter Tracking

-->//initialize system process

-->rand('seed',2);rand('normal');p0c=chol(p0);

-->x0=m0+p0c'*rand(ones(m0));

-->yt=[];

-->//initialize kalman filter

-->xke0=m0;pk0=p0;

-->//initialize err. variance

-->ecv=[pk0(1,1) pk0(2,2)]';

-->//loop

-->n=10;

-->for k=1:n,

-->//generate the state and observation at time k (i.e. x(k+1) and y(k))

-->[x1,y]=system(x0,f,g,h,q,r);x0=x1;

-->//track the state with the standard kalman filter

-->[xke1,pk1,xd,pd]=kalm(y,xke0,pk0,f,g,h,q,r);

-->ecv=[ecv [pk1(1,1) pk1(2,2)]'];

-->xke0=xke1;pk0=pk1;
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-->//end loop

-->end;

-->//display square root of err. covariance

-->sqrt(ecv)'

ans =

! 1.4142136 1.4142136 !

! 0.9949874 0.6757712 !

! 0.5421994 0.3838288 !

! 0.4476458 0.3251576 !

! 0.4093299 0.3018837 !

! 0.3909608 0.2908610 !

! 0.3815271 0.2852390 !

! 0.3765212 0.2822672 !

! 0.3738201 0.2806671 !

! 0.3723499 0.2797971 !

! 0.3715458 0.2793216 !

Each row of the above vector represents the standard deviations of the state vector error covariance
matrix where the �rst row is the standard deviation of the a priori error in the state vector and the
last row is the standard deviation of the state vector estimate at the last step of the Kalman �lter.
The above standard deviation vector is instructive. It should be noted that for both state values,
the standard deviation is converging to a steady state value. For the �rst element of the state
vector this value is .7800312 and for the second element of the state vector the value is .2824549.
The convergence is to be expected since the above formulation of the system is both controllable
and observable.

If we were to change the above system formulation so that the dynamics equation were now

xk+1 =

�
1:1 :1
0 :8

�
xk +

�
1 0
0 0

�
wk (6.37)

the system would be uncontrollable. Re-running the Kalman �lter with this re-formulation yields
the following sequence of standard deviations:

-->//initialize state statistics (mean and err. variance)

-->m0=[10 10]';p0=[2 0;0 2];

-->//create system

-->f=[1.10.1;00.8];g=[1 0;0 0];h=[1 0;0 1];

-->//noise statistics

-->q=[.030.01;.010.03];r=2*eye(2);
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-->//initialize system process

-->rand('seed',2);rand('normal');p0c=chol(p0);

-->x0=m0+p0c'*rand(ones(m0));yt=[];

-->//initialize kalman filter

-->xke0=m0;pk0=p0;

-->//initialize err. variance

-->ecv=[pk0(1,1) pk0(2,2)]';

-->//loop

-->n=10;

-->for k=1:n,

-->//generate the state and observation at time k (i.e. x(k+1) and y(k))

--> [x1,y]=system(x0,f,g,h,q,r);x0=x1;

-->//track the state with the standard kalman filter

--> [xke1,pk1,xd,pd]=kalm(y,xke0,pk0,f,g,h,q,r);

--> ecv=[ecv [pk1(1,1) pk1(2,2)]'];

--> xke0=xke1;pk0=pk1;

-->//end loop

-->end;

-->//display square root of err. covariance

-->sqrt(ecv)'

ans =

! 1.4142136 1.4142136 !

! 0.9949874 0.6531973 !

! 0.3985411 0.2392907 !

! 0.2911323 0.1560029 !

! 0.2425784 0.1132241 !

! 0.2158299 0.0858488 !

! 0.1999103 0.0665470 !

! 0.1900973 0.0522259 !

! 0.1839436 0.0412863 !

! 0.1800504 0.0327832 !

! 0.1775755 0.0261029 !

As can be seen, the second state variable has a standard deviation which is not converging to a
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positive value. In fact the value of this standard deviation converges to zero. As was discussed in
the section on the asymptotic behavior of the Kalman �lter, this is what was to be expected. The
result of this behavior is that the Kalman �lter ignores any observed information regarding the
second state variable since the error variance is going to zero (and, thus, the �lter thinks that it has
perfect information concerning this state value). If the above model is perfectly accurate then such
an eventuality is not a problem. However, in practice there are modeling errors and, consequently,
if the new observations are ignored, there is a danger that the Kalman �lter estimates will begin
to diverge from the actual state of the process.

Now we change the original model formulation again so that the observation equation is now

yk =

�
0 0
0 1

�
xk + vk: (6.38)

Under these conditions the system is not observable. The evolution of the standard deviation for
this example is:

-->//initialize state statistics (mean and err. variance)

--> m0=[10 10]';

--> p0=[2 0;0 2];

-->//create system

--> f=[1.10.1;00.8];

--> g=[1 0;0 1];

--> h=[0 0;0 1];

-->//noise statistics

--> q=[.030.01;.010.03];

--> r=2*eye(2);

-->//initialize system process

--> rand('seed',2),

--> rand('normal'),

--> p0c=chol(p0);

--> x0=m0+p0c'*rand(ones(m0));

--> yt=[];

-->//initialize kalman filter
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--> xke0=m0;

--> pk0=p0;

-->//initialize err. variance

--> ecv=[pk0(1,1) pk0(2,2)]';

-->//loop

--> n=10;

--> for k=1:n,

-->//generate the state and observation at time k (i.e. x(k+1) and y(k))

--> [x1,y]=system(x0,f,g,h,q,r);

--> x0=x1;

-->//track the state with the standard kalman filter

--> [xke1,pk1,xd,pd]=kalm(y,xke0,pk0,f,g,h,q,r);

--> ecv=[ecv [pk1(1,1) pk1(2,2)]'];

--> xke0=xke1;

--> pk0=pk1;

-->//end loop

--> end,

-->//display square root of err. covariance

--> sqrt(ecv)'

ans =

! 1.4142136 1.4142136 !

! 1.5652476 0.1732051 !

! 1.7292966 0.1732051 !

! 1.9090394 0.1732051 !

! 2.1061169 0.1732051 !

! 2.322326 0.1732051 !

! 2.559636 0.1732051 !

! 2.8202071 0.1732051 !

! 3.1064101 0.1732051 !

! 3.4208486 0.1732051 !

! 3.7663822 0.1732051 !

Here the standard deviation of the �rst state variable is growing without bound. This is due
to two things. First, the system is unobservable in the �rst state variable. Consequently, the
observations provide no useful information concerning the estimate of this state. Secondly, since
the system matrix f has un unstable eigenvalue the standard deviation of this state, in the limit,
is unbounded.
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The Scilab code used to generate the examples in this section is displayed below. The code for
the steady-state Kalman �lter example is as follows:

-->//test of the steady-state kalman filter

-->rand('seed',5);rand('normal');

-->q=[.030.01;.010.03];u=rand(2,11);

-->f=[1.10.1;00.8];g=(chol(q))';

-->m0=[10 10]';p0=[2 0;0 2];x0=m0+(chol(p0))'*rand(2,1);

-->x=ltitr(f,g,u,x0);

-->r=[2 0;0 2];v=(chol(r))'*rand(2,11);y=x+v;

-->h=eye(2,2);[xe]=sskf(y,f,h,q,r,m0);

-->//plot result

-->a=mini([x(1,:),xe(1,:)]);a=-0.1*abs(a)+a;

-->b=maxi([x(1,:),xe(1,:)]);b=.1*abs(b)+b;

-->c=mini([x(2,:),xe(2,:)]);c=-0.1*abs(c)+c;

-->d=maxi([x(2,:),xe(2,:)]);d=.1*abs(d)+d;

-->//plot frame, real state (x), and estimate (xke)

-->plot([a a b],[d c c]),

-->plot2d(x(1,:)',x(2,:)',[1],'000',' ')

-->plot2d(xe(1,:)',xe(2,:)',[2],'000',' '),

-->plot2d(xe(1,:)',xe(2,:)',[-3],'000',' '),

-->xend(),

The code used to generate the non-steady-state Kalman �lter example is:
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-->//generate test process to be sent to kalman filter

-->//initialize state statistics (mean and err. variance)

-->m0=[10 10]';p0=[2 0;0 2];

-->//create system

-->f=[1.10.1;00.8];g=[1 0;0 1];h=[1 0;0 1];

-->//noise statistics

-->q=[.030.01;.010.03];r=2*eye(2,2);

-->//initialize system process

-->rand('seed',2);rand('normal');

-->p0c=chol(p0);x0=m0+p0c'*rand(ones(m0));yt=[];

-->//initialize kalman filter

-->xke0=m0;pk0=p0;

-->//initialize plotted variables

-->x=x0;xke=m0;

-->ell=[pk0(1,1) pk0(2,2) pk0(1,2)]';

-->//loop

-->n=10;

--> for k=1:n,

-->//generate the state and observation at time k (i.e. x(k+1) and y(k))

--> [x1,y]=system(x0,f,g,h,q,r);

--> x=[x x1];

--> yt=[yt y];

--> x0=x1;

-->//track the state with the standard kalman filter

--> [xke1,pk1,xd,pd]=kalm(y,xke0,pk0,f,g,h,q,r);

--> xke=[xke xke1];

--> ell=[ell [pk1(1,1) pk1(2,2) pk1(1,2)]'];

--> xke0=xke1;

--> pk0=pk1;

-->//end loop

--> end,
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-->//define macro which traces an ellipse

-->deff('[]=ellipse(m1,m2,s1,s2,s12)',...

--> 't=0:.1:.1+%pi*2;...

--> c=2*cos(t);...

--> s=2*sin(t);...

--> rho=s12/sqrt(s1*s2);...

--> cr=sqrt(s1)*c+m1*ones(c);...

--> sr=sqrt(s2)*(rho*c+sqrt(1-rho*rho)*s)+m2*ones(s);...

--> plot2d(cr'',sr'',[1],'"000'"),')

-->//plot result

-->a=mini([x(1,:)-2*sqrt(ell(1,:)),xke(1,:)]);a=-0.1*abs(a)+a;

-->b=maxi([x(1,:)+2*sqrt(ell(1,:)),xke(1,:)]);b=.1*abs(b)+b;

-->c=mini([x(2,:)-2*sqrt(ell(2,:)),xke(2,:)]);c=-0.1*abs(c)+c;

-->d=maxi([x(2,:)+2*sqrt(ell(2,:)),xke(2,:)]);d=.1*abs(d)+d;

-->//plot frame, real state (x), and estimate (xke)

-->plot([a a b],[d c c]),

-->plot2d(x(1,:)',x(2,:)',[2],"000"),

-->plot2d(xke(1,:)',xke(2,:)',[1],"000"),

-->//plot ellipses of constant likelihood (2 standard dev's)

--> for k=1:n+1,

--> ellipse(x(1,k),x(2,k),ell(1,k),ell(2,k),ell(3,k)),

--> end,

-->//mark data points (* for real data, o for estimates)

-->plot2d(x(1,:)',x(2,:)',[-2],"000"),

-->plot2d(xke(1,:)',xke(2,:)',[-3],"000")

-->xend(),
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6.2 The Square Root Kalman Filter

The Kalman �lter is known to have certain numerical instabilities [3]. For example, since the update
of the error covariance matrix involves taking di�erences of matrices (see(6.28)) it is possible that
machine discretization error could result in a non positive semi-de�nite error covariance. Such an
event could lead to severe divergence of the Kalman �lter because this could render the Kalman
gain in�nite. Fortunately, there are a class of algorithms which are known collectively as square
root Kalman �lters which avoid this problem.

The square root Kalman �lter propagates the state estimate and the square root of the error
covariance matrix. (Here, S is de�ned to be the square root of a matrix, A, if A = SST . The
square root, S, is not unique. For example for any other orthogonal matrix, O, such that OOT = I
it follows that SO is also a square root of A. We denote the square root of A by A1=2). The
advantage of propagating the square root of the error covariance matrix is two-fold. First, the error
covariance is always positive semi-de�nite since it is formed by squaring the square root. Second,
the dynamic range of the elements in the square root of the error covariance is much smaller than
that in the error covariance matrix itself. Consequently, the accuracy of calculations is improved
since the machine precision is better adapted to representing the dynamic range of the square root.
The details of a square root Kalman �lter algorithm base on using Householder transformations is
detailed below.

Restating the model for the dynamics and observations of the process in (6.1), we have that

yk = Hkxk + vk

xk+1 = Fkxk + wk (6.39)

where wk and vk are independent zero-mean Gaussian vectors of covariance Qk and Rk, respectively.
The model in (6.39) is modi�ed so that wk = Gk�k and vk = Lk�k where �k is a zero-mean Gaussian
random vector with unit covariance matrix (i.e., Ef�k�Tk g = I). Since wk and vkare independent
GkL

T
k = LkG

T
k = 0: Now, the model in (6.39) can be expressed as�

yk
xk+1

�
=

�
Hk Lk
Fk Gk

� �
xk
�k

�
: (6.40)

Also, we recall from (6.7) and (6.8) that�
ŷkjk�1
x̂k+1jk�1

�
=

�
Hk

Fk

�
x̂kjk�1: (6.41)

Substracting (6.41) from (6.40) yields

�
�k

�k+1jk�1

�
=

"
HkP

1=2
kjk�1 Lk

FkP
1=2
kjk�1 Gk

#"
P
�1=2
kjk�1�kjk�1

�k

#
(6.42)

where �k = yk � Hx̂kjk�1, �k+1jk�1 = xk+1 � x̂k+1jk�1, �kjk�1 = xk � x̂kjk�1, and where we have

used the square root of the error covariance, Pkjk�1, so that the vector P
�1=2
kjk�1x̂kjk�1 would have

unit covariance.

Now we assume that a matrix, Tk, exists such that TkT
T
k = I and such that

"
HkP

1=2
kjk�1 Lk

FkP
1=2
kjk�1 Gk

#
Tk =

�
Ak 0
Bk Ck

�
: (6.43)
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(The matrix Tk can always be constructed as a combination of Householder transformations. The
Householder transformation and the construction of Tk are detailed in the next section).

Using Tk, (6.42) can be rewritten so that

�
�k

�k+1jk�1

�
=

"
HkP

1=2
kjk�1 Lk

FkP
1=2
kjk�1 Gk

#
TkT

T
k

"
P
�1=2
kjk�1�kjk�1

�k

#

=

�
Ak 0
Bk Ck

�
�k (6.44)

where �k is a zero-mean Gaussian random vector with unit covariance. We can now derive the
signi�cance of (6.44) by calculating the conditional mean and conditional covariance of �k+1jk�1
given �k. Using (6.5) we obtain

Ef�k+1jk�1j�kg = Efxk+1 � x̂k+1jk�1j�kg
= ��k+1jk�1�k�

�1
�k
�k (6.45)

and

Ef[�k+1jk�1 �Ef�k+1jk�1g][�k+1jk�1 �Ef�k+1jk�1g]T j�kg =
��k+1jk�1

� ��k+1jk�1�k�
�1
�k
��k+1jk�1�k (6.46)

Calculating the covariances in (6.45) and (6.46) we obtain (using (6.44))

��k+1jk�1�k = BkA
T
k

��k = AkA
T
k

��k+1jk�1
= BkB

T
k + CkC

T
k : (6.47)

It can be seen that (6.45) yields the Kalman �lter equations. Consequently, using (6.47) we obtain

the Kalman gain, Kk, and the updated square root of the error covariance, P
1=2
k+1jk, as

Kk = BkA
�1
k

P
1=2
k+1jk = Ck: (6.48)

The square root Kalman �lter algorithm works as follows. Given x̂kjk�1, P
1=2
kjk�1, and yk we �rst

form the matrix on the left hand side of (6.43). The matrices Gk and Lk are obtained by performing
a Cholesky decomposition of Qk and Rk (that is Qk = GkG

T
k and Rk = LkL

T
k where Gk and Lk

are upper triangular). Using the Householder transformation Tk we obtain Ak, Bk, and Ck. Then,
the updates are calculated by

x̂k+1jk = Fkx̂kjk�1 +BkA
�1
k (yk �Hkx̂kjk�1)

P
1=2
k+1jk = Ck: (6.49)

All that remains is speci�cation of the Householder transformation which is done in the following
section.
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6.2.1 The Householder Transformation

Let � be a vector in RN . Then, we de�ne the N �N matrix, T� , such that

T� = I � 2

�T�
��T : (6.50)

The matrices de�ned by (6.48) are called Householder transformations (see [29]). The T� have the
following properties

T� = T T
�

T�T
T
� = I

T�T� = I: (6.51)

Furthermore, the matrix T� has a geometric interpretation. The vector � uniquely de�nes a hyper-
plane in RN as the sub-space in RN which is orthogonal to �. The matrix T� acts as a reector in
that T� maps vectors in RN to their reected images through the hyper-plane de�ned by �.

Householder transformations can be used to upper triangularize matrices. This is accomplished
as follows. Let A = [a1; a2; � � � ; aM ] be an N �M matrix where ak is an N -vector and let T�1 be a
Householder transformation where �1 is constructed such that

T�1a1 = ~a1 =

2
66664

qPN
k=1 a

2
1k

0
...
0

3
77775 (6.52)

(i.e., we �nd the �1 such that when a1 is reected through the hyper-plane de�ned by �1 its image
is as above). The choice for �1 which accomplishes this goal is

�1 =

2
66664
a11 +

qPN
k=1 a

2
1k

a12
...

a1N

3
77775 (6.53)

where a1k is the k
th element of the N -vector a1.

The Householder transformation, T�1 , can be used now to transform the matrix A,

T�1A = [~a1; ~a2; � � � ; ~aM ] (6.54)

where ~a1 is as in (6.52) and the remaining columns of A are transformed to ~ak = T�1ak.

Now we construct a second Householder transformation, T�2 such that

T�2~a2 =
~~a2 =

2
6666664

~a21qPN
k=2 ~a

2
2k

0
...
0

3
7777775

(6.55)
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That is, the �rst element of ~a2 is left unchanged, the second element becomes the norm of the rest
of the elements and the remaining elements become zero. The choice for �2 which accomplishes
this is

�2 =

2
6666664

0

~a22 +
qPN

k=2 ~a
2
2k

~a23
...

~a2N

3
7777775
: (6.56)

Calculating T�2T�1A yields

T�2T�1A = [~a1; ~~a2; ~~a3; � � � ; ~~aM ] (6.57)

where ~a1 is still as in (6.52) and ~~a2 is as in (6.55). Continuing recursively in this way we can upper
triangularize the A matrix.

The Scilab primitive qr performs a triangularization of a matrix using Householder transforma-
tions. In particular, it is the r part of the qr-decomposition which yields the desired triangularized
matrix.

6.2.2 How to Use the Macro srkf

The function srkf takes as input the system description matrices, the statistics of the noise pro-
cesses, the prior estimate of the state and error covariance matrix, and the new observation. The
outputs are the new estimates of the state and error covariance matrix. The call to kalm is as
follows:

--> [x1,p1]=srkf(y,x0,p0,f,h,q,r)

where y is the new observation, x0 and p0 are the prior state and error covariance estimates, f and
h are the dynamics and observation matrices, respectively, and q and r are the noise covariance
matrices for the dynamics and observations equations, respectively. The outputs x1 and p1 are the
new state and error covariance estimates, respectively.

6.3 The Wiener Filter

The generalized Wiener �ltering problem [14] can be posed as follows. It is desired to esti-
mate a zero-mean, Gaussian vector process, x(t), in the interval [a; b] from observations of a
statistically related, zero-mean, Gaussian vector, y(t). Furthermore, the covariance functions
Ryy(t; s) = Efy(t)yT (s)g and Rxy(t; s) = Efx(t)yT (s)g are assumed known for t; s 2 [a; b]. Then,
the least mean squared error estimate of x(t) given y(t) is obtained as a linear operator on y(t) as

x̂(t) =

Z b

a
H(t; s)y(s)ds (6.58)

where x̂(t) denotes the least mean squared estimate and H(t; s) is an N �M matrix function of

two arguments t and s (i.e., [H(t; s)]ij = hij(t; s) and x̂i(t) =
R b
a

PM
j=1 hij(t; s)yj(s)ds).

By the principle of orthogonality the error in the estimate in (6.58), x(t) � x̂(t), must be
orthogonal to y(u) for t; u 2 [a; b]. Thus,

0 = Ef(x(t) � x̂(t))yT (u)g = Rxy(t; u)�
Z b

a
H(t; s)Ryy(s; u)ds: (6.59)
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Solving the matrix integral equation in (6.59) for H(t; s) yields the optimal estimator for x(t) when
used in (6.58). A general solution of (6.59) is not possible, however, for some very important
special cases (6.59) is resolvable. For example, if the covariance functions Rxy and Ryy are wide
sense stationary and with rational spectral densities then speci�c solutions techniques are available.

The sections which follow address Wiener �ltering for a special formulation of the relationship
between x(t) and y(t) (albeit, a relationship for which many engineering problems of interest can
be formulated) and, consequently, permits a solution to the problem posed by (6.58) and (6.59).
This special formulation consists of a state space di�erence equation identical to that used in
the development of the Kalman �lter. This realization has some advantages in that it allows
�nite interval estimation of non-stationary processes. The disadvantage of this procedure is that
sometimes the only knowledge of the processes x and y is their covariance structures. In this case,
the construction of a state-space model which has the appropriate covariance characteristics may
not always be readily evident.

6.3.1 Problem Formulation

In our problem formulation it is assumed that a dynamic model of the process x is known, that the
process y is related to the process x through an observation equation, and that both processes are
discrete. Consequently, we have the equations

xk+1 = Fkxk +Gkuk

yk = Hkxk + vk (6.60)

where x0, uk, and vk are independent and Gaussian random vectors with statistics

uk � N(0; Qk)

vk � N(0; Rk)

x0 � N(m0;�0)

(6.61)

From the formulation in (6.60) and (6.61) one can determine the covariance functions Rxy and
Ryy and, thus, it is reasonable to try and solve a discrete version of (6.59) to obtain the optimal
�lter. However, there are certain aspects of the dynamics and observations models which permit
a solution to the problem posed in the previous section without explicitly solving for the �lter
designated by (6.59).

The solution to the discrete version of (6.58) based on the modelization of the underlying
processes given by (6.60) and (6.61) can be achieved by several di�erent Kalman �lter formulations.
The particular approach used here is known as the Rauch-Tung-Striebel formulation [10]. In this
approach a Kalman �lter is used on the data in the usual way to obtain estimates x̂kjk�1 and x̂kjk
along with their associated error covariances Pkjk�1 and Pkjk. A second recursive �lter is then
used on the estimates and their error covariances to obtain the estimates x̂kjN and their error
covariances PkjN (that is, the estimate and error covariance of xk based on all the data in the
interval [0; N ]). This second �lter processes the estimates in the backward direction using x̂N jN
and PN jN to initialize the �lter, then using x̂N�1jN�1, x̂N�1jN�2, PN�1jN�1, and PN�1jN�2 to
obtain x̂N�1jN and PN�1jN , etc., continuing recursively in this way over the entire interval.

A complete development of the Rauch-Tung-Striebel approach is too involved to recount here.
We outline a procedure which may be used to obtain the result without discussing all the details.
The interested reader can �nd a complete and uni�ed development in [20].
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The approach we take is based on a constrained maximum likelihood solution to the problem.
We form a cost function, J(u; v), which we desire to minimize with respect to its arguments. The
function J is de�ned by

J(u; v) = uTQ�1u+ vTR�1v (6.62)

where

u =

2
666664

m0

u0
u1
...

uN�1

3
777775

v =

2
6664
v0
v1
...
vN

3
7775

Q =

2
6664

�0 0 � � � 0
0 Q0 � � � 0
...

...
...

0 0 � � � QN�1

3
7775

R =

2
6664
R0 0 � � � 0
0 R1 � � � 0
...

...
...

0 0 � � � RN

3
7775 (6.63)

and where m0 and �0 are the a priori statistics of x0. The functional in (6.62) is minimized subject
to the constraints

Sx = Gu

y = Hx+ v (6.64)

where

x =

2
6664
x0
x1
...
xN

3
7775

y =

2
6664
y0
y1
...
yN

3
7775

S =

2
6664

I 0 � � � 0 0
�F0 I � � � 0 0
...

...
...

...
0 0 � � � �FN�1 I

3
7775
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G =

2
6664
I 0 � � � 0
0 G0 � � � 0
...

...
...

0 0 � � � GN�1

3
7775

H =

2
6664
H0 0 � � � 0
0 G1 � � � 0
...

...
...

0 0 � � � HN

3
7775 : (6.65)

Minimizing (6.62) subject to the system constraints in (6.64) yields the estimate x̂T = [x̂T0jN ; x̂
T
1jN ; : : : ; x̂

T
N jN ]

T .
The optimization can be accomplished using the Lagrange multiplier technique where a new func-
tional ~J is formed from (6.62) and (6.64)

~J(u; v) = J(u; v) + �T (Sx�Gu) (6.66)

where �, an unknown vector of the same dimension as x, is called the Lagrange multiplier. After
some algebra and setting the partial derivatives of ~J with respect to u and x to zero we obtain the
so-called Hamiltonian (see [15])�

S �GQGT

HTR�1H ST

� �
x̂

�̂

�
=

�
0

HTR�1y

�
: (6.67)

Solution of (6.67) yields x̂kjN for k = 0; 1; : : : ; N . It can be seen that (6.67) is a sparse block
matrix. In fact, after a re-ordering of the terms in the vectors, the resulting matrix is tri-block-
diagonal. Solving this tri-block-diagonal system by using Gaussian elimination, �rst on the lower
diagonal, then on the upper diagonal yields the following equations in matrix form2

6666666666664

��0 I 0 0 0 � � � 0
I �0 �F T

0 0 0 � � � 0
0 �F0 �0 I 0 � � � 0
0 0 I �1 �F T

1 � � � 0
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

0 0 � � � 0 �FN�1 �N�1 I
0 0 � � � 0 0 I �N

3
7777777777775

2
66666666664

�̂0
x̂0
�̂1
x̂1
...

�̂N
x̂N

3
77777777775
=

2
6666666664

m0

 0

0
 1

0
...
 N

3
7777777775

(6.68)

where �k = HT
k R

�1
k Hk, �k = �GkQkG

T
k , and  k = HkR

�1
k yk. Beginning by eliminating the lower

diagonal of the matrix we obtain for the �rst equation

x̂0 = �0�̂0 +m0 (6.69)

which when �̂0 = 0 yields the usual Kalman �lter initial condition x̂0j�1 = m0. The second equation
obtained by the Gaussian elimination is

x̂0 = (HT
0 R

�1
0 H0 +��10 )�1(F T

0 �̂1 +H0R0�1y0 +��10 m0) (6.70)

which, when �̂1 = 0 and after some algebra, yields the Kalman �lter �lter-update equation x̂0j0 =
x̂0j�1+P0j�1HT

0 (H0P0j�1HT
0 +R0)

�1(y0�H0x̂0j�1). Continuing in this way the Gaussian elimination
yields the 2N equations

x̂kjk = x̂kjk�1 + Pkjk�1HT
k (HkPkjk�1HT

k +Rk)
�1(yk �Hkx̂kjk�1)

x̂k+1jk = Fkx̂kjk (6.71)
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where

Pkjk = Pkjk�1 � Pkjk�1HT
k (HkPkjk�1HT

k +Rk)
�1HkPkjk�1

Pk+1jk = FkPkjkF T
k +GkQkG

T
k : (6.72)

After eliminating the lower diagonal of the matrix in (6.68) the upper diagonal is eliminated in the
same way, however, now the �̂k are not set to zero which results in the equations

x̂kjN = x̂kjk +Ak[x̂k+1jN � x̂k+1jk] (6.73)

where

PkjN = Pkjk +Ak[Pk+1jN � Pkjk�1]AT
k

Ak = PkjkF T
k P

�1
kjk�1 (6.74)

and where the �̂k have been identi�ed as the x̂kjN . It can be seen that equations (6.71) and (6.72)
specify the standard Kalman �lter. Equations (6.73) and (6.74) yield the Rauch-Tung-Striebel
smoother.

6.3.2 How to Use the Function wiener

The syntax for the function wiener is as follows

-->[xs,ps,xf,pf]=wf(y,x0,p0,f,g,h,q,r)

The inputs f, g, and h are the system matrices in the interval [t0; tf ]. The construction of,
for example, f is accomplished by arranging the individual matrices Fk into a block-row matrix
[F0; F1; : : : ; FN ]. The other system matrices are identical in construction. The inputs q and r are
the covariance matrices of dynamics and observation noise. These matrices are also constructed in
a fashion identical to that for f. The inputs x0 and p0 are the initial state estimate vector and error
variance matrix. The vector x0 must be in column form. Finally, the input y are the observations
in the interval [t0; tf ]. The form of y is a matrix where the �rst column is the observation y0, the
second column y1, etc. The outputs are the smoothed estimates xs of x0, x1, etc. arranged in a
matrix of similar form to y and ps which is arranged identically to the form of the input matrices.

6.3.3 Example

In this section, the wiener function is demonstrated on a two-dimensional problem. The input to
the �lter is synthetic data obtained using the same system dynamics given to the wiener function.
The system used in the example is as follows.

xk+1 =

�
1:15 :1
0 :8

�
xk +

�
1 0
0 1

�
wk

yk =

�
1 0
0 1

�
xk + vk

where

Efwkw
T
k g =

�
:01 0
0 :01

�

EfvkvTk g =

�
20 0
0 20

�
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and

Efx0g =

�
10
10

�

Ef(x0 �m0)(x0 �m0)
T g =

�
100 0
0 100

�

Figure 6.3 shows the results of using the wiener function on the synthetic data generated by
the model above. Here the dotted line indicates the actual state values generated by the system.
The circles on the dotted line serve to mark the actual state locations. The solid line marked by
circles indicates the Kalman �lter estimate of the state. The estimate of x0 is located in the upper
left corner of the �gure and the estimate of x12 is located in the lower right corner of the �gure.
As can be seen the initial estimates obtained by the Kalman �lter are not so good with respect to
the �nal estimates obtained by the �lter. This is due to the large initial error covariance matrix
given for the initial estimate of the state vector. The solid line marked by stars is the smoothed
Kalman �lter estimate. As can be seen, the �nal smoothed estimate is identical to that of the
regular Kalman �lter. However, as the smoothed Kalman �lter estimate works its way back to the
initial state value, the estimate becomes greatly improved, as is to be expected since these states
are now estimated based on all of the observed data.
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Figure 6.3: exec('wf1.code') Wiener Smoothing Filter

The Scilab code which generated the example in this section is as follows.

-->//test of the wiener filter function

-->// initialize state statistics (mean and er. variance)

-->m0=[10 10]';p0=[100 0;0 100];

-->// create system
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-->f=[1.150.1;00.8];g=[1 0;0 1];

-->h=[1 0;0 1];[hi,hj]=size(h);

-->// noise statistics

-->q=[.01 0;00.01];r=20*eye(2,2);

-->// initialize system process

-->rand('seed',66);rand('normal');

-->p0c=chol(p0);x0=m0+p0c'*rand(ones(m0));

-->y=h*x0+chol(r)'*rand(ones(1:hi))';yt=y;

-->// initialize plotted variables

-->x=x0;

-->// loop

-->ft=[f];gt=[g];ht=[h];qt=[q];rt=[r];

-->n=10;

-->for k=1:n,

-->// generate the state and observation at time k (i.e. xk and yk)

-->[x1,y]=system(x0,f,g,h,q,r);

-->x=[x x1];yt=[yt y];x0=x1;

-->ft=[ft f];gt=[gt g];ht=[ht h];

-->qt=[qt q];rt=[rt r];

-->// end loop

-->end;

-->// get the wiener filter estimate

-->[xs,ps,xf,pf]=wiener(yt,m0,p0,ft,gt,ht,qt,rt);

-->// plot result

-->a=mini([x(1,:)-2*sqrt(ps(1,1:2:2*(n+1))),xf(1,:),xs(1,:)]);

-->b=maxi([x(1,:)+2*sqrt(ps(1,1:2:2*(n+1))),xf(1,:),xs(1,:)]);

-->c=mini([x(2,:)-2*sqrt(ps(2,2:2:2*(n+1))),xf(2,:),xs(2,:)]);
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-->d=maxi([x(2,:)+2*sqrt(ps(2,2:2:2*(n+1))),xf(2,:),xs(2,:)]);

-->xmargin=maxi([abs(a),abs(b)]);

-->ymargin=maxi([abs(c),abs(d)]);

-->a=-0.1*xmargin+a;b=.1*xmargin+b;

-->c=-0.1*ymargin+c;d=.1*ymargin+d;

-->// plot frame, real state (x), and estimates (xf, and xs)

-->plot([a a b],[d c c]);

-->plot2d(x(1,:)',x(2,:)',[2],"000"),

-->plot2d(xf(1,:)',xf(2,:)',[2],"000"),

-->plot2d(xs(1,:)',xs(2,:)',[2],"000"),

-->// mark data points (* for real data, o for estimates)

-->plot2d(xs(1,:)',xs(2,:)',[-2],"000"),

-->plot2d(xf(1,:)',xf(2,:)',[-3],"000"),

-->plot2d(x(1,:)',x(2,:)',[-4],"000"),



Chapter 7

Optimization in �lter design

In this chapter, some optimization techniques are investigated for the design of IIR as well as FIR
�lters. Those techniques are particuliarly usefull when non standard responses are desired.

7.1 Optimized IIR �lters

In a previous chapter on the design of IIR �lters, several methods have been investigated which make
use of closed-form expressions for this purpose. In this section the desired speci�cations are achieved
with the help of optimization techniques: the set of convenient �lter parameters is computed by
minimizing some error criterion [24]. This technique has to be used when nonconventional �lter
speci�cations are to be achieved.

7.1.1 Minimum Lp design

The criterion that has been retained here is the minimum Lp error and the set of parameters to be
optimized, the set of poles and zeros the cardinal of which being speci�ed by the user. The reason
for such a choice of parameters is that speci�cations on the group delay are much more easily written
for this set than for the usual �lter coeÆcients - especially the computations of gradients - One
may note also that the minimum Lp error criterion admits the well-known minimum mean-square
error criterion as a particular case by setting p to two.

Now, let H(z) be the transfer function of the �lter given as a cascade of K second-order sections:

H(z) = A
KY
k=1

z2 � 2r0kcos�0kz + r20k
z2 � 2rpkcos�pkz + r2pk

(7.1)

The set of parameters to be optimized is then given by the following vector:

� = (r0k; �0k; rpk; �pk; A) k = 1;K (7.2)

where index 0 stands for zeros and index p for poles, no confusion being to be expected with
index p in the Lp error criterion. Usually the speci�cations for a �lter are given separately for the
magnitude jH(ej!)j and/or the group delay �(!); the corresponding expressions are:

jH(ej!)j , a(�; !) (7.3)

= A

KY
k=1

(1� 2r0kcos(! � �0k) + r20k)
1=2(1� 2r0kcos(! + �0k) + r20k)

1=2

(1� 2rpkcos(! � �pk) + r2pk)
1=2(1� 2rpkcos(! + �pk) + r2pk)

1=2
(7.4)
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and

�(�; !) =
KX
k=1

f 1� rpkcos(! � �pk)

(1� 2rpkcos(! � �pk) + r2pk)
1=2

+
1� rpkcos(! + �pk)

(1� 2rpkcos(! + �pk) + r2pk)
1=2

� 1� r0kcos(! � �0k)

(1� 2r0kcos(! � �0k) + r20k)
1=2

� 1� r0kcos(! + �0k)

(1� 2r0kcos(! + �0k) + r20k)
1=2
g (7.5)

De�ning the desired magnitude response ad(!j) and group delay �d(!), the minimum Lp -design
problem can be formulated by mean of the following error function:

E(�) = �

JX
j=1

wa(!j)[a(�; !j)� ad(!j)]
2p

+ (1� �)
JX
j=1

w� (!j)[�(�; !j)� �d(!j)]
2p (7.6)

where wa(!j) and w� (!j) are weighting functions de�ned on a dense grid of frequencies f!j=0 �
!j � �g and � is a real number belonging to [0; 1] that reects the importance of the speci�cations
on the magnitude relative to that on the group delay in a straightforward fashion. One seek after a
vector �� such that E(��) is minimum: this problem is easily solved in Scilab with the help of the
function optim the purpose of which is the resolution of general nonlinear optimization problems
. We refer the reader to the relevant documentation [7] for a detailed explanation of its use. The
optim function needs some input parameters, the main of which being what is called a simulator:
it may be given as a Scilab function and its purpose is to give the cost function of the relevant
problem as well as its gradient relative to the speci�ed parameters. For the minimum Lp design
problem, the simulator is named iirlp and makes use of two other macros: iirmag and iirgroup;
it gives E(�) together with its gradient relative to �.

The following example will give an idea of what can be achieved with this optimization technique:
we are given a low-pass elliptic �lter with normalized cut-o� frequency 0.25, transition bandwidth
equal to 0.15, ripple in the passband of 0.1 and ripple in the stopband of 0.01 (i.e. 40dB of
attenuation); with the Scilab function eqiir we have obtained a �lter of the fourth order together
with its zeros and poles.

--> [ce0,f0,ze0,po0]=eqiir('lp','ellip',%pi*[.5;.65;0;0],.1,.01);

--> hz0=f0*prod(ce0(2))./prod(ce0(3))

hz0 =

2 3 4

0.1164375 + 0.320825z + 0.4377450z + 0.320825z + 0.1164375z

-----------------------------------------------------------

2 3 4

0.1744334 - 0.3436685z + 0.9682733z - 0.4106181z + z

Now we want to inverse this �lter, that is we seek after a �lter the magnitude reponse of which
times that of the original elliptic �lter equals one in the passband, while in the stopband the total
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attenuation is less than 80dB. This situation appears for example when a digital �lter is needed,
after analog-to-digital conversion, to compensate the deformations of a signal by an anti-aliasing
analog �lter. The corresponding speci�cations are obtained the following way:

-->//design of a low-pass filter with normalized discrete frequency0.25

-->//ripple in the passband 0.1, ripple in the stopband 0.01,

-->//transition bandwidth0.1

-->[ce0,f0,ze0,po0]=eqiir('lp','ellip',%pi*[.5;.65;0;0],.1,.01);

-->// transfer function of the original filter.

-->hz0=f0*prod(ce0(2))./prod(ce0(3));

-->// initialization of the parameter vector(zeros, poles in polar coord.)

-->//poles and zeros (discarding the conjugates)

-->//of the original filter have been retained as initial values,

-->//leading to a filter with the same degree than the previous.

-->//the last value (10) is the initial value of the gain factor.

-->ze0=ze0(1:2:4);po0=po0(1:2:4);

-->x0=[abs([ze0 po0])';atan(imag([ze0 po0]),real([ze0 po0]))';10];

-->x=x0;

-->// grid of frequencies for the analysis

-->omega=%pi*(0.01:0.01:1);

-->// choice of the power for the criterion (mean-square here)

-->p=1;

-->// weighting function (one in the passband, 0.5 in the stopband)

-->wa(1:52)=ones(1,52);

-->wa(53:100)=.5*ones([53:100]);

-->// magnitude response of the original elliptic filter
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-->rp0=abs(freq(hz0(2),hz0(3),exp(%i*omega)));

-->//plot(rp0)

-->// desired magnitude ad (ad(omega)*rp0(omega)=1 in the

-->//passband, ad having the same attenuation than the original

-->//filter in the stopband)

-->ad(1:49)=ones(1,49)./rp0(1:49);

-->ad(50:100)=rp0(50:100);

-->// starting an unconstrained optimization

-->x=[x0(1:4) x0(5:8)];

-->[cout,xx1,grad,to]=optim(iirmod,x);

-->binf=[0;-2*%pi].*.ones(4,1);

-->bsup=[1;2*%pi].*.ones(4,1);

-->binf=[binf(1:4) binf(5:8)]

binf =

! 0. - 6.2831853 !

! 0. - 6.2831853 !

! 0. - 6.2831853 !

! 0. - 6.2831853 !

-->bsup=[bsup(1:4) bsup(5:8)]

bsup =

! 1. 6.2831853 !

! 1. 6.2831853 !

! 1. 6.2831853 !

! 1. 6.2831853 !

-->[cout,xx2,grad,to]=optim(iirmod,'b',binf,bsup,x);

-->z=poly(0,'z');

-->z1=xx2(1,1)*exp(%i*xx2(1,2));

-->z2=xx2(2,1)*exp(%i*xx2(2,2));
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-->num=(z-z1)*(z-z1')*(z-z2)*(z-z2')

num =

real part

2 3 4

0.2609134 + 0.7622561z + 1.5252088z + 1.4540424z + z

imaginary part

2

2.023D-17 + 1.553D-17z - 8.511D-17z

-->num=real(num);

-->p1=xx2(3,1)*exp(%i*xx2(3,2));

-->p2=xx2(4,1)*exp(%i*xx2(4,2));

-->den=(z-p1)*(z-p1')*(z-p2)*(z-p2');

-->den=real(den);

-->sl=syslin('c',num/den);

-->ff=repfreq(sl,0.01,0.5,0.01);

-->rp1=abs(freq(num,den,exp(%i*omega)));

-->plot(rp1);

-->plot(rp0);

-->xbasc();

-->plot(20.*log(rp0.*rp1));

Although the constraints on the parameters can be easily speci�ed, an unconstrained optimization
procedure has been applied because the initial values are unknown (hence may be far away from
the optimal solution, if any) and the order is unknown too. Instead, as indicated in [23], the Scilab
function optim will be applied several times and when some pole or zero goes outside the unit
circle, it will be replaced by the symmetric (with respect to the unit circle) complex number and a
new optimization runned. To see the results obtained with a constrained optimization, it may be
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interesting to run the following command, recalling that the constraints on the poles and zeros are:

�
0 � r0k � 1 0 � rpk � 1
0 � �0k � 2� 0 � �pk � 2�

(7.7)

hz0 =

2 3 4

0.1164375 + 0.320825z + 0.4377450z + 0.320825z + 0.1164375z

-----------------------------------------------------------

2 3 4

0.1744334 - 0.3436685z + 0.9682733z - 0.4106181z + z

-->ze0=ze0(1:2:4);po0=po0(1:2:4);

-->x0=[abs([ze0 po0])';atan(imag([ze0 po0]),real([ze0 po0]))';10];

-->x=x0;

-->omega=%pi*(0.01:0.01:1);

-->wa(1:52)=ones(1,52);

-->wa(53:100)=.5*ones([53:100]);

-->rp0=abs(freq(hz0(2),hz0(3),exp(%i*omega)));

-->ad(1:49)=ones(1,49)./rp0(1:49);

-->ad(50:100)=rp0(50:100);

--> x0 = ...

--> [ 1.

--> 1.

--> 0.8750714

--> 0.4772780

--> 2.0975887

--> 2.636041

--> 1.6018558

--> 1.0620259

--> 10. ];

-->x=[x0(1:4) x0(5:8)];

-->binf=[0;-2*%pi].*.ones(4,1);

-->bsup=[1;2*%pi].*.ones(4,1);

-->binf=[binf(1:4) binf(5:8)]
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binf =

! 0. - 6.2831853 !

! 0. - 6.2831853 !

! 0. - 6.2831853 !

! 0. - 6.2831853 !

-->bsup=[bsup(1:4) bsup(5:8)]

bsup =

! 1. 6.2831853 !

! 1. 6.2831853 !

! 1. 6.2831853 !

! 1. 6.2831853 !

-->//[cout,xx2,grad,to]=optim(iirmod,'b',binf,bsup,x);

-->//The "best" solution is obtained with max iteration reached

Another method to solve this problem would be to run an optimization with penalties on the
constraints, in order to keep the poles and zeros inside the unit circle: we did not try it. Now,
back to the unconstrained optimization, after several runs of optim without constraints, an optimal
solution has been achieved for the chosen �lter order. Nevertheless it is seen on Figure 7.1 that
this solution is not satisfactory:
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Figure 7.1: exec('optiir.1.code') Minimum mean-square design. Fourth order IIR �lter

Figure 7.2 shows that the product of the two magnitude responses is far from being equal to
one in the passband and that the total prescribed attenuation is not achieved (the horizontal line
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is at -80 dB):
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Figure 7.2: exec('optiir.2.code') Resulting magnitude response. Log scale

So a second-order block has been added (four more parameters) to the transfer function found
at the preceding step, leading to a �lter of order six:

--> x01 = ...

--> [ 1.

--> 1.

--> 1.

--> 0.8377264

--> 0.3147539

--> 0.9

--> - 3.6886696

--> 2.0017663

--> 1.7

--> 1.605514

--> 1.4517773

--> 1.3

--> 0.1771141 ];

-->omega=%pi*(0.01:0.01:1);

-->z=poly(0,'z');

-->num=z-x01(1);

-->den=z-x01(7);

-->for i=1:5
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-->num=num*(z-x01(i+1));

-->den=den*(z-x01(i+7));

-->end;

-->sl=syslin('c',num/den);

-->ff=repfreq(sl,0.01,0.5,0.01);

-->hz01=abs(freq(num,den,exp(%i*omega)));

The same optimization procedure has been applied with this initial value, resulting in the following
solution vector:

--> x = ...

--> [ 1.

--> 1.

--> 0.6887491

--> 0.8828249

--> 0.1052913

--> 0.7457737

--> - 3.6219555

--> 2.1085705

--> 1.4768262

--> 1.6081331

--> - 0.127d-08

--> 1.3457622

--> 0.1243695 ];

the desired magnitude reponse and the one achieved with that solution appear in Figure 7.3, while
the product of the log-magnitude responses is in Figure 7.4.

As we are interested in what happens in the passband, focusing on it is needed: this is done in
Figure 7.5 and we see that for ! 2 [0; :45] the ripple is equal to 0.07 dB. The reader may convince
himself that better approximation may be obtained with an increase of the �lter order; we mention
too that the speci�cation of ad at the beginning of the transition is not likely to be that of a real
�lter (it has not a monotone decreasing behaviour in that region !) and that a more realistic desired
response could have been best approximated with the same number of parameters.

7.2 Optimized FIR �lters

As for IIR �lters, optimization techniques may be used to achieve particuliar speci�cations for FIR
�lters [24] . In this framework, the design problem formulation leads to a simple linear programming
problem, which makes this approach attractive, as opposed to nonlinear methods used in the case
of optimization based, IIR �lter design.

As the approach in this section is based on the frequency sampling technique 3.1, we �rst refer
to the frequency response of a linear phase FIR �lter as given by formula 3.1. In fact, because the
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Figure 7.3: exec('optiir.3.code')Minimum mean-square design. Sixth order IIR �lter
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Figure 7.4: exec('optiir.4.code') Resulting magnitude response. Log scale
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Figure 7.5: exec('optiir.5.code') Log-magnitude response. ! 2 [0; 0:45]

linear phase term can be ignored for the design purpose, we rather consider the real function:

H�(ej!) =

N�1X
k=0

H(k)S(!; k) (7.8)

where

S(!; k) = e�jk�=N
sin(N!=2)

sin(!=2 � k�=N)

= �e�jk�=N sin(N(!=2) � k�=N)

sin(!=2� k�=N)
(7.9)

are the interpolating functions. Usually in �lter design, speci�cations are given in passbands and
stopbands while absent in transition bands for which the width rather is given. For that reason,
H�(ej!) can be written:

H�(ej!) = B(!) +

pX
i=1

TiAi(!) (7.10)

where B(!) gives the contribution to H�(ej!) of all the �xed frequency samples (that is those in
the passbands and the stopbands) and the Ai(!) the contribution of all the unconstrained samples
(that is the ones in the transitions) with respective magnitude Ti, these being to be optimized. In
the sequel, the union of passbands will be called region 1,noted R1 and that of passbands region 2,
noted R2. We now want, for a �xed approximation error in R1, to �nd the linear phase FIR �lter
giving the maximum attenuation in R2 - note that the converse is another possible issue - This can
be formulated as follows:

For some �xed � and desired frequency response Hd(e
j!), �nd the set of Ti, solution of:

min
Ti

max
!2R2

jH�(ej!)�Hd(e
j!)j (7.11)
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and subject to the constraints:

jH�(ej!)�Hd(e
j!)j � � (7.12)

Because of the linearity of Hd(e
j!) with respect to the Ti, we are led to a linear programming

problem, the cost function to minimize being the maximum attenuation inR2, which will be denoted
by Tp+1 for notational convenience and the constraints on the Ti; i = 1 : : : p, being formulated with
the help of (7.12). The optimization problem may be formulated as to �nd the set of T 0is such that
Tp+1 is minimum subject to the constraints:Pp

i=1 TiAi(!) � ��B(!) +Hd(e
j!)

�Pp
i=1 TiAi(!) � �+B(!)�Hd(e

j!)

9=
;! 2 R1

Pp
i=1 TiAi(!)� Tp+1 � �B(!) +Hd(e

j!)

�Pp
i=1 TiAi(!)� Tp+1 � B(!)�Hd(e

j!)

9=
;! 2 R2

Now the problem is in a suitable form for solution via the classical Simplex Method. Let us
mention too that, with minor changes, the problem -and the associated macro- may be stated as
to �nd the �lter with minimum ripple in the passbands for a given attenuation in the stopbands.
In the following, only an example of the standard lowpass �lter type is treated although any other
frequency response can be approximated with this method.

Example 1 : �gure 7.6 shows the frequency response of a lowpass type 1 �lter with the following
speci�cations: n=64; cut-o� frequency, fc=.15; � = 0:01; three samples in the transition.
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Figure 7.6: exec('optfir1.code') Linear programming design. 64-point lowpass FIR �lter

Figure 7.7 shows the log magnitude squared of the initial �lter de�ned by the rectangular
window and the optimized �lter. 0:28 and 0:30 � = 0:001 and three samples in each transition.
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Figure 7.7: exec('optfir2.code') Linear programming design.
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Chapter 8

Stochastic realization

Let yk be a wide sense stationary gaussian process with covariance function fRn;n 2 Zg. It is well-
known that yk may be considered as the output of a �lter F with a white noise et as input. The
Stochastic Realization problem for yk is the construction of an algorithm giving F ; in addition, F is
usually asked to be causal and minimum delay (i.e. with causal inverse), for reasons of realizability.
One major consequence of this additional constraint is that F , when it exists, is minimal and
unique, up to a transformation of coordinates. The �lter F is called the Modeling Filter and its
inverse F�1 theWhitening Filter . Let us consider the following examples, in which the information
on yk is given two di�erent ways. First, let be given Sy(z), the spectrum of yk. Then, the whitening
�lter of yk is the solution E(z) of the Spectral Factorization problem of Sy(z), that is the solution
of :

E(z)Sy(z)E
T (z�1) = I (8.1)

such that E(z) and E�1(z) are analytical in the unit disc, that is that the modeling �lter of yk is
causal and minimum delay. The stochastic realization problem is then the computation of E(z),
given Sy(e

i�). Solutions to this problem will be given in section 8.1 with direct factorization of
matrix polynomials and in 8.2 via a state-space approach.

Another example is when the covariance function Rn = E(yky
T
k�n) of yk is given - the infor-

mation on yk is then equivalent to that in the previous example- The whitening �lter giving the
innovation, or prediction error, is obtained by minimizing with respect to the coeÆcients Ak, the
mean square prediction error :

E(ketk2) = Efkyk �
X
k>0

Akyt�kk2g (8.2)

The stochastic realization problem is then the computation of the Ak as the solution of the following
Yule-Walker , normal equations :

2
6664
R0 R1 R2 : : :
RT
1 R0 R1 : : :

RT
2 RT

1 R0 : : :
...

3
7775
2
6664
A1

A2

A3
...

3
7775 =

2
6664
R1

R2

R3
...

3
7775 (8.3)

This system being To�eplitz, it may be eÆciently solved using a Levinson-type algorithm ,as will be
exposed in section 8.4.

177
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8.1 The sfact primitive

Given a matrix polynomial H(z) with size n�m and rank n, the Scilab function sfact gives the
spectral factorization of H(z), that is a matrix polynomial D such that:

H(z) = D(z)D(1=z)zn (8.4)

Consider for example the following 2� 2 matrix polynomial a(z), generated from the simulation of
a two-dimensional process with three poles followed by a levinson �ltering (see section 8.4):

-->//Spectral factorization

-->z=poly(0,'z');

-->a=[ -0.09-0.35z+z^2 ,-0.02-0.13z

--> -0.03-0.15z , -0.08-0.36z+z^2 ]

a =

! 2 !

! - 0.44 z + z - 0.15 z !

! !

! 2 !

! - 0.18 z - 0.44 z + z !

-->// We calculate a(z)*a(1/z)*z^2

-->sp=a*horner(a,1/z)';

-->sp=sp*z;

-->sp=sp(2)

sp =

! 2 2 !

! 1 + 3.2161z + z 1 + 2.1452z + z !

! !

! 2 2 !

! 1 + 2.1452z + z 1 + 3.226z + z !

-->// We get a left spectral factor

-->d=sfact(sp)

d =

! 1.6639845 + 0.6009671z 0.2934179z !

! !

! 1.0204088 + 0.6009671z 1.3181465 + 0.2934179z !

-->// We check the result
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-->d1=horner(d,1/z);

-->d1=d1(2)'

d1 =

! 0.6009671 + 1.6639845z 0.6009671 + 1.0204088z !

! !

! 0.2934179 0.2934179 + 1.3181465z !

-->sp-d*d1

ans =

! 0 0 !

! !

! 0 0 !

8.2 Spectral Factorization via state-space models

As mentioned in the introduction, the stochastic realization problem may be formulated in terms
of factorization of rational matrices - leading to factoring polynomials - or in a state-variable
framework. In this section, we will concentrate on the state-space approach, with the underlying
markovian representation following the treatment of [27] or that uses a gaussian spaces formulation
of this problem. Thus, given yk a zero-mean, stationary gaussian process, we seek after markovian
models of the following type: �

xk+1 = Fxk + Juk+1

yk+1 = Hxk + Luk+1
(8.5)

with the following hypotheses:
xk is q-dimensional.
uk is a q-dimensional, standard, gaussian white noise.
F;H; J; L are arbitrary matrices with F asymptotically stable. Furthermore we shall restrict our-
selves to minimal models, that is with F having minimum dimensions.

8.2.1 Spectral Study

Let fRk; k 2 Zg be the covariance function of yk. De�ning G as :

G = E(x0y
T
0 ) (8.6)

we have that

8n � 1; Rn = HF n�1G (8.7)

Letting Y (z) and U(z) be the z-transforms of yk and uk respectively, it follows from (8.5) that :

Y (z) = �(z)U(z) (8.8)

where

�(z) = J +Hz(I � Fz)�1L (8.9)
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is a rational matrix without poles in a vicinity of the unit disc. Thus, the spectrum Sy of yk may
be written in the following factored form:

Sy(�) = �(ei�)��(e�i�) � 2 [��; �] (8.10)

where �� denotes the transposed conjugate of �. Furthermore, from (8.8), we can write:

U(z) = ��1(z)Y (z) (8.11)

and when J > 0 (in the sense of positive matrices) :

��1(z) = J�1 � J�1Hz(I � (F � LJ�1H)z)�1LJ�1 (8.12)

so that uk may be obtained from yk by a Laurent expansion of �
�1 in the vicinity of the unit circle,

leading to the whitening �lter .
It is worth noting that when yk is scalar, then �(z) = B(z)=A(z), where A and B are coprime

polynomials and B has no zero in a vicinity of the unit disc; in other words, yk is an ARMA process
.

8.2.2 The Filter Model

Among the many markovian representations of yk, one is of particular importance, as we shall see
later on: The Filter Model or Innovations Model . To introduce it, we need some de�nitions: �rst,
let us de�ne the �lter ~xk of xk as:

~xk = E(xk=Y
�
k�1) (8.13)

where Y �k is the gaussian space generated by the coordinates of yk, k � n. It is the �lter of the
process xk by the process yk. We need also the innovations process ~wk de�ned as follows :

~wk = yk �E(yk=Y
�
k�1) (8.14)

~wk is a stationary, gaussian white noise with covariance ~R. From ~wk the standard gaussian white
noise ~uk may be obtained as: ~uk = ~R�1=2 ~wk.
We are now able to introduce the innovations model:�

~xk+1 = F ~xk + T ~wk+1

yk+1 = H~xk + ~wk+1
(8.15)

where

T = E(xk ~w
T
k )

~R�1 (8.16)

From (8.15), we get the following model too :�
~xk+1 = F ~xk + T ~R1=2~uk+1

yk+1 = H~xk + ~R1=2~uk+1
(8.17)

which is of the desired type (8.5). The transfer function matrix ~�(z) of the model (8.17) writes :

~�(z) = [I +Hz(I � Fz)�1T ] ~R1=2 (8.18)

and is a maximal factorization of the spectral density of yk, known as the minimum-delay factor-

ization . One consequence of this fact is that the innovation may be calculated as :

~wk = yk+1 �H~xk (8.19)

The importance of the �lter model lies in that all the minimal markovian representations of yk
have the same �lter, so that the problem we are faced with is to �nd this �lter, given the statistics
of yk. For this reason of uniqueness, we will say that ~xk is the �lter of yk.
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8.3 Computing the solution

We assume now that we could get in some way the covariance sequence of the process yk. The
models we consider being minimal with dimension q, it is a well-known fact in automatic control
that the observability matrix :

O =

2
6664

H
HF
...

HF q�1

3
7775 (8.20)

has its rank equal to q and is de�ned up to a similarity transformation; thus the pair (H;F ) is
unique in the same sense. For evident reasons G, de�ned in (8.6), shares the same property. Thus
we can conclude that the triple (H;F;G) is unique up to a similarity transformation. It may be
easily obtained from the empirical covariance function fRkg with algorithms such that Ho's [12] or
Rissanen's [26]. It is this point that we shall investigate now.

8.3.1 Estimation of the matrices H F G

Numerous algorithms exist for solving this problem and we shall focus on just one of them: the
so-called Principal Hankel Component (PHC) [17] approximation method, which is singular value
decomposition (SVD) based . It is as follows: from the covariance sequence, form the Hankel
matrix:

HM;N =

2
666664

R0 R1 R2 : : : RN�1
R1 R2 R3 : : : RN

R2 R3 R4 : : : RN+1
...

...
...

...
RM�1 RM RM+1 : : : RM+N�2

3
777775 (8.21)

The reason for the wide use of this matrix is the Kronecker's theorem which says that its rank is
theoretically equal to the order of the associated system, i.e. equal to the dimension of state-vectors
of minimal state-space realizations. De�ning the matrix C as :

C =
�
G FG : : : F q�1G

�
(8.22)

we have that :

HM;N = OC (8.23)

Now, from the observability matrix O, de�ne the two following matrices:

O
0
=

2
6664

H
HF
...

HF q�2

3
7775 (8.24)

and

O" =

2
64

HF
...

HF q�1

3
75 (8.25)
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It is straightforward that:

O" = O
0
F (8.26)

so that the matrix F is obtained as the least-squares solution of (8.26). H is obtained as the �rst
bloc-row of O and G as the �rst bloc-column of C : this is the PHC approximation method.

Numerically, the factorization (8.23) is done via singular-value decomposition:

HM;N = USVT (8.27)

O and C are obtained as :

O = US1=2 C = S1=2V T (8.28)

The phc macro This macro implements the preceding algorithm to �nd the triple (H;F;G).
In the following example, a 64-point length covariance sequence has been generated for a two-
dimensional process, the �rst component of which is the sum of two sinusoids with discrete fre-
quencies �=10 and 2�=10, while the second component is the sum of two sinusoids with frequencies
�=10 and 1:9�=10, both being in additive, gaussian white noise. This is done as follows:

-->x=%pi/10:%pi/10:102.4*%pi;

-->rand('seed');rand('normal');

-->y=[.8*sin(x)+.8*sin(2*x)+rand(x);.8*sin(x)+.8*sin(1.99*x)+rand(x)];

-->c=[];

-->for j=1:2,for k=1:2,c=[c;corr(y(k,:),y(j,:),64)];end;end;

-->c=matrix(c,2,128);cov=[];

-->for j=1:64,cov=[cov;c(:,(j-1)*2+1:2*j)];end;

Then the Hankel matrix HM;N is built with the function hank. Finally, the PsiLab function phc

gives the desired triple (H;F;G).

8.3.2 computation of the �lter

Now, we have obtained the triple (H;F;G) and we shall investigate the matrices T and ~R that
have still to be computed to completely determine the �lter model (8.17). From this model, let us
compute the convenient covariances:

R0 = H ~PHT + ~R (8.29)

G = F ~PHT + T ~R (8.30)
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~P = F ~PF T + T ~RT T (8.31)

from which the following relations hold:

~R = R0 �H ~PHT (8.32)

T = (G� F ~PHT )(R0 �H ~PHT )�1 (8.33)

Noting that ~R and T depend solely on ~P and supposing that ~R is positive, we can write after
elimination of ~R between (8.29), (8.30) and (8.31):

~P = F ~PF T + (G� F ~PHT )(R0 �H ~PHT )�1(GT �H ~PF T ) (8.34)

which is the well-known algebraic Riccati equation . A matrix ~P is called a solution of the Riccati
equation if it is positive de�nite, such that R0�H ~PHT > 0 and satis�es equation (8.34). Although
this equation has several solutions, the following result gives an answer to our problem: the covari-
ance ~P of the �lter is the minimal solution of the algebraic Riccati equation. We shall give now
two algorithms giving this minimal solution : the Faurre algorithm and the Lindquist algorithm .

The Faurre algorithm [9]: in this method, the solution ~P is obtained as the growing limit of
the sequence of matrices PN such that:

PN+1 = FPNF
T + (G� FPNH

T )(R0 �HPNH
T )�1(GT �HPNF

T ) (8.35)

with the initial condition:

P0 = GR�10 GT (8.36)

Setting P0 = 0 is allowed too for this leads to P1 = GR�10 GT hence to a simple delay in the
iterations. To conclude, having obtained ~P via the recursion (8.35), the matrices ~R and T are
computed with equations (8.32) and (8.33) respectively. This is done with the macro srfaur.
The recursion for PN is not implemented as in equation (8.35) for it may not converge, especially
when the matrix F has poles near the unit circle. To overcome this diÆculty, a factored form,
Chandrasekhar type recursion has been implemented, leading to the sought after solution even in
the precedent defavourable situation1. The PsiLab function srfaur implements this sqare-root
algorithm.

Finally, the �lter and the corresponding estimated output are calculated with the help of the
model (8.17) by using the macro ltitrwhich simulates linear systems. To summarize, the preceding
example has been generated the following way:

-->// Simulation of a two-dimensional time-series (3 sinusoids)

-->x=%pi/10:%pi/10:102.4*%pi;

-->rand('seed',0);rand('normal');sx=sin(x);

-->y=[sx+sin(2*x);sx+sin(1.9*x)]+rand(2,1024);

-->// computation of correlations (64 delays)

1A mistake was found in the initialization of the algorithm and could not be corrected in time for the present

document
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-->c=[];

-->for j=1:2,for k=1:2,c=[c;corr(y(k,:),y(j,:),64)];end;end;

-->c=matrix(c,2,128);cov=[];r0=c(1:2,1:2);

-->// hankel matrix H20,20 (i.e. square with 20 bloc-rows)

-->hk=hank(20,20,c);

-->// finding H,F,G by the PHC method

-->[h,f,g]=phc(hk,2,6);

-->// solving the algebraic Riccati equation

-->[p,s1,t1,l1,rT,tT]=srfaur(h,f,g,r0,200);

-->r12=sqrt(.5*(rT+rT'));

-->r12=real(r12);f=real(f);tT=real(tT);

-->spec(l1'*l1)

ans =

1.0D-17 *

! 0. !

! 0. !

! 0. !

! 0. !

! 647184.16 !

! 94723947. !

-->// simulation of the filter

-->rand('seed',0);rand('normal');

-->xest=ltitr(f,tT*r12,rand(2,1024));

-->rand('seed',0);rand('normal');

-->yest=h*xest+r12*rand(2,1024);

-->// correlations of the filter model output

-->cest=[];
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-->for k=1:2,for j=1:2,cest=[cest;corr(yest(j,:),yest(k,:),64)];end;end

-->cest=matrix(cest,2,128);

The Lindquist algorithm [9]: This algorithm makes use of the fact that ~R and T may be
computed from K = ~PHT instead of ~P itself, leading to substantial computational savings when
the observation has a much lower dimension that the state, the most frequent situation. Refering
the reader to [9] for the derivations, we give now the algorithm itself:8<

:
KN+1 = KN + �N ~R�1N �TNH

T

�N+1 = [F � (G� FKN )(R0 �HKN )
�1H]�N

~RN+1 = ~RN � �TNH
T (R0 �HKN )

�1H�N

(8.37)

with the initial conditions:

K0 = 0 �0 = G ~R0 = R� 0 (8.38)

Then the expression for T is the following:

T = (G� FK)(R0 �HK)�1 (8.39)

and lindquist is the corresponding PsiLab function.

8.4 Levinson �ltering

We still consider here yk, a stationary, vector-valued time-series , from which we have available a
sample yk�1; yk�2; : : : ; yk�N ; the scope here is to estimate yk from this sample, by some ŷk, say,
which may be written then as a linear combination of the yk�j, j = 1; : : : ; N : ŷk =

PN
j=1A

N
j yk�j.

As mentioned in the introduction, this problem may be stated as a stochastic realization problem:
attempting to minimize the mean-square prediction error of order N at time k:

E(kek(N)k2) = Efkyk �
NX
j=1

AN
j yk�jk2g (8.40)

the �lter coeÆcients AN
j , where the superscript N indicates the dependence on the sample length,

are found to be the solutions of the following To�eplitz system :2
666664

R0 R1 R2 : : : RN�1
RT
1 R0 R1 : : : RN�2

RT
2 RT

1 R0 : : : RN�3
...

...
...

. . .
...

RT
N�1 RT

N�2 RT
N�3 : : : R0

3
777775

2
666664

A1

A2

A3
...
AN

3
777775 =

2
666664

R1

R2

R3
...
RN

3
777775 (8.41)

The mean-square error �N is easily calculated:

�N = E((yk � ŷk)(yk � ŷk)
T )

(8.42)
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= E((yk � ŷk)y
T
k )

(8.43)

= E(yky
T
k )�

NX
j=1

AN
j E(yk�jy

T
k )

= R0 �
NX
j=1

AN
j R�j (8.44)

where the second equality holds from the orthogonality principle between the estimate and the
prediction error. Classically, �N is taken as a measure of the quality of the estimation, since it
is a monotone decreasing function of N (the longer the sample, the better the estimation). One
may for example compare it to a preassigned mean-square estimation error. So, the problem is
to �nd a procedure which calculates, successively for each N , the coeÆcients AN

j and �N . An
answer is given with Levinson-type algorithms, an important property of which is their recursivity
in the order: one particularity, relative to other input-output representations such as state-space
models or rational matrices, is that in this approach the �lter structure - its order for example- is
considered as a parameter as well as any other, leading to the idea of lattice �lter and to cascade-
type realizations of transfer functions. Let us describe now the Levinson algorithm in the case of
a vector-valued time-series, noting that in the scalar case the backward prediction error is no use
because R�k = Rk, leading to simpler derivations, albeit similar. For the exposition we shall make
use of a Hilbert space approach, following the treatment given in 5.4.3.

8.4.1 The Levinson algorithm

Suppose we are given the vector-valued time-series yk. We begin with some de�nitions:
ek(N) and fk(N) will denote respectively the forward and backward prediction errors of order N
at time k:

ek(N) = yk �
NX
j=1

AN
j yk�j (8.45)

fk(N) = yk�N �
NX
j=1

BN
j yk�N+j (8.46)

with the convention that: ek(0) = fk(0) = yk. We shall need also the following linear space:
Y q
p = spanfyp; : : : ; yqg. In the present geometrical approach, the covariance E(xyT ) of x and y will

be noted [x; y] (scalar product) and if E(xyT ) = 0, we shall write x ? y (x orthogonal to y), as
well as A ? B for two orthogonal linear spaces. In view of these de�nitions, the following relations
hold:

ek(N) 2 Y k
k�N and ek(N) ? Y k�1

k�N (8.47)

fk(N) 2 Y k
k�N and fk(N) ? Y k

k�N+1 (8.48)

From (8.45), we get:

ek(N + 1)� ek(N) 2 Y k�1
k�N�1 (8.49)
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while ek(N + 1) ? Y k�1
k�N�1 and ek(N) ? Y k�1

k�N imply that:

ek(N + 1)� ek(N) ? Y k�1
k�N (8.50)

Recalling (8.48), relations (8.49) and (8.50) caracterize the space spanned by fk�1(N); hence there
exists a matrix KN such that:

ek(N + 1)� ek(N) = �KNfk�1(N) (8.51)

KN is determined with the help of the orthogonality condition:

ek(N + 1) ? yk�N�1 (8.52)

this relation implies that:

[ek(N + 1); yk�N�1]
= [ek(N); yk�N�1] �KN :[fk�1(N); yk�N�1]
= 0

(8.53)

hence giving:

KN = [ek(N); yk�N�1][fk�1(N); yk�N�1]�1 (8.54)

We recognize the second scalar product as the backward mean-square error �N . Relations for the
backward prediction error may be obtained the same way; they are:

fk(N + 1)� fk�1(N) 2 Y k
k�N and ? Y k�1

k�N (8.55)

which caracterize the space spanned by ek(N); thus there exists a matrix K�
N such that:

fk(N + 1)� fk�1(N) = �K�
Nek(N) (8.56)

and determined by the orthogonality condition:

fk(N + 1) ? yk (8.57)

which leads to:

K�
N = [fk�1(N); yk][ek(N); yk]

�1 (8.58)

Here too the second scalar product is seen to be the forward mean-square error �N . Relations (8.51),
(8.54), (8.56), (8.58) give the sought after recursions; their lattice structure may be explicited with
the help of the following matrix polynomials:

AN (z) = I �
NX
j=1

AN
j z

j (8.59)

BN (z) = zNI �
NX
j=1

BN
j z

N�j (8.60)

and the covariance matrices: Rn = [yk; yk�n], from which KN and K�
N may be expressed:

KN = (RN+1 �
NX
j=1

AN
j RN+1�j)(R0 �

NX
j=1

BN
j Rj)

�1

= �N�
�1
N (8.61)
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K�
N = (R�N�1 �

NX
j=1

BN
j R�N�1+j)(R0 �

NX
j=1

AN
j R�j)

�1

= �N�
�1
N (8.62)

with evident de�nitions. The last recursion to be given is that for �N , for which we will use the
expressions of KN (8.61) and K�

N in (8.62), and the de�nition of �N :

�N = [ek(N); yk] (8.63)

Then we can compute �N+1 as follows:

�N+1 = [ek(N + 1); yk]

= [ek(N)� �N�
�1
N fk�1(N); yk]

= [ek(N); yk]� �N�
�1
N [fk�1(N); yk]

= �N � �N�
�1
N �N (8.64)

In the same fashion, �N+1 will be written as:

�N+1 = �N � �N�
�1
N �N (8.65)

To summarize,the algorithm is as follows:

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

�
AN+1(z)
BN+1(z)

�
=

�
I �KN z

�K�
N z I

� �
AN (z)
BN (z)

�

KN = �N�
�1
N

K�
N = �N�

�1
N

�N+1 = �N � �N�
�1
N �N

�N+1 = �N � �N�
�1
N �N

�N = (R�N�1 �
PN

j=1B
N
j R�N�1+j)

�N = (RN+1 �
PN

j=1A
N
j RN+1�j)

(8.66)

with the initial conditions: �
�0 = R�N�1;�0 = RN+1

�0 = �0 = R0;A0(z) = B0(z) = I
(8.67)

The corresponding Scilab function is levin.



Chapter 9

Time-Frequency representations of

signals

Numerous tools such as DFT, periodogram, maximum entropy method, have been presented in
previous chapters for the spectral analysis of stationary processes. But, in many practical situations
(speech, acoustics, biomedicine applications, ...), this assumption of stationarity fails to be true.
Speci�c tools are then to be used when the spectral content of a signal under consideration is time
dependent. Two such tools will be presented in this chapter: The Wigner-V ille representation
and the classical Short-T ime periodogram , which are particuliar cases of a more general class of
spectral estimators[18]. Nevertheless, due to the superiority of the so-called wigner spectrum, no
numerical computation will be done for the short-time periodogram.

9.0.2 The Wigner distribution

Let be given a discrete-time signal f(n) and is Fourier transform:

F (�) =
X
n2Z

f(n)e�jn� (9.1)

The Wigner distribution of f(n) is given by:

Wf (n; �) = 2
X
k2Z

e�j2k�f(n+ k)f�(n� k) (9.2)

Useful in a time-frequency representation framework, a similar expression may be written for F (�):

WF (�; n) =
1

�

Z �

��
ej2n�F (� + �)F �(� � �)d� (9.3)

so that:

WF (�; n) =Wf (n; �) (9.4)

illustrating the symmetry between the de�nitions in both time and frequency domains. Among the
properties listed in [6] are the �-periodicity and the hermitic property, the last leading to the fact
that the Wigner distribution of real signals is real. One more important result is the following:

1

2�

Z �=2

��=2
Wf (n; �)d� = jf(n)j2 (9.5)

which means that the integral over a period of the Wigner distribution is equal to the instantaneous
signal power.
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9.0.3 Time-frequency spectral estimation

All the properties stated in [6] for deterministic signals with �nite energy are still valid for random
processes with harmonizable covariance, that is those for which the covariance function K(s; t) has
the decomposition:

K(s; t) = E(X(s)X�(t))

=
1

4�2

Z �

��

Z �

��
ei(�s��t)f(�; �)d�d� (9.6)

The same way an harmonic analysis of stationary random processes with the Fourier transform
leads to the classical spectrum, a mixed time-frequency analysis can be done with the Wigner
distribution, leading to a \time-frequency spectrum", which reduces to the �rst with the stationary
assumption. In [18], a general class of spectral estimators is considered:

Ŵ (n; �;�) =
1

�

X
k2Z

X
m2Z

Z �

��
eipm�(p; 2k)X(n +m+ k)X�(n+m� k)e�i2�kdp (9.7)

where �(p; 2k) is the Fourier transform of a data window caracterizing the weighting on the prod-
ucts. A �rst choice of �(p; 2k) is:

�STP (p; 2k) =
1

2N � 1

X
j2Z

hN (j + k)h�N (j � k)eipj (9.8)

leading to the well-known short time periodogram:

STP (n; �) =
1

2N � 1
j
X
j2Z

X(k)hN (k � n)e�i�nj2 (9.9)

which actually is the classical periodogram of the signal to which has been applied a sliding window;
smoothed versions may be obtained for this estimator[18] If now �(p; 2k) is chosen to be:

�SPW (p; 2k) = jhN (k)j2
X
m2Z

gM (m)e�ipm (9.10)

equation (9.6) particularizes in the smoothed pseudo-wigner spectral estimator:

PW (n; �) = 2
X
k2Z

e�i2�kjhN (k)j2
X
m2Z

gM (m)X(n+m� k)X�(n+m� k) (9.11)

where hN (k) and gM (m) are windows with respective length 2N � 1 and 2M � 1. One major
advantage in chosing �SPW (n; 2k) is that it is a separable function, so that independent smoothing
can be applied in the time and frequency directions, as opposed to �STP (n; 2k) which is governed
by \uncertainty relations" between the time and frequency weightings. Thence, the bias, known to
be introduced by weighting functions in spectral estimation, can be controlled separately for the
pseudo-wigner estimator. Morever, in the case of unsmoothed pseudo-wigner (M = 1), the bias in
the time direction vanishes while always present for the short time periodogram.

Now, we can compute the wigner spectrum estimator: let x(n) denote the analytical signal of the

sampled realization of the process X(t). SettingM = 1 (unsmoothed estimator) and �l
def
= �(l=N),
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we can write with the help of (9.10):

PW (n; �l) = 2

N�1X
k=�N+1

e�i2k�(l=N)jhN (k)j2x(n+ k)x�(n� k) (9.12)

= 2(2Ref
N�1X
k=0

e�i2k�(l=N)jhN (k)j2x(n+ k)x�(n� k)g � jx(n)j2)

and this expression may be easily computed via the FFT with the Scilab function wigner.

Example 1 : The following example is taken from [18]: the signal is a �nite duration sinusoid
modulated by a parabola:

S(t) =

8<
:

p(t) sin(2�16 t+ u(t� 488)�) 408 < t < 568

0 0 � t � 408 ; 567 � t � 951

p(t) is the parabola taking its maximum in t = 488, u(t) is the unit step function, hN is the
64-point rectangular window; the time and frequency increments are respectively equal to 12 and
�=128; M has been set to one (unsmoothed estimator). The signal generation and wigner spectrum
computation are then as follows:

-->// parabola

-->a=[488^2 488 1;408^2 408 1;568^2 568 1];

-->b=[1.28;0;0];

-->x=a\b;

-->t=408:568;

-->p=x'*[t.*t;t;ones(t)];

-->// unit step function

-->u=[0*ones(408:487) ones(488:568)];

-->// finite duration sinusoid

-->s=p.*sin(2*%pi/16*t+u*%pi);

-->// signal to be analyzed

-->s=[0*ones(0:407) s 0*ones(569:951)];

-->// 64-point rectangular window

-->h=ones(1,64);
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-->// wigner spectrum

-->w=wigner(s,h,12,128);

-->plot3d(1:69,1:64,abs(w(1:69,1:64)));

-->xend()

115

58

0

Z

1.0

32.5

64.0

Y

69

35

1

X

Figure 9.1: exec('wigner1.code') Wigner analysis. Sinusoid modulated by a parabola
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