
Expressiveness and Complexity of Formal Systems*

* The first author gratefully acknowledges the support of the Italian MURST National Project “Efficienza
di algoritmi e progetto di strutture informative.” The second author has been partially supported by
MURST and CNR.

Giorgio Ausiello
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
Via Salaria 113, Roma, Italy

ausiello@dis.uniroma1.it

Luca Cabibbo
Dipartimento di Informatica e Automazione

Università degli Studi “Roma Tre”
Via della Vasca Navale 79, Roma, Italy

cabibbo@inf.uniroma3.it

Abstract

Formalization has a central role in computer science. Communication between man and
computers as well as information processing within computer systems require that
concepts and objects of the application domain are formally represented through some
artificial language. In the last fifty years, the development of formal models has
concerned practically all aspects of human life, from computing to management, from
work to game and sex. Such development is one of the important contributions of
computer science to human epistemological and intellectual development, which
expands the powerful role that mathematical formalization has played through the
centuries. In building a formal model of reality, though, an important issue arises, the
complexity of the formal system that is adopted; in fact, the stronger is the expressive
power of the system, the higher is the complexity of using the model. An “optimal”
balance between expressive power and complexity is the key that explains the success
of some formal systems and languages that are widely used in computer science and
applications. After discussing the contrasting needs of expressiveness and
computational tractability in the construction of formal models, in the paper two case
studies are considered: Chomsky formal grammars and relational database languages,
and the balance between expressive power and complexity for such systems is analyzed
in greater detail. Finally, the concept of succinctness of a formal system is taken into
consideration and it is shown that the role of succinctness in affecting the complexity of
formal systems is crucial.

1. Representation, modeling, formalization

Formalization has a central role in computer science. Communication between man and
computers as well as information processing within computer systems require that
concepts and objects of the application domain are formally represented through some
artificial language. For this reason computer science has emphasized the importance of
formal modeling and of analyzing formal properties (“expressiveness”, “complexity”
etc.) of modeling languages.
 Before discussing formal modeling in computer science, let us briefly address
the more familiar issue of mathematical modeling. As it will become evident, no

clearcut can separate a discussion on formalization in computer science from the issue
of mathematical modeling or, even more, from the issue of representation of reality
throughout mankind history.
 The need for men to represent and understand physical phoenomena is at the
base of the use of mathematical models. We might say that mathematics itself was born
to satisfy such need and, also, to provide formal tools for answering questions raised by
the early engineering problems. It is well known, for example, that land measurement
and astronomical observations led to the development of geometry in Egypt and in
Greece, in ancient times.
 Indeed, looking back in mankind history we may realize how profound the need
for representing reality was for men, way before the beginning of mathematics. In fact,
long time before starting to “formalize” concepts of the real world in mathematical
terms, man started to feel the need to “represent” reality. Since the beginning of men’s
social life, representation of reality had a magic and an epistemologic role at the same
time. By drawing horses and wild oxen on a cave’s walls the hunters of neolithic age
could “capture” the animals with their minds before chasing them with their primitive
weapons.
 In the same way, “capturing” concepts has been for millennia the aim of the
intellectual activity by which men, through an abstraction process that from the
observation and representation of reality leads to the classification of “objects” and to
the formalization of their “interrelationships”, have expanded their knowledge.
 Clearly, mathematics has played a major role in such a process, extending the
ability of men to model reality in a formal way, and this role has continued through the
centuries, first with the applications to commerce and finance, in the Middle Ages, and
then, in the Modern Age, with the great theoretical developments that accompanied the
physical discoveries (mechanics, electromagnetism etc.) and the industrial revolution.
 In the last fifty years, due to the use of computers, the need for formal modeling
has expanded in all directions of human activity. Indeed, it has been in connection with
the first military applications of computers in organization and logistics, that new
mathematical modeling and problem solving methodologies (namely, operations
research) were developed. Subsequently, new formal tools were introduced for
modeling the various aspects of productive life where computers were gradually
introduced, such as industrial production, information management, office automation
and workflow management, etc. More recently, the large increase of computer
applications in everyday life has led to the development of formal systems for
representing and automating a wide variety of human activities, ranging from natural
language processing to common sense reasoning, from image understanding to
interactive graphics.
 Beside enhancing the ability of modeling reality, the use of computers has
brought the need for formalizing and understanding aspects of computing itself:
semantics and efficiency of programs, computation models, concurrency, man-machine
interaction, etc. Within the field of computer science a substantial body of theoretical
knowledge has been created around these subjects during the last three decades. In
particular, computer scientists have developed a research area which is not only of
practical interest (in connection with software engineering methodologies) but also of

great epistemological interest: the study of formal methods and languages for building
computer applications.
 In fact, the development of formal models in computer applications often
proceeded in parallel with the evolution of programming methodologies. While new
domains were attacked, new formal programming concepts and new information
structures were needed for representing reality. While imperative programming was
suitable for (and, indeed, born together) scientific numerical applications, information
management eventually led to database models, declarative languages, and to structured
design methodologies. Recently, more advanced interactive applications have led to the
widespread use of the object-oriented approach, in which the real world is represented
in terms of objects, classes, and interaction methods; then, the essence of modeling is
captured by offering the programmer the paradigms of abstraction, generalization,
inheritance, etc.
 The study of modeling and formalization processes, hence, has become one of
the major areas of interest in computer science. Its meta-theoretical character directly
relates this field with the logical and meta-mathematical studies that, between the
Thirties and the Fifties, investigated the power of computation processes and
computability.
 In this paper two particular aspects of formal models are considered,
expressiveness and complexity, and their conflicting characters are discussed, by
drawing examples from some well established fields of theoretical computer science. In
the next section the concept of “life cycle” of a formal model is introduced and it is
observed how the search for more expressive power is in contrast with the need for
computational efficiency in the use of the model. In Section 3 and Section 4 the issue of
complexity of formal models is discussed with reference to two fundamental areas of
computer science: the theory of formal languages and the theory of database languages,
respectively. In Section 5, the source of complexity in a formal model is analyzed and
identified in the concept of succinctness of representation. Finally, Section 6 draws
some conclusions.

2. Formal models’ life cycle

Formalization in computer science can be seen as the process of reducing a fragment of
reality to a simplified system of symbols through abstraction with the aim of computing
solutions of problems, proving properties, running simulations, etc.
 Typically, the construction of a formal model goes through various stages.
Without referring to any specific design methodology, we may roughly characterize the
various stages as follows.
 First, the real world domain that we wish to model is analyzed; the entities
(objects) that characterize it are identified and classified through an abstraction process
and so are their mutual relationships and their relationships with the outside world.
 Then, a representation system (the “syntax”), consisting of formal symbols, is
introduced. These symbols, that may be characters of a given alphabet, pictures, icons,
are then mapped to the objects and the relationships of the real system.

 Finally, the behaviour of the real system is taken into consideration and the
behaviour of the symbolic system is defined in such a way to mimic it (for example, by
means of state transition rules).
 An interesting example, in this respect, is provided by Petri nets [15], a formal
model that has been introduced in 1962 for describing systems organization and, since
then, has been widely used for modeling and analyzing systems of concurrent processes
and, more generally, systems in which regulated “flows” play a role, such as parts’ flow
in a production line, jobs’ flow in a computer system, work flow in an office.
 In their simplest version [16] Petri nets are used to model systems (called
“condition/event systems”) in which objects flowing in the net determine “conditions”.
In suitable cases conditions determine “events” that, in turn, determine new flow of
objects in the net. A situation of this kind arises, for example, in a library. A request is
submitted to the loan clerk (first condition) and, if the book is available (second
condition), the loan event is determined. As a consequence, the following two
conditions are created: the book is given to the customer while the request is stored in
the borrowed books file. When a book is returned and the corresponding requests is in
the borrowed book file, the return event is determined and the book is placed in the
stack again.
 From the syntactic point of view, a Petri net of this type (called Condition/Event
Net, C/E Net) consists of a triple (P, T, F), where P, the set of “places”, represents the
conditions, T, the set of “transitions”, represents the events, and F, the “flow”
relationship, relates places and transitions. Graphically, places are usually drawn as
circles, transitions as bars, and the flow relationship is represented by lines and arrows
(see Figure 1).

request

loan

book in
stack

return

reading

return
desk

collection
desk

borrowed
books
index

Figure 1. Petri net model of loans in a library.

In a C/E Net the objects flowing in the system are represented by means of “tokens”.
The behaviour of the net is then characterized in terms of transition rules: if all places
preceding a transition contain a token the transition is enabled and, as a consequence,
the tokens in such places are “consumed” while a token is “produced” in any place
following the transition.
 The use of a Petri net model allows to study the properties of the domain of
interest, in this case a concurrent system. Typical properties that we wish to analyze are

the absence of deadlock, the reachability of particular condition configurations, the fact
that a given transition will eventually be enabled (liveness), etc.
 Figure 1 contains a simple example of C/E Net modeling the loans in a library.
 Once a formal model is established we have to check its validity by matching its
features against the system that we want to represent. This is achieved by defining the
semantics of the model, that is by establishing an interpretation, which maps syntactic
structures of the model back to the system, and by checking whether the model satisfies
two fundamental characteristics: soundness (may the properties of the model be suitably
interpreted in the system?) and completeness (does the model capture all the properties
of the system?).
 As a consequence of the semantic analysis we may realize that the formal model
does not capture all aspects of reality that we want to simulate and process. In other
words the expressive power of the formal model is insufficient and an enrichment is
necessary. If we go back to the Petri nets example, we notice that the Condition/Event
model is actually rather simplistic. Suppose that books are classified (some can be
borrowed for one week, some other for one month). This case cannot be modeled by a
C/E Net. In fact tokens representing requests and books should be labeled and only
corresponding labels can activate a loan. More complex types of Petri nets have been
introduced for dealing with situations of this kind (for example, Colored Petri Nets [8]).
 An immediate consequence of the increase in expressive power of the model is a
corresponding increase in complexity. In particular the flow relationship, which relates
places and transitions, becomes more complex. Running the model on a computer may
become heavy, proving its properties may become computationally intractable or even
undecidable.
 When constructing a formal model we are therefore faced with two contrasting
needs: on the one hand, the need to make the model more expressive, more powerful, in
order to capture more and more aspects of reality; on the other hand, the need to keep
the complexity of the model low, in order to preserve the tractability of its properties.
Usually formal models “stabilize” in an equilibrium point that constitutes an “optimal”
compromise between the two needs. This position is maintained until the advances of
technology push toward the adoption of a new model which will also reach, after a
while, through different stages, its optimal equilibrium point.
 Thus, the practical success of various formal systems in computer science is due
to the fact that for such systems the optimal compromise between expressiveness and
complexity has been reached. A typical example is represented by finite state automata,
introduced in the Fifties by E.F. Moore and used for specifying sequential machines, for
which most properties can easily be proved and whose computational power can be
characterized under various points of view: in terms of classes of input sequences
(called regular events in [11]), by means of equivalence with respect to the neural net
model of McCulloch and Pitts (see again [11]), in terms of closure under algebraic
operators (see [7]), etc. Other examples of formal systems in which the expressive
power is conveniently balanced by processing efficiency are deterministic context free
languages (whose syntactic properties provide the paradigm for the structure of most
programming languages and at the same time allow the efficient compiling of programs)
and relational database languages (whose strong expressive power, characterized in

terms of both relational algebra and calculus, is nevertheless compatible with efficient
implementation of query processing in commercial database systems).
 In the next two sections we will see some specific aspects of this correlation
between expressive power and complexity, occurring in the case of such particular, well
studied families of formal systems.

3. Chomsky’s grammars

Chomsky grammars were introduced by Noam Chomsky in the Fifties [2] with the aim
of providing a formal basis to the understanding of the structure of natural languages.
Chomsky grammars are a generative formal system, based on “productions rules” (a
particular kind of rewriting rules, related to earlier work of the logicians Axel Thue and
Emil Post, see [6]) and allow the characterization of classes of languages, in relation
with the structural properties of the corresponding production rules. Formally, a
Chomsky grammar consists of a 4-tuple 〈T, V, S, P〉 where T is the alphabet of terminal
symbols, V is the alphabet of non-terminal (variable) symbols, S is a particular symbol
of V, called axiom, the seed of the generation process, and P is the set of production
rules. A production rule is of the form:

u → v

where u and v are strings of, possibly, terminal and non-terminal symbols with the only
constraint that u contains at least one non-terminal symbol. Such a rule specifies that, if
the substring u occurs in the string that we are in the process of generating, then we can
replace u by v. The language generated by the grammar is the set of all strings
consisting of only terminal symbols that can be generated starting from the axiom and
repeatedly applying the production rules. An example is the following. Consider the
grammar 〈{a, b}, {A}, A, P〉, where P is the set of production rules:

A → aAb
A → ab

The grammar generates the language consisting of all strings of the form anbn for all
n>0, that is, all strings consisting of a sequence of n a’s followed by a sequence of an
equal number of b’s.
 The example is indeed rather simple and corresponds to a particular case of
grammar that is called context free grammar. In this type of grammar, in each
production the left hand string consists of just one symbol (say, A), which can be
replaced by the right hand string no matter the context in which it occurs. Other
important particular classes of grammars are context sensitive grammars, where the
right hand string and the left hand string are of general type but the right hand string
cannot be shorter than the left hand string, and regular grammars, a particular case of
context free grammars in which the right hand string consists of a single terminal
symbol or of a terminal symbol followed by a non-terminal symbol.
 Chomsky grammars (especially context free grammars) played an important role
in the study and understanding of natural language concepts; however, after a while it
became clear that their structure was too simple for such aim and other formal
generative devices were introduced [4]. Nevertheless, despite being inadequate to

formalize natural languages, Chomsky grammars had a remarkable effect on the
syntactic development of artificial languages used for computer programming. A few
years after the seminal work of Noam Chomsky, John W. Backus [1] and Peter Naur
[14] introduced the so-called Backus Normal Form (or Backus Naur Form, BNF, for
short) for the description of the programming language ALGOL, which was based on a
sort of production system and indeed could be seen as a reformulation of context free
grammars. In BNF, for example, the structure of an if-statement in a programming
language could be expressed in the following way:

〈if-statement〉 ::= if 〈condition〉 then 〈statement〉 else 〈statement〉

which is clearly structured as a context free production with if, then, else, as terminal
symbols and 〈if-statement〉, 〈condition〉 and 〈statement〉 as non-terminal symbols.
 Since the early Sixties, therefore, the study of syntactic aspects of programming
languages as well as compiler design techniques have been based on the structure and
properties of Chomsky grammars. The main problem we have to solve in this context is
the following. We are given a text consisting of several thousands of lines of source
code, and we want to translate it efficiently into machine code. This means that by
scanning the text (possibly only once) we want to perform at the same time the
following operations:
• check for syntactic correctness and, in case, report errors;
• interprete the meaning of the code;
• translate into machine language.
Moreover, we don’t want to waste too much space in doing this. Clearly the cost of the
said operations changes according to the syntactical structure of the text, that is,
according to the type of grammar that defines the language. Table 1 reports the cost of
verifying syntactic correctness with different types of grammars. More precisely, the
table indicates time and space needed for solving the so called recognition problem, that
is the problem of deciding, given a grammar of a certain type, whether a string has been
derived according to the rules of such grammar. Note that, for the general class of
unrestricted Chomsky grammars, such problem is undecidable. Actually, Chomsky
proved that the computational power of such grammars coincides with the
computational power of Turing machines [3].

Type of grammar Time Space
Regular O(n) O(1)
Deterministic Context Free (LR(k)) O(n) O(log n)
Context Free O(n3) O(log2 n)
Context Sensitive O(2n2) O(n2)
Unrestricted undecidable

Table 1. Complexity of the recognition problem for various classes of formal languages.

From the table the following facts can be seen. Languages defined by regular grammars
can indeed be recognized very efficiently, in linear time with a constant amount of
memory; unfortunately, the syntactic structure of regular grammars is too simple for
real programming languages. For example it allows to express sequences of simple

commands (such as the ones that are used in an electronic mail system) but does not
allow to define algebraic expressions in infix notation. For representing all types of
algebraic expressions that are needed in computer programming as well as the
parenthetical structure of nested programming constructs (if statements, while
statements, for statements etc.) context free grammars are needed, but then, in general,
the syntactic analysis costs become prohibitively high.
 In order to overcome this difficulty several new classes of languages have been
introduced, properly included in the general class of context free languages (actually all
of them included or coinciding with the class of the so called deterministic context free
languages) but strictly more powerful than regular languages, for which both time and
space-efficient parsing algorithms could be defined. In particular, the LR(k) languages
[12] are a class of languages that can be efficiently parsed from left to right if we allow
a k symbols look-ahead. These languages are enough expressive to allow the definition
of the syntactic constructs required by most programming languages while achieving, at
the same time, very good efficiency in syntactic recognition, parsing, and translation.
These languages represent a lucky example, in this context, of the optimal balancing
between the needs of expressiveness and the needs of efficiency of a formal system that
was discussed above.

4. Database query languages

A database is a collection of structured data, to represent some aspect of the real world
for a specific purpose. Typically, databases are large, persistent, and shared by several
users. Database technology offers the software tools for an efficient and effective
management of databases. The theoretical foundation of current database management
systems is provided by the relational model of data, a formal model proposed by E.F.
Codd in the early Seventies. (See [10] for a survey on relational database theory.)
 Intuitively, data in a relational database consist of sets of rows, each row
representing a relationship among a set of values; rows with uniform structure and
intended meaning are grouped into tables. More precisely, a relational database is a
collection of relations. Each relation has a structural part (called the scheme) and an
extensional part (called the instance). A relation scheme consists of a name (unique in
the database) together with a tuple of distinct names, called the attributes of the
relation. A relation instance is a finite set of tuples over the attributes specified in the
scheme.

Flights (Company, Flight-No, From-Airport, To-Airport)
Airports (Airport, Full-Name, City)
Trains (Train-No, From-City, To-City)

Figure 2. An example transportation database.

As an example, consider the transportation database (shown in Figure 2) representing
information about flight and train connections. Data are split into three relations, named
Flights, Airports, and Trains, each of them representing facts about a specific kind of
information. Relation Flights has attributes Company (the name of the company
offering a flight), Flight-No (the flight number), From-Airport and To-Airport (the
codes of the departure and arrival airports). Each tuple in this relation contains a value
for each attribute, establishing a relationship among the values; for instance, the tuple
(Alitalia, AZ638, FCO, CHI) states that Alitalia offers a flight, coded AZ638, from
airport FCO to airport CHI. The information about the cities connected by the flight can
be found by means of the relation Airports: since FCO and CHI correspond to airports
in Rome and Chicago, respectively, this means that AZ638 is a flight connecting Rome
to Chicago. The fact that different information are spread across different relations is for
the sake of succinctness, to avoid redundancy. However, information can be extracted
by correlating tuples in multiple relations, mainly relying upon equality of values. This
activity is referred to as querying the database, the main topic in database management
together with updating. Conversely, an update consists of a set of additions, removals,
and/or modifications of tuples within relations. (We will not consider updates anymore,
since a discussion of this topic is beyond the scope of the paper.)
 Formally, a query is a function from databases to databases, specified by means
of an expression of some query language. (With a little abuse of terminology, the term
“query” is often used for both the function, the expression, and a natural language
description of the function.) Possible queries over the transportation database are the
following.

Q1 Is there any direct flight connection from Rome to New York?
Q2 What are the cities for which there is a direct connection (either by flight or by

train) from Rome?
Q3 What are the pairs of cities for which there is a direct flight connection but not a

direct train connection?

Flights
Company Flight-No From-Airport To-Airport
Alitalia AZ2010 FCO LIN
Alitalia AZ2011 LIN FCO
Alitalia AZ638 FCO CHI
KLM KL264 FCO AMS
TWA TW312 JFK CHI
UsAIR US913 AMS JFK

Airports
Airport Full-name City
AMS Schiphol Amsterdam
CHI O’Hare Intl. Chicago
FCO Leonardo da Vinci Rome
JFK J.F. Kennedy Intl. New York
LIN Linate Milano

Trains
Train-No From-City To-City
E654 Rome Florence
EC699 Paris Frankfurt
IC412 Florence Milan
EC511 Milan Paris

Q4 Is there any flight connection (possibly involving intermediate stops) from Rome
to New York?

Q5 What are the pairs of cities having an airport but for which there is no flight
connection?

The relational model adopts the so-called closed world assumption, according to which
the facts stored in a database are the only ones to be true, and the ones that are not
present in the database are assumed to be false. (For example, our transportation
database assumes that there is no flight connection from Rome to Paris, since there is no
explicit fact stating it.)
 The relational model is provided with two basic query languages, stemming
from different paradigms. The relational algebra is a “procedural” language, based on a
few algebraic operators. In order to allow for composition, all the operators produce
relations as results. On the other hand, the relational calculus is a “declarative”
language, based on the first order predicate calculus. By “procedural” we mean that a
query specifies the actions that must be performed to compute the answer to a query.
Conversely, “declarative” means that a query is specified in a high-level manner,
essentially by stating the properties that the result should satisfy; in this case, an
efficient execution of the query has to be worked out by the interpreter of the language.
Thus, “declarative” concerns “what” and “operational” concerns “how.”
 In spite of the differences in the two languages, they are equivalent to each
other, that is, they can express exactly the same queries. This equivalence is known as
Codd’s Theorem, and can be specialized to suitable restrictions and extensions of the
relational calculus and algebra. Codd’s Theorem has great practical significance: the
translation of calculus into algebra reveals a procedural evaluation for a query defined
declaratively by a calculus expression.
 Instead of introducing the relational algebra or calculus, we discuss some
examples referring to a declarative query language, stemming from logic programming,
called datalog. Intuitively, queries are specified in datalog by means of sets of rules,
called programs. The left-hand-side of a rule is a conjunction of literals, referring to
relation names and variables: if there are values for the variables such that all the literals
in the left-hand-side are known to be true in the database, then we can infer the truth of
the literal in the right-hand-side of the rule. Figure 3 shows the programs implementing
the queries Q1 to Q5 over the transportation database.

Figure 3. Examples of Datalog queries.

Datalog has many variants, some of which are described as follows.
• Conjunctive programs are made of a single rule, not involving negated literals.
• Positive existential programs are made of multiple rules, with no negated literals and

no recursive definitions.
• First order programs are made of multiple rules, with no recursive definitions.
• Datalog programs are made of multiple rules, with no negated literals.
• Stratified programs are made of multiple rules; a technical condition is imposed to

avoid that recursive definition involves negated literal.
• Datalog with 1-sets are stratified programs allowing for the management of sets of

values.
• Datalog with k-nested sets are stratified programs with sets, allowing for k levels of

nesting.
• Datalog with sets are stratified programs with sets, allowing for unbounded levels of

nesting.
The expressiveness of a query language is related to the class of queries that the
language can express. Specifically, we say that a language L expresses a query q if there
is an expression E of L whose semantics coincides with the function q. For example, the
query Q1 can be expressed by means of all the above cited languages, whereas query
Q3 can be expressed by a first order program, but not by a conjunctive program (since
negation is required). We say that a language L is more expressive than another
language L’ if any query expressible in L’ is expressible in L as well. For example, it
turns out that first-order datalog is more expressive than conjunctive datalog. Note the
the relation “more expressive than” is a partial order and not a total one, since some
languages are not related according to it. For example, datalog and first order datalog
are unrelated, since there are queries that are expressed only by one of the two
languages.

Q1 Ans1 ← Flights(C,N,F,T), Airports(F,FN,“Rome”),
Airports(T,TN,“New York”)

Q2 Ans2(X) ← Flights(C,N,F,T), Airports(F,FN,“Rome”),
Airports(T,TN,X)

 Ans2(X) ← Trains(N,“Rome”,X)
Q3 Conn-by-train(X,Y) ← Trains(N,X,Y)
 Ans3(X,Y) ← Flights(C,N,F,T), Airports(F,FN,X),

Airports(T,TN,Y), not Conn-by-train(X,Y)
Q4 Flight-conn(X,Y) ← Flights(C,N,X,Y)
 Flight-conn(X,Y) ← Flight-conn(X,Z), Flight-conn(Z,Y)
 Ans4 ← Flight-conn(F,T), Airports(F,FN,“Rome”),

Airports(T,TN,“New York”)
Q5 Flight-conn(X,Y) ← Flights(C,N,X,Y)
 Flight-conn(X,Y) ← Flight-conn(X,Z), Flight-conn(Z,Y)
 Ans5(X,Y) ← Airports(SX,NX,X), Airports(SY,NY,Y),

not Flight-conn(SX,SY)

 It should be noted that first-order datalog is another language having the same
expressiveness of the relational algebra and calculus, and that conjunctive datalog and
positive existential datalog have equivalent counterparts in suitable restrictions of both
the relational algebra and calculus. Thus, we can consider classes of languages having
the same expressiveness. The relative expressiveness of the various classes is
summarized in Figure 4. (The arrows denote greater expressive power, in the strict
sense.)

Datalog with sets

....

Datalog with 2-sets

Datalog with 1-sets

Stratified Datalog

Datalog
First order Datalog

= Relational Algebra
= Relational Calculus

Positive existential

Conjunctive
Figure 4. Hierarchy of query languages based on their expressiveness.

Database theoreticians consider different complexity measures, differing in the
parameters with respect to which the complexity is measured. Intuitively, the
complexity of evaluating a query against a database is related to both the size of the
query expression and that of the database. In practice, the size of the database tipically
dominates, by many orders of magnitude, the size of the query, and is therefore the
parameter of interest. The data complexity of a query is defined as the computational
complexity of testing whether a given tuple belongs to the result of the query against a
database d.
 It turns out that the relational algebra and calculus express only queries whose
data complexity is in LOGSPACE. Since the class LOGSPACE is contained in the class
NC1, this implies that the two languages have a lot of potential parallelism. The other
side of the coin is that the two languages cannot express queries whose data complexity
is higher than LOGSPACE. Of course, the trade-off is between expressibility of a
language and possibility of efficient execution.
 There is another point to ponder, namely, query optimization. Usually, queries
are written in a high-level language (such as the relational calculus), and automatically

1 NC (Nick’s Class, from the name of Nick Pippenger, who defined this class) is the class of problems
that can be efficiently parallelized. (See [9] for more details.)

translated into an equivalent expression of a procedural language (such as the relational
algebra), using Codd’s Theorem. Then, the database management system tries to
optimize the expression, by rewriting it into another equivalent expression that is better
under some measure of complexity. The rationale for optimization consists in trying to
minimize the computational cost of evaluating the query, which is mainly related to the
size of intermediate results. An optimizer has a module for estimating the evaluation
cost of an expression. The goal is to find an equivalent rewriting of the query with
minimal esteemed cost. To do so, the optimizer generates a set of rewritings, by means
of suitable heuristics, and verifies the equivalence with the initial expression. Of course,
this is convenient only if the optimization process does not consume more resources
than the evaluation of the initial expression. Specifically, the computational cost of
optimization is mainly related with the complexity of testing for the equivalence of the
rewritten expression with the initial one. Unfortunately, testing for equivalence of
relational algebra expressions is undecidable, but decidable for more restricted
languages. Again, there is a trade-off between expressibility of a language and
possibility of efficient optimization.
 Table 2 summarizes, for each class of queries, the data complexity and the
complexity of testing expression equivalence. (See [9] for a definition of the complexity
classes mentioned in the table.)

Class of queries Data complexity Complexity of the
equivalence
problem

conjunctive LOGSPACE NP-complete
positive existential LOGSPACE ΠP

2-complete
first order LOGSPACE undecidable
datalog PTIME undecidable
datalog with stratified negation PTIME undecidable
datalog with 1-sets EXPTIME undecidable
datalog with k-sets k-EXPTIME undecidable
datalog with sets unbounded undecidable

Table 2. Data complexity and complexity of the equivalence problem for various query
languages.

We now briefly discuss the compromise reached between the needs of expressiveness
and complexity in the case of relational query languages. In practice, that is, in real
database management systems, the query language often used is SQL (for Standard
Query Language). SQL is a declarative language based on a variant of the relational
calculus. With respect to the expressive power, it is essentially equivalent to both the
relational calculus and algebra, and thus its queries can be evaluated rather efficiently.
On the other side, Table 2 shows that finding the optimum rewriting of an SQL query is,
in general, an unsolvable problem. In principle, the optimization could be still carried
on for some SQL queries (the ones that syntactically are conjunctive or positive
existential). In practice, however, the systems apply some set of predefined heuristics,
usually finding “good” rewritings, but without a guarantee to find the best ones.

5. Expressiveness, succinctness and complexity

In the preceding sections, by means of various examples, we have seen how an increase
in the expressive power of a formal model entails a corresponding increase in the cost
of the computations that we want to perform on the model (such as testing for
membership in formal languages or answering queries in databases).
 In this section we will see that a major role in the expressiveness-complexity
trade-off is essentially played by the succinctness of the encodings that the formal
system allows. In particular, in strongly expressive formal systems we may encode
computational processes (such as for example Turing machine computations), and what
makes the properties of certain classes of formulae intrinsically hard to decide, is the
fact that “short” formulae may describe “long” computations.
 The first evidence of this property is provided by Cook’s Theorem [5]. This
result, proven by Steve Cook in 1971 and, independently, by L. Levin in 1973 [13],
establishes the intrinsic complexity of deciding satisfiability of propositional formulae
by showing how such formulae can encode Turing machine computations. More
precisely, the result shows that, given a nondeterministic Turing machine M operating
in time bounded by a polynomial p, and given a string x, of length n, we can build a
propositional formula w (of length at most p4(n)) that is satisfiable if and only if x is
accepted by M in time p(n). As a consequence, the problem of deciding satisfiability of
propositional formulae is proven to be at the highest level of complexity in the class NP
(the class of all problems that can be solved in polynomial time by means of
nondeterministic Turing machines) or, as it is customary to say, “NP-complete”. It is
well known that still, 25 years after Cook’s result, we do not know any polynomial-time
algorithm for solving neither the satisfiability problem nor any of the thousands of NP-
complete problems that have been discovered since then. At the same time, thanks to
Cook’s result, we know that if any polynomial-time algorithm would be discovered for
the satisfiability problem (an unlikely possibility, though), all other NP-complete
problems could be solved in polynomial time and the class NP would be proven to
coincide with the class P (the class of problems solvable by means of deterministic
Turing machines in polynomial time), giving positive answer to the well known
question “P = NP?”.
 The formula built in Cook’s Theorem’s proof, somehow, encodes the rules that
all Turing machine computations have to satisfy (e.g., at any given instant t the head of
the machine can read exactly one tape cell), encodes the initial and final configurations
(at time 0 tape cells 1 through n contain string x, all other tape cells are blank; at time
p(n) the machine state should be the final state), and, finally, encodes the relationship
between instantaneous configurations of the tape that are implied by the transition
function of the machine M.
 What is particularly important is that the construction is logarithmically succinct
because a nondeterministic computation of polynomial depth p(n) is indeed a tree of,
possibly, 2p(n) instantaneous configurations while in the proof the same information is
compacted in a polynomially long formula. This gives the proof of Cook’s Theorem all
its remarkable power.
 The fundamental idea to represent “long” computations with “short” formulae is
at the base of practically all proofs of complexity hardness of problems (see [9]) and it

is interesting to observe that the shorter are the formulae, the more complex are the
properties of the formalism. Since in general, in this context, computations are modeled
in terms of Turing machines, we may conclude that the intrinsic complexity of a
formalism can eventually be related to the power of the formalism in describing Turing
machine computations. In order to clarify this claim, let us consider the formalism of
regular expressions.
 Regular expressions have been introduced by S.C. Kleene (in connection with
the definition of the already mentioned regular events [11]) and are used for describing
sets of words on a given alphabet (sets of input sequences to an automaton, paths on a
labeled graph, etc.).
 In their basic formulation, given an alphabet {a,b}, regular expressions are
inductively defined as follows:
• a,b are regular expressions;
• if e1 and e2 are regular expressions, then e1 e2, e1+ e2, and e1

* are regular expressions.
The meaning of a regular expression is a language defined as follows:
• a and b represent the languages La={a} and Lb={b}, respectively;
• if Le1 and Le2 are the languages represented by the regular expressions e1 and e2,

then:
• e1 e2 represents the concatenation of languages, Le1 º Le2;
• e1 + e2 represents the union of languages, Le1 ∪ Le2;
• e1

* represents the iteration (Kleene’s star operator) of a language, (Le1)
*.

For example, the regular expression ab*(aa+bb)* represents the language consisting of
strings that begin with a, and are followed by a (possibly empty) sequence of b’s, and
by a (possibly empty) sequence of strings of the type aa or bb.
 The formulation of regular expressions may be enriched with the complement
operator (that is, e1

C, whose meaning is {x | x is not a string in Le1}) and with the
squaring operator (that is, e1

2 = e1 e1, whose meaning is {x | x = uv, u,v ∈Le1}), without
changing the expressive power. In other words, if we write a regular expression e1 with
the complement and/or the squaring, we know that there is another regular expression e2
which does not make use of neither the complement nor the squaring and such that Le1
equals Le2.
 It is important to notice that the complement and squaring operators allow to
express in a more succinct form the same languages as we can represent with
expressions that do not make use of such operators. Table 3 provides the complexity of
the problem of deciding whether a regular expression is not equivalent to {a,b}* for
various classes of regular expressions.

Table 3. Complexity of the equivalence problem for various classes of regular expressions.

In all cases, except the first one, the expressions represent the same class of languages
(regular languages), but the increase of problem complexity that accompanies them
derives from the succinctness of the formulae. For example, it is easy to see that the
squaring operator allows a logarithmic compression of strings: in fact (…((a2)

2)
2…)

2}n times, corresponds to a sequence of the type a…a of length 2n. Even stronger
is the compression that we may achieve by making use of the complement operator and,
as a consequence, the complexity of deciding whether a regular expression with
complement is equivalent to {a,b}* becomes non elementary. In other words, its
complexity cannot be expressed by any elementary function obtained by composition of
sums, products, and exponential functions, because it grows as 22…2

 }n times.

6. Conclusions

The complexity of deciding properties of a formal model is strictly related to the
expressive power of the model. By referring to the well-known models of Chomsky
formal grammars and of relational databases, we have seen that the success of a formal
model somehow derives from the fact that in such model an optimal balance is
established between two factors: (i) the need of achieving a strong expressive power in
order to represent and study the fragment of reality of interest (for example, in those
cases, the syntactic structure of programming languages or the structure of queries
allowed on a database); and (ii) the need of preserving the efficiency in the use of the
model (syntax analysis and query processing in the mentioned examples). Finally, by
examining the growing difficulty of deciding equivalence in various families of regular
expressions, we pointed out that, when formalisms with the same expressive power are
considered, the computational complexity of the properties of the formal expressions
used in a formalism strictly depend on their succinctness and in particular on the fact
that very short formulae may be used for representing long computations.

7. References

[1] Backus, J.W. The syntax and semantics of the proposed international algebraic
language of the Zürich ACM-GAMM conference. Proc. Intl. Conf. on Information
Processing, UNESCO, 125-132, 1959.

[2] Chomsky, N. Three models for the description of language. IRE Trans. on
Information Theory, 2:3, 113-124, 1956.

Regular expressions
with operators

Complexity Time complexity

º, + NP-complete O(n2)
º, *, + PSPACE-complete O(2nk

)
º, *, +, squaring EXPSPACE-complete O(22n

)
º, *, +, complement non elementary O(22…2

 }n times)

[3] Chomsky, N. On certain formal properties of grammars. Information and Control,
2:2, 137-167, 1959.

[4] Chomsky, N. Knowledge of Language. Its Nature, Origin and Use. New York,
Praeger, 1986.

[5] Cook, S.A. The complexity of theorem-proving procedures. Proc. of the Third
Annual Symp. on the Theory of Computing, 151-158, 1991.

[6] Davis, M. (ed.) Solvability, Provability, Definability: The Collected Works of Emil
L. Post. Birkhäuser, Boston, 1994.

[7] Hopcroft, J.E., and J.D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[8] Jensen, K. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1. EATCS Monographs on Theoretical Computer Science, Springer-
Verlag, 1992.

[9] Johnson, D.S. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume A, pages 67-161. Elsevier Science Publishers
(North-Holland), Amsterdam, 1990.

[10] Kanellakis, P.C. Elements of relational database theory. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, pages 1073-1156. Elsevier
Science Publishers (North-Holland), Amsterdam, 1990.

[11] Kleene, S.C. Representation of events in nerve nets and finite automata. In C.E.
Shannon, J. McCarthy, editors, Automata Studies, pages 3-42. Princeton University
Press, 1956.

[12] Knuth, D.E. On the translation of languages from left to right. Information and
Control, 8:6, 607-639, 1965.

[13] Levin, L.A. Universal sorting problems. Problemy Peredaci Informacii, 9, 115-
116, 1973 (in Russian); English translation in: Problems of Information Transmission,
9, 265-266, 1973.

[14] Naur, P. et al. Report on the algorithmic language ALGOL 60. Comm. ACM, 3:5,
299-314, 1960.

[15] Petri, C.A. Kommunikation mit Automaten. Schriften des Institutes für
Instrumentelle Mathematik, Bonn, 1962.

[16] Reisig, W. Petri Nets. An Introduction. EATCS Monographs on Theoretical
Computer Science, Springer-Verlag, 1985.

