
The Propel Distributed Services Platform

Mike Carey, Steve Kirsch, Mary Roth, Bert Van der Linden, Nicolas Adiba, Michael Blow, Dana
Florescu, David Li, Ivan Oprencak, Rajendra Panwar, Runping Qi, David Rieber, John Shafer, Brian

Sterling, Tolga Urhan, Brian Vickery, Dan Wineman, and Kuan Yee

Propel
1010 Rincon Circle
San Jose, CA 95131

USA
carey@propel.com

Abstract
The Propel Distributed Services Platform
(PDSP) is the core software product of Propel, a
new Internet infrastructure software company.
The PDSP product was created to enable Java
developers to architect, implement, deploy, and
maintain Internet applications and services much
more quickly and easily than before while still
providing all of the RAS (reliability, availability
and scalability) that such applications require. In
this presentation, we provide a brief overview of
PDSP’s key features, including its support for
reliable and scalable data management, text
indexing and searching, and persistent queuing.
We also discuss its integrated Java APIs, built-in
support for online-deployable data and schema
changes, and system administration facilities.

1. Introduction
In the past, the development and maintenance of mission-
critical e-business applications and services has proven to
be a daunting task. Developing such an application has
required piecing together a number of independent
components, each with its own API, into a functioning
multi-tier architecture that solves the given problem. A
typical application might require the use of such
components as a relational DBMS, a search engine, a
queuing (or messaging) package, a directory server, an
enterprise integration package, a system management

package, and so on. Architecturally, the solution usually
consists of a tier of web servers for handling connections
and serving static content, a tier of application servers for
running the application’s business logic, and a third tier
consisting of the aforementioned backend components.
There are a number of significant problems with this
approach:

� Building an application in this manner requires

dealing with a number of disparate APIs provided
by the different component vendors.

� Logic that spans components, such as a query to
find in-progress auctions under $750 for items
containing the keywords “Fender”, “bass”, and
“guitar”, requires hand-coding, hand-optimizing,
and hand-integrating the results of queries against
multiple APIs.

� Transactions that span components, such as a
checkout process that locally records a new order
and queues an interaction with the legacy order
management system, can easily result in
expensive two-phase commit coordination among
different components.

� Managing state information such as user sessions
in a failure-tolerant way requires the utilization of
proprietary features provided by the particular
application server being targeted for deploying
the solution [1].

� Managing the resulting software system is
complex, requiring individual configuration and
management of all of the aforementioned solution
components.

� Scaling the system to handle additional load is
also complex; adding web servers and (to a lesser
extent) application servers is generally feasible,
but bottlenecks can appear on the third tier, in
which case scaling becomes component-
dependent and can be difficult to achieve, at least
without buying expensive SMP hardware.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

2. The Propel Distributed Services Platform
The Propel Distributed Services Platform was created to
overcome these problems, providing Java developers with
a much stronger foundation upon which to build mission-
critical Internet applications. In particular, PDSP aims to
significantly simplify the development of data-centric
Internet applications, i.e., applications that are centered
around a data model and a database, especially those that
require significant levels of availability and scalability.
To provide the desired foundation, PDSP provides a
number of important services that are pre-integrated for
use by application developers. As indicated in Figure 1,
these services sit in the gap between the application server
tier and the third (or backend data) tier.

2.1 Clustered In-Memory Data Management

To provide fast access to e-business data, PDSP provides
a unique, clustered in-memory data management service.
PDSP’s data management architecture was designed from
the outset to be incrementally scalable, providing a way
to scale the data management portion of an application.
This offloads the backend disk-based database, thereby
preventing application scalability problems due to the
backend DBMS becoming a bottleneck.

The PDSP data management architecture is based on
the time-proven shared-nothing architecture for scalable
database systems [2]. In PDSP’s case, the shared-nothing
system is made up of a collection of in-memory database
systems – TimesTen [3] is used internally as the per-node
storage and query engine in PDSP – plus a disk-based
database system such as Oracle or DB2. As Figure 2
indicates, PDSP keeps track of how the tables in the
database are laid out physically within the architecture
and utilizes distributed query processing techniques to
provide applications with a location-transparent (i.e.,
single-image) view of all their data.

Tables managed by the clustered in-memory data
management layer are replicated one or more times, as
specified by the DBA. For read-only tables, multi-master
replication can be used to provide scalability as well as
availability for tables that fit within a single TimesTen
node. For read-write tables, master-slave replication can
be used to provide the desired level of availability. Data
partitioning can be used to scale larger tables and/or
(when combined with replication of partitions) to support
scalability in the face of updates.

2.2 Integrated Text Search

Because many e-business applications require the ability
to query database tables through both text searching (e.g.,

Distributed Services Management

Advanced Deployment

Global Cache

Integrated Search

Distributed Data Management

Data
Warehouse

Disk-based
Database

Propel
Distributed

Services
Platform

Web
Server

Web
Server

Web
Server

Web
Server

Web
Server

Web
Server

Web
Server

Web
Server

Web Server Tier

Commerce
Applications

Enterprise
Applications

Business
Exchange

Applications

Vertical
Industry

Applications

Application Server Tier

Figure 1: Propel Distributed Services Platform

In-memory
Database

Persistent Queuing

Java Object Mapping Layer

Clustered Messaging System

Enterprise
Software

Legacy
Systems

Distributed Services Management

Advanced Deployment

Global Cache

Integrated Search

Distributed Data Management

Data
Warehouse

Disk-based
Database

Propel
Distributed

Services
Platform

Web
Server

Web
Server

Web
Server

Web
Server

Web
Server

Web
Server

Web
Server

Web
Server

Web Server Tier

Commerce
Applications

Enterprise
Applications

Business
Exchange

Applications

Vertical
Industry

Applications

Application Server Tier

Figure 1: Propel Distributed Services Platform

In-memory
Database

Persistent Queuing

Java Object Mapping Layer

Clustered Messaging System

Enterprise
Software

Legacy
Systems

of auction item descriptions) and parametric querying
(e.g., of item prices) – often simultaneously – PDSP
provides an integrated text search capability within its
clustered, in-memory data management service. Text
attributes can be indexed using either traditional database
indexes or inverted text indexes, and in the latter case,
queries can involve keyword-matching predicates as well
as regular parametric predicates. Queries involving
keyword-matching predicates can return relevance-ranked
search results.

Once created, text indexes are automatically managed
and exploited for query processing purposes by the same
clustered in-memory data management infrastructure that
was just described for record-oriented data. When tables
with text indexes are placed and replicated for scalability,
their indexes “go along for the ride”; as a result, queries
involving text predicates scale up in the same manner as
other queries. PSDP uses TimesTen tables and indexes
internally to implement its search capabilities, as joins are
much less costly in an in-memory DBMS than they would
be in a traditional disk-based DBMS (making it possible
to take a database-based approach).

2.3 Persistent Queuing

Another common requirement for e-business applications
is the ability for transactional application components to
interact asynchronously yet reliably. In the interest of
providing “everything necessary” to easily build and

maintain such applications, PDSP’s clustered in-memory
data management service also includes integrated support
for persistent queues. Persistent queues are like “active
tables” that have schemas determined by the application
developer. Entries can be enqueued (rather than inserted)
by one transaction and dequeued (rather than selected) by
another. Dequeue operations specify predicates indicating
the properties of the entries that they wish to dequeue, and
they block rather than returning in the case when the
queue currently has no matching entries. Two variants of
dequeue are supported, one that removes the dequeued
entries and another that simply updates them in an
application-specified manner. Internally, PDSP uses
TimesTen tables to implement its queues; as with regular
PDSP data tables, replication is supported (and strongly
recommended) to ensure high availability.

2.4 Java Object APIs

As indicated on the left-hand side of Figure 2, PDSP
application developers interact with application data via
Java objects rather than having to program using JDBC
and SQL. PDSP provides an API layer called the Java
Object Mapping (or OM, for short) layer. The OM layer
provides an object/relational mapping facility that
provides convenient JavaBean-based APIs for use in
interacting with the application’s data, including its
record-based data as well as any text attributes and
persistent queues.

In Memory
Data Manager

Node

Compiler

Application
Server Node

Third-Party DBMS Node

Java
Objects

Cart {
ID=8725;
shopper -> User {

firstName=Arvind;
}

items -> Product {
sku=4460001204;
name=The Matrix DVD;
price=18.99;
quantity=1;

}
Product {

sku=5575400;
name=The Wall CD;
price=8.99;
quantity=3;

}
}

PQL
Query

JDBC Client

“cart.lookupByCartId(8725)”

Runtime

In-memory
database

In Memory
Data Manager

Node

In Memory
Data Manager

Node

JDBC Driver

Messaging
Layer

Compiler

Runtime

In-memory
database

JDBC Driver

Compiler

Runtime

In-memory
database

JDBC Driver

Propel Distributed Data Management System

1

2
3

4

56

Figure 2: Propel Distributed Query Processing

In Memory
Data Manager

Node

Compiler

Application
Server Node

Third-Party DBMS Node

Java
Objects

Cart {
ID=8725;
shopper -> User {

firstName=Arvind;
}

items -> Product {
sku=4460001204;
name=The Matrix DVD;
price=18.99;
quantity=1;

}
Product {

sku=5575400;
name=The Wall CD;
price=8.99;
quantity=3;

}
}

PQL
Query

JDBC Client

“cart.lookupByCartId(8725)”

Runtime

In-memory
database

In Memory
Data Manager

Node

In Memory
Data Manager

Node

JDBC Driver

Messaging
Layer

Compiler

Runtime

In-memory
database

JDBC Driver

Compiler

Runtime

In-memory
database

JDBC Driver

Propel Distributed Data Management System

11

22
33

44

5566

Figure 2: Propel Distributed Query Processing

The JavaBeans used in an application are specified via
an XML mapping specification and then auto-generated
by the OM layer’s mapping tool. Flexible relationship
mappings are supported, including binary 1:1, 1:N, and
M:N relationships as well as general N-ary relationships.
Relationships can have attributes, and relationships are
modeled as interconnected Java objects or collections
thereof. Support is provided for Java class hierarchies;
rows in tables can be mapped to instances of classes in a
hierarchy based on the runtime value of a discriminator
attribute. The OM layer provides a facility for specifying
query-based lookup methods a priori at bean generation
time; the class of supported query predicates is quite rich,
including support for path expressions, text predicates,
and a number of other advanced features. Construction of
ad hoc queries at runtime is also supported.

2.5 Deployment Support

A distinguishing feature of PDSP is the infrastructure that
it provides for deploying application changes online (e.g.,
for deploying a new product catalog with no site
downtime). The OM layer provides built-in support for
versioned tables – tables in which a given object can have
a (linear) sequence of versions associated with it – which
enables application developers to write their Java code
without regard for versioning. At runtime, version
selection is performed automatically via the use of
additional predicates emitted by the OM layer’s mapping
step; the version shown to a given application is
determined by accessing its session information, and
several versions of a row may co-exist and be accessed
simultaneously. Updates to rows of versioned tables
create new row versions rather than updating the existing
versions in place. Data rows and the OM mapping
information are both versioned in order to support online
deployment of data as well as schema changes. The OM
layer also handles the enforcement of referential integrity
for versioned tables.

2.6 Global Cache Service

In addition to providing scalable data management
services, PDSP provides a global cache service that
provides an additional dimension of scalability by
permitting commonly-accessed, dynamically-generated
content to be cached and reused rather than having to be
regenerated from the Platform data management service
on each use. PDSP’s caching architecture differs from
traditional application server caches due to its global
nature – rather than simply placing a cache on each
application server, PDSP provides this type of caching
but then also includes an additional layer of caching via a
global cache server – data moves between the local caches
(L1) on the application servers and the global cache server
(L2) based on LRU management. The global cache
service is primarily intended for use as a page fragment
cache with TTL-based consistency management.

2.7 Distributed Services Management Console

The Propel Distributed Services Platform was designed to
run on networks made up of many small (but memory-
rich) inexpensive servers. To make the system and its
applications manageable, PDSP has a centralized, web-
based system administration console called the Propel
Distributed Services Manager. This web-based console
allows administrators to centrally configure and monitor
the state as well as the performance of even large PDSP
applications

3. Simplifying RAS for PDSP Applications
As mentioned earlier, the Propel Distributed Services
Platform is designed to make it much easier for Java
developers to create, deploy, and maintain data-centric,
high-RAS, Internet applications [4]. This is accomplished
in several key ways.

Internally, PDSP is built on a clustered messaging
system that provides IPC for the Platform’s various
services and processes. The Propel clustered messaging
system is itself a scalable, reliable, distributed service; it
is cluster-aware and provides failure detection/handling
and load balancing for all components of PDSP.

At the data management level, PDSP supports the data
replication and partitioning options mentioned earlier.
The provision of these options allows the DBA to select
application-appropriate levels of both availability and
load-handling capacity.

The inclusion of database queues in PDSP provides
still another dimension to application scalability. In
particular, PDSP’s persistent queuing support enables
applications to be constructed as a set of individually
scalable services that consume and produce queue entries.

References
1. A. Rana et al, “E-business Developer: Prevent

Clusterphobia”, Intelligent Enterprise, Vol. 4,
No. 8, May 24, 2001.

2. D. DeWitt and J. Gray, “Parallel Database

Systems: The Future of High Performance
Database Systems”, Communications of the
ACM, Vol. 35, No. 6, June 1992.

3. TimesTen Performance Software, “Architected

for Real-Time Data Management: TimesTen’s
Core In-Memory Database Technology”, White
Paper, April 2001.

4. M. Carey et al, “Towards a Scalable

Infrastructure for Advanced E-Services”, IEEE
Data Engineering Bulletin, Vol. 24, No. 1,
March 2001.

