
HyperQueries:
Dynamic Distributed Query Processing on the Internet∗

Alfons Kemper Christian Wiesner

Universität Passau
Lehrstuhl für Informatik
94030 Passau, Germany

〈lastname〉@db.fmi.uni-passau.de

Abstract

In this paper we propose a new framework for
dynamic distributed query processing based
on so-calledHyperQuerieswhich are essen-
tially query evaluation sub-plans “sitting be-
hind” hyperlinks. We illustrate the flexibil-
ity of this distributed query processing archi-
tecture in the context of B2B electronic mar-
ket places. Architecting an electronic market
place as a data warehouse by integratingall
the data fromall participating enterprises in
one centralized repository incurs severe prob-
lems. Using HyperQueries, application in-
tegration is achieved via dynamic distributed
query evaluation plans. The electronic market
place serves as an intermediary between clients
and providers executing their sub-queries ref-
erenced via hyperlinks. The hyperlinks are em-
bedded within data objects of the intermedi-
ary’s database. Retrieving such a virtual object
will automatically initiate the execution of the
referenced HyperQuery in order to materialize
the entire object. Thus, sensitive data remains
under the full control of the data providers.

1 Introduction

Electronic market places and virtual enterprises have be-
come very important applications for query processing
[Jhi00]. Building a scalable virtual B2B market place
with hundreds or thousands of participating suppliers

∗This work was supported by the German National Research
Council (DFG) under Contract Ke 401/7-1

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment. To copy oth-
erwise, or to republish, requires a fee and/or special permission from
the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

requires highly flexible, distributed query processing ca-
pabilities. Architecting such an electronic market place
as a data warehouse by integratingall the data fromall
participating enterprises in one centralized data reposi-
tory incurs severe problems:

Security and privacy violations: The participants
of the market place have to relinquish the control over
their data and entrust sensitive information (e.g., pricing
conditions) to the market place host.

Coherence problems:The coherence of highly dy-
namic data, such as availability and shipping informa-
tion, may be violated due to outdated materialized data
in the market place’s data warehouse.

Schema integration problems:Using the warehouse
approach all relevant data from all participants have to
be converted `a priori into the same format. Often, it
would be easier to leave the data inside the participant’s
information systems, e.g., legacy systems, within the
local sites, and apply local wrapper/transformer oper-
ations. This way, data is only convertedon demandand
the most recent coherent state of the data is returned.

Fixed query operators: In a fully integrated (data
warehouse-like) electronic market place, all information
is converted into materialized data. This is often not
desirable in such complex applications like electronic
procurement/bidding. For example, in pricing offers one
would like to have vastly different choices:

• fixed pricing via materialized data
• operators which calculate the prices based on a

multitude of local and global parameters (identity
of the consumer company, availability, local plant
utilization, sub-contractor prices, etc.)

• even human interaction during the processing of
such complex e-procurement queries is desirable.

We propose so-calledHyperQueriesto architect highly
flexible distributed query processing systems. Hyper-
Queries are essentially query evaluation sub-plans “sit-
ting behind” hyperlinks. This way the electronic market
place can be built as an intermediary between the client
(issuing a query) and the providers executing their sub-
queries referenced via hyperlinks. The hyperlinks are

embedded as attribute values within data objects of the
intermediary’s database. Retrieving such a virtual object
automatically initiates the execution of the referenced
HyperQuery in order to materialize the entire object.
Thus, sensitive data can remain under the full control
of the data providers. Instead of replicating the data at
the intermediary, only the hyperlink is embedded.

In summary, the HyperQuery framework allows to
blur the distinction between the allocation schema and
the data—as it is found in clear separation in traditional
distributed databases. In our prototype implementation,
called QueryFlow,1 we distinguish between hierarchical
and broadcast processing of HyperQueries. In the hier-
archical processing mode the initiator of a HyperQuery
is in charge of collecting the processed data. Under
broadcast processing the data objects containing hyper-
links are sent to corresponding HyperQueries which will
then be in charge of routing the processed objects to the
query initiator or to further HyperQueries, if the objects
contain additional hyperlinks.

1.1 Related Work

Distributed databases have been studied since the late
seventies [WDH+81, Sto85]. Middleware systems
[TRV96, HKWY97] try to overcome the heterogene-
ity faced when data is dispersed across different data
sources. [SL90] discusses reference architectures for
federated DBMSs from system and schema view-
points. Our distributed query processor ObjectGlobe
[BKK +01] integrates dispersed data sources and pro-
vides the dynamic loading of functionality from external
code repositories. Cohera [HSC99], based on the eco-
nomic model of Mariposa [SAL+96], integrates hetero-
geneous databases using replication tools. Continuous
queries in NiagaraCQ [CDTW00] allow users to receive
new results when they become available. In [MMM97]
WebSQL is used to “query the Web” in navigational
style. [GW00] combines the query facilities of tradi-
tional databases with existing search engines on the In-
ternet. [LSK95] queries a central mapping information
of all participating, distributed data sources.

Stonebraker et.al. [SAHR84] propose a related ap-
proach to our HyperQueries. But their work is re-
stricted to stored queries in centralized databases. SOAP
[BEK+00] provides a mechanism for exchanging infor-
mation between distributed applications using XML.

[YP00] describes a reference architecture for inter-
operable e-commerce applications. Virtual enterprises
and B2B e-commerce environments present an impor-
tant application domain for our new technique: the auto-
mobile industry’s electronic market place endeavor “Co-
visint” [Cov] and SAP’s “mySAP.com” [SAP99] market
places are among the well known examples.

1The name of our system was derived fromquery processing
and workflow systems because processing queries with HyperQueries
bears some similarities with processing distributed workflows by rout-
ing documents to the appropriate tasks.

select p.ProductDescription, c.Supplier, c.Price
from NeededProducts p, Catalog@MarketPlace c
where p.ProductDescription = c.ProductDescription
order by p.ProductDescription, c.Price
expires Friday, May 18, 2001 5:00:00 PM CET

Figure 1: Example Query of the Car Manufacturer

1.2 Running Example

We demonstrate the HyperQuery technique with a sce-
nario of the car manufacturing industry. We as-
sume a hierarchical supply chain of suppliers and sub-
contractors. A typical process of e-procurement to cover
unscheduled demands of the production is to query a
market place for these products and to select the incom-
ing offers by price, terms of delivery, etc. The price
of the needed products can vary by customer/supplier-
specific sales discounts, duties, plant utilization, etc.

In traditional distributed query processing systems
such a query can only be executed if a global schema
exists or all databases are replicated at the market place.
Considering an environment, where hundreds of suppli-
ers participate in a market place, one global query which
integrates the sub-queries for all participants would be
too complex and error-prone.

Following our approach the suppliers have to regis-
ter their products at the market place, which they want
to participate in, and specify, by which sub-plans the
price information can be computed attheir sites. This
calculation can be arbitrarily complex and involve their
sub-contractors, too. The allocation schema given by
the data at the market place is exploited for execution.

Figure 1 shows an SQL-like query, that returns the
prices and suppliers of all needed products. Figure 2
shows two possible execution traces of this query—both
are supported by our evaluation technique. In the hier-
archical execution of Figure 2(a) the resulting objects
flow back to the sites, where the original input objects
came from, whereas in the broadcast execution of Fig-
ure 2(b) the objects do not flow all the way through in-
termediates back to the client, but are routed directly to
the client.

1.3 Overview

The rest of this paper is organized as follows. Section 2
defines HyperQueries. Section 3 illustrates the execu-
tion of HyperQueries in our distributed query proces-
sor and shows different kinds of query operators in sub-
plans. In Section 4 we develop some optimization tech-
niques for HyperQuery execution and discuss some de-
tails of our implementation. We show first experimental
performance results of our approach in Section 5 and
conclude in Section 6.

2 HyperQueries: Syntax and Semantics
Our approach is based on virtual attributes whose val-
ues are determined by evaluating remote sub-queries

Supplier 1 Supplier 2 Supplier 3 Supplier 4

Sub-Contractor 1 Sub-Contractor 2

Client

Market Place

Supplier 1 Supplier 2 Supplier 3 Supplier 4

Sub-Contractor 1 Sub-Contractor 2

Client

Market Place

(a) Hierarchical Query Processing (b) Broadcast Query Processing

Figure 2: Flow of Control and Flow of Objects
(Dashed lines indicate the flow of control and intermediate results, solid lines indicate the flow of result objects)

on demand. In contrast to [SAHR84] we do not store
the queries, i.e., the sub-plans to be executed at data
providers, within virtual attributes. Instead, hyperlinks
referencing the sub-plans are embedded as virtual at-
tributes within the data. The queries themselves are lo-
cated at the distributed data providers (remote hosts).
We refer to hosts that manage data with virtual attributes
as intermediaries.

In the following we show how hyperlinks and Hyper-
Queries can be incorporated into the database design.
We chose a relational schema for the market place and
XML as data model for all data being exchanged by
HyperQueries, as XML is the emerging standard for
data exchange and relational and object-relational data
sources can easily be integrated.

2.1 Metadata for HyperQuery Processing

We introducevirtual attributes to encapsulate hyper-
links and the results of the corresponding sub-plans as
columns in a database table. The hyperlinks are replaced
by the result values of the sub-plans, whereby a certain
schema, that is defined and publicly available at the in-
termediary, has to be obeyed. This schema covers the
public intermediary’s tables and the values that are cal-
culated by the HyperQueries when following the hyper-
links. It further defines application specific parameters,
e.g.,Quantity , that can be used by remote hosts to
calculate the actual value of virtual attributes.

2.2 Specification of Hyperlinks

We specify hyperlinks by defining a Uniform Resource
Identifier (URI) schema (see Figure 3). The individ-
ual components of these URIs have the following mean-
ing: the leadinghq denotes ourHyperQueryprotocol,
<HostDNS> is the DNS name of the host, on which the
sub-plan is executed, and<PathToPlanId> is the
name of the stored sub-plan within a repository of plans.
The<HostDNS> and the<PathToPlanId> are re-
ferred to as URI prefix. Both the optional global pa-
rameter list and the object specific parameters are “&”-
separated key-value lists. The former parameterize re-
mote sub-plans, e.g.,Currency for payment. The lat-
ter represent foreign keys on a virtual table at the remote

host and have to contain enough information, to calcu-
late the actual value of the virtual attribute at the remote
site. All entries of the virtual attribute with the same
URI prefix must have the same parameter structure.

Figure 4 shows a simple extension of theCatalog
table of the electronic market place example of Sec-
tion 1.2. The virtual attributePrice of the first tu-
ple denotes, that the price is calculated at the host
supplier1.com for an object with the key attribute
ProdID and valueCB1232 by using the sub-plan
namedElectrical/Price . The fourth tuple re-
quires the additional global parameterCurrency .

2.3 Syntax of HyperQueries

A HyperQuery is the counterpart of the hyperlinks of
virtual attributes. These query plans are executed on
remote hosts and may be arbitrarily complex, integrate
applications, ERP- and legacy systems, and may even
comprise user interaction. The most comfortable way
for stating HyperQueries is to use our SQL dialect. A
HyperQuery using SQL accesses a virtual table called
HyperQueryInputStream that serves as a receiver
of the input data objects that “flow through” the hy-
perlinks. The schema of this virtual table is composed
of all object specific parameters of the corresponding
hyperlink and application specific parameters that are
transmitted during hyperlink processing but not con-
tained within the hyperlink. Additional attributes of an
input data object are not accessible within the Hyper-
Query; they are passed through. [RS97] describes how
more complex data sources can be queried using SQL by
defining views over legacy systems. In our QueryFlow
system, alternatively, a HyperQuery could consist of ar-
bitrarily complex Java operations which have to imple-
ment the iterator interface of [Gra93] (cf. Section 3.5).

Figure 5 shows the SQL formulations of two ex-
ample HyperQueries, both determining the price of
the specified products. Note thatp.Price and
p.ComponentPrice in both HyperQueries can be
virtual attributes, i.e., further HyperQueries on other
hosts could be executed to compute the value.

<hqschema> ::= "hq://"<HostDNS>"/"<PathToPlanId> ["!"<GlobPL>] "?"<ObjPL>
<GlobPL> ::= <GlobPN>"="<GlobPVal> {"&"<GlobPN>"="<GlobalPVal>}
<ObjPL> ::= <ObjPN>=<ObjPVal> {"&"<ObjPN>"="<ObjPVal>}

Figure 3: URI Schema of theHyperQueryProtocol

ProductDescription Supplier Price
Battery, 12V 32 A Supplier 1 hq://supplier1.com/Electrical/Price?ProdID=CB1232
Battery, 12V 55 A Supplier 1 hq://supplier1.com/Electrical/Price?ProdID=CB1255
Tires 175/65TR14 Supplier 2 hq://supplier2.com/Price?ProdKey=175/65TR14
Spark Plug VX Supplier 3 hq://supplier3.com/PriceForUSA!Currency=USD?ID=1234
Alternator 50 A Supplier 4 hq://supplier4.com/RegularPrice?SerialNo=Alt50

.

Figure 4: Sample Extension of theCatalog@MarketPlace Table

selecth.*, p.Price as Price
from HyperQueryInputStream h, Products p
where h.ProdID = p.ProdID

selecth.*, (h.Quantity *sum(p.ComponentPrice)) as Price
from HyperQueryInputStream h, BillOfMaterial b, Parts p
whereh.SerialNo = b.SerialNoand b.ComposedOf = p.PartID
group by h.*

(a)Electrical/Price at Supplier 1 (b)RegularPrice at Supplier 4

Figure 5: Two Example HyperQueries in Our SQL Dialect

2.4 Interface to HyperQueries

If an object is sent to a HyperQuery, the URI of the vir-
tual attribute is replaced by the actual value. This value
is calculated from the object specific and the application
specific parameters. The former are given by the URI,
the latter stem from the globally available schema defi-
nition at the intermediary. Other attributes of the object
cannot be used for the computation within the Hyper-
Query and are passed through.

The type of the actual value of the virtual attribute
has to match the schema definition given at the inter-
mediary; objects of incompatible type are discarded. If
the type is single-valued and multiple values for the vir-
tual attribute are computed, multiple objects have to be
returned.

3 HyperQuery Execution in our
QueryFlow System

In this section we illustrate the execution of Hyper-
Queries in our QueryFlow system. The QueryFlow
system is a distributed and open query processor for
data sources on the Internet. The whole system is
written in Java for two reasons: First, Java is portable,
so that our system can be installed with very little effort:
hosts need to install the QueryFlow system and can then
very easily join a market place by inserting hyperlinks
at the intermediary and providing the corresponding
sub-plans. Second, Java provides secure extensibility.
Like the QueryFlow system itself, user-defined query
operators are written in Java. They could be loaded
from remote sites (e.g., the market place host or
third-party vendors) on demand. For security reasons
they are executed in their own Java “sandbox”.

∪

Dispatch Dispatch recv

send

(a) Nesting (b) Sequencing (c) Inner

Figure 6: The Three Possible Templates for Sub-Plans

3.1 Templates for Sub-Plans

Users of the QueryFlow system specify HyperQueries
using our SQL dialect as described in Section 2.3. A
query is transformed into an operator tree that is stored
as a sub-plan in a local repository. The three possible
templates for sub-plans in our QueryFlow system are il-
lustrated in Figure 6 and can be characterized as follows:

Nesting Sub-Plans:As shown in Figure 6(a) these
sub-plans contain aDispatch operator that splits one
input stream into multiple output streams that serve as
input streams for the nested sub-plans. This operator
is the basic operator for processing HyperQueries (cf.
Section 3.2 and Section 4). TheUnion (re-)merges the
output streams of the nested sub-plans and produces one
output stream. Thus, the flow of objects is totally en-
capsulated inside a sub-plan of this pattern. The client
query is always transformed into a plan of this kind.

Sequencing Sub-Plans: Sequencing sub-plans as
shown in Figure 6(b) contain the initialDispatch op-
erator that splits one input stream into multiple output
streams; no finalUnion is given, so a surrounding sub-

ProductDescription Quantity

Battery, 12V 32 A 500
Battery, 12V 55 A 750
Tires 175/65TR14 1000
Spark Plug VX 8000

Figure 7: Needed Products of the Car Manufacturer

plan with aUnion is required to which the objects of
the sub-plans can be routed. Thus, objects that are once
sent to the next sub-plan are never sent back to the del-
egating sub-plan. So the further processing of the data
objects is beyond the control of the initiating sub-plans.

Inner Sub-Plans: Figure 6(c) shows sub-plans that
have one input stream and one output stream. These
sub-plans form the innermost parts of the query execu-
tion where the actual values of virtual attributes are de-
termined. As already mentioned above multiple output
objects may be generated for one input object.

3.2 Processing Hyperlinks

In our QueryFlow system processing hyperlinks is done
by an operator, calledDispatch , that splits one input
stream into multiple output streams. If a hyperlink is en-
countered, the actual value is computed by “following”
the hyperlink according to this procedure:

1. The hyperlink is split into its components, i.e., the
DNS of the remote host, the identifier for the sub-
plan, the global parameters, and the object spe-
cific parameters. The object specific parameters
are merged with the current input object.

2. If the referenced sub-plan has not yet been instan-
tiated at the remote host, an instantiation request
containing the global parameters is sent.

3. Once the sub-plan has been instantiated, all objects
with the same URI prefix are routed to it, whereby
whole objects as produced by step 1 are sent.

3.3 Processing a Simple Query

On the basis of our running example we illustrate the
process of incremental plan generation and plan execu-
tion. Figure 7 shows theNeededProducts table.

Due to clarity we substituted in Figure 8 the concrete
data objects by symbols, where and denote the
two battery objects, denotes the tires object, and
denotes the spark plug object. Figure 8(a) shows the
start of the query execution: The user-stated plan is in-
stantiated with a scan of theNeededProducts table
at the client. The attributesPrice andSupplier of
theCatalog table at the market place are joined (indi-
cated by1;) with the input objects. The vertical hatch
indicates the enriched objects in the following figures.

As Price is a virtual attribute, aDispatch op-
erator splits the resulting stream of objects is split
into multiple output streams. In Figure 8(b) the first

object for Supplier 1 passes theDispatch operator
which sends an instantiation request2 for the sub-plan
Electrical/Price to Supplier 1. Basically this
sub-plan consists of a join with a local table as shown
in the HyperQuery of Figure 5(a). All objects that be-
long to this sub-plan are routed to it by theDispatch
operator (Figure 8(c)/(d)). Figure 8(d) also shows the
processing of the

����
����
����
���� object at the market place. As its

pricing information is calculated at Supplier 2, the in-
stantiation of the corresponding sub-plan is requested.
This sub-plan involves a complex application to calcu-
late the price of the input objects. Concurrently the price
has been added to the

���
���
���
��� object at Supplier 1 and the re-

sulting object3 can be forwarded to the finalUnion .
So an additional input stream is requested at theUnion .

Having registered the new input stream at the
Union , the object is sent to the market place. The
price is inserted into the next data object

���
���
���
��� and gener-

ated a object (Figure 8(e)). The
����
����
����
���� object is routed

to Supplier 2. The market place requests the instantia-
tion of the sub-plan namedPriceForUSA for the last
input object

���
���
���
��� at Supplier 3 and sets the global param-

eterCurrency to USD. In this sub-plan a human user
enters the pricing information, e.g., using a GUI. In Fig-
ure 8(f) the

���
���
���
��� object is routed to Supplier 3. Supplier 2

has inserted the pricing information into its
����
����
����
���� object

and generated a object, which is sent to its target. So
a further input stream is requested at theUnion . Sup-
plier 1 routes its object to theUnion .

Supplier 2 sent its object to theUnion and Sup-
plier 3 has inserted the pricing information for its

���
���
���
��� ob-

ject and generated a object (Figure 8(g)). Figure 8(h)
depicts the result, where the actual value of all input ob-
jects has been inserted and the resulting objects have
reached theUnion . Based on these data objects the
query is processed further, i.e., the sorting is done.

3.4 Processing Complex Queries

So far we have demonstrated the incremental instan-
tiation of sub-plans for simple one-level HyperQuery
processing. The HyperQuery concept is, of course,
not restricted to one level. While processing a Hyper-
Query, other hyperlinks may be encountered which ini-
tiate nested HyperQueries. Figure 9 illustrates our
component-based QueryFlow system on more complex
example applications. We only show the complete query
plans (after all sub-plans have been instantiated) and
omit both concrete data objects and the sequences of the
stepwise instantiation of the sub-plans.

3.4.1 Hierarchical HyperQuery Execution

If a remote host encounters a virtual attribute that is
needed for the further execution of the HyperQuery,

2Note, that all sub-plans are instantiated only once for a query.
3Objects with fully materialized virtual attributes are visualized in

solid black.

1;
Market Place

Client

∪

1;

���
���
���
���

Market Place

Client

Supplier 1

∪

1;

���
���
���
���

���
���
���
���

Market Place

Client

∪

Supplier 1

1;

���
���
���

���
���
������

���
���
���

App

∪

Market Place

Client

Supplier 1 Supplier 2

(a) (b) (c) (d)

���
���
���
���

����
����
����

����
����
����

App

1;
Market Place

Supplier 1

Client

∪

Supplier 2 Supplier 3

���
���
���
���

App

1;
Market Place

Client

∪

Supplier 1 Supplier 2 Supplier 3

1;

App

Client

Supplier 1

Market Place

∪

Supplier 2 Supplier 3

1;

App

Client

Supplier 1

∪

Market Place

Supplier 2 Supplier 3

(e) (f) (g) (h)

Figure 8: Routing of Objects & Instantiation of Sub-Plans
(solid lines indicate the routing of objects, dashed lines indicate the instantiation of sub-plans)

the host acts as intermediary and initiates a nested sub-
query at another remote host using the pattern of Fig-
ure 6(a). After pre-processing the data objects, they
flow from the surrounding sub-plan to the nested sub-
plans, where the value of the virtual attribute is com-
puted. Then the complete objects are sent back to the
surrounding sub-plan, where they are processed fur-
ther. Figure 9(a) shows an example. Supplier 4 exe-
cutes the HyperQuery of Figure 5(b) and accesses the
virtual attributeComponentPrice . Thus, the right
hand sub-plan instantiates further nested sub-plans at
sub-contractors. Note, that the virtual attributes at the
levels of the nesting need not be the same, e.g., the
outer virtual attribute could bePrice , while the inner
is ComponentPrice .

3.4.2 Broadcast HyperQuery Execution

If a hyperlink is encountered within a HyperQuery and
the resulting objects need not be processed any further,
the evaluation can be delegated to other HyperQueries.
Using sub-plans of the pattern of Figure 6(b) data ob-
jects are (after a pre-processing step) forwarded to the
sequencing sub-plans. It is the task of the further sub-
plans to determine the value of the virtual attribute and
to send the resulting objects back to the initiator of the
query. The prerequisite is that the virtual attributes are
the same for both levels of HyperQuery execution. The
Union of the surrounding sub-plan merges the results
of the broadcast-like inner sub-plans. Figure 9(b) shows
an example for the broadcast execution, where Sup-
plier 4 has two subsidiary companies, each one special-

∪
∪

Client

Sub-Contractor 1

Market Place

Sub-Contractor 2

Supplier 1 Supplier 4

∪

Market Place

Sub-Contractor 1 Sub-Contractor 2

Client

Supplier 4Supplier 1

(a) Hierarchical (b) Broadcast

Figure 9: Kinds of HyperQuery Execution

ized at some goods, and forwards the received objects to
them, without post-processing the results.

The main advantage of broadcast processing is the
quick forwarding of data objects without the need of
handling them again at the delegating site. The trade-
offs are (1) that the virtual attributes must coincide in
all sequencing sub-plans and (2) that many connections,
have to register at the mergingUnion . We want to em-
phasize that it is a local decision of each participating
site, what kind of sub-plan is executed, and this deci-
sion is not affected by other sites. Thus, it is possi-
ble to have both hierarchical and broadcast execution of
HyperQueries within the execution of one query.

3.5 Query Operators

As mentioned before, our QueryFlow system provides
extensibility. This capability is important, as each par-
ticipating site has several alternatives for implement-

ing the HyperQueries. So query plans can perfectly be
adapted to the companies’ local systems. The query
plans may contain different kinds of operators which
can be characterized by the origin of data.

SQL Database Queries: The simplest kind of lo-
cal sub-plans are SQL-like queries as shown in Sec-
tion 2.3. The queries are transformed into a tree contain-
ing physical operations of the relational algebra with tra-
ditional database operators, e.g., joins, selections, pro-
jections, and sorting. Dynamic loading of operators in
our QueryFlow system enables the administrator of the
local host to integrate new and more efficient database
operations into the query execution. One example of
such a new database operation is a wrapper that accesses
a relational database system using JDBC.

Applications: If complex business applications, e.g.,
ERP systems like SAP R/3, etc., or legacy systems have
to be accessed, wrappers for these applications have to
be integrated into the query plan. This is done the same
way as database systems are integrated. All we require,
is that the wrappers obey the iterator interface. The con-
nection of the QueryFlow system to legacy systems by
wrappers means that data is only converted on demand
and the most coherent state of the data is returned.

Human Interaction: Determining the values of vir-
tual attributes in sub-plans can even be done by human
interaction. In this case a user enters the value of a
virtual attribute through a Java applet or a GUI. As
these operators are executed at the sites of the owner
of the data, sensitive data remains under their full con-
trol. These operators have two main parts: a server part,
which implements the iterator interface, is specified in
the query execution plan, and runs as a part of the query
execution. The corresponding client part acts as an input
interface.

3.6 Security Issues

Safety is one of the crucial issues in an open and dis-
tributed query processing system. Our QueryFlow sys-
tem provides a security system for authentication, i.e.,
verifying the identity of a user, authorization, i.e., ver-
ifying, if a user has the permission to execute a sub-
plan or an operation, and privacy, i.e., denying unautho-
rized sites access to sensitive data. We extended stan-
dard methods to fit the needs of multi-level HyperQuery
processing technique. Due to a lack of space we omit
the details that can be found in [KW01].

4 Optimization and Implementation De-
tails

So far we have demonstrated the basic techniques for
the evaluation of HyperQueries. Now we discuss some
optimization approaches and implementation details.

Bypassing of Attributes:If “bulky” attributes, such
as images or product descriptions, are requested in the

result, that are not needed for the calculation of the vir-
tual attribute at a remote host, they can be projected out
when passing theDispatch operator. These attributes
are sent to the finalUnion and are re-merged to the
resulting objects after the virtual attribute has been cal-
culated. Especially in multi-level HyperQuery execu-
tion this decreases the amount of data transferred over
the network and reduces the execution time in slow and
bursty networks. During the stripping off the bulky at-
tributes a unique sequence number is added both to the
bulk objects and the remaining data objects. Using these
sequence numbers the bulk objects can be joined to the
corresponding data objects. This optimization method
is similar to bulk bypassing ([BCKK00, CKKW00]) in
central databases. Figure 10(a) illustrates the bypassing
of bulk objects around the sub-plans in the market place
scenario.

Predicate Migration: Predicates on virtual attributes
of the user-stated query cannot be evaluated before the
actual value has been computed. To reduce the amount
of transferred data, these predicates can be pushed from
the user-stated query “into” the HyperQueries at the re-
mote hosts. Thus, only relevant data objects are re-
turned. The implementation of this optimization is
straightforward: The selection predicate is sent to the re-
mote site during the instantiation of the sub-plan. When
passing objects through theSend operator, the selec-
tion is performed. Additional profit can be drawn, if the
remote hosts incorporate the possibility of predicate mi-
gration into their HyperQueries, e.g., the remote hosts
can place aSelection operator into their sub-plans,
whose predicate is set during the instantiation. Fig-
ure 10(b) illustrates the migration of predicates.

Multiple Virtual Attributes: If a query requests
multiple virtual attributes the na¨ıve execution strategy
would request at first the value of the first virtual at-
tribute, then that of the second virtual attribute, etc. If
all virtual attributes of an object are evaluated at the
same site, the requests can easily be bundled. A plan
is generated that contains oneDispatch operator for
all virtual attributes whose evaluation can be combined.
During the execution theDispatch operator sends the
list of all requested virtual attributes with the instanti-
ation request for one remote sub-plan. When an ob-
ject passes theDispatch operator, it is routed to the
sub-plan, where the actual values of all virtual attributes
are determined at once. This avoids sending one ob-
ject multiple times to the same host. If not all virtual
attributes can be evaluated at the same site, e.g., if the
price and the rating by an independent organization are
requested, the calculation can be parallelized as follows:
TheDispatch operator sendsoneinput object with a
unique sequence number toall its corresponding sub-
plans. TheUnion re-merges the resulting data objects
of different sub-plans using the sequence number. Ob-
jects are passed to the next operator, when all virtual
attributes have been inserted by theUnion .

Bulk

Market Place

Supplier 1

Client

∪

Supplier 2

σ

σσ

Market Place

Supplier 2Supplier 1

Client

∪

C
ache

(3)
insert

(2)
found

(4) retrieve matches

(1) lookup/insert

∪

Client

Supplier 1

Market Place

Supplier 2

(a) Bulk Bypassing (b) Predicate Migration (c) Intra-Query Caching

Figure 10: Illustrating Optimization Techniques

Caching of Results:Due to duplicates (which may
be produced by preceding joins) the same virtual at-
tributes have to be evaluated multiple times. This can be
avoided by caching. The evaluation of virtual attributes
is similar to the invocation of expensive methods, but in
contrast to [HN96] this is done asynchronously, i.e., ob-
jects are sent to sub-plans, before the results of previous
objects are returned.4 Thus it is not sufficient to store
only the returned values. We also have to keep book
of objects that were sent to sub-plans and have not yet
produced a result. Figure 10(c) depicts the hash table
based caching of virtual attributes. On any input object
the Dispatch operator probes the hash table (1). A
cache hit is directly sent to theUnion , bypassing the
HyperQueries (2). Otherwise the object is inserted into
the hash table as a request. If it was the first request for
this URI, the object is sent to the corresponding Hyper-
Query. If a result from a HyperQuery is received by
theUnion , it is inserted into the hash table (3) and the
pending objects with the same URI are returned (4). If
assuming that the results are highly dynamic and for co-
herence reasons cannot be re-used in another query, the
hash table has to be discarded when the query execution
has finished. But if the remote hosts give runs of validity
for their results, this approach can be extended to inter-
query caching, where results are cached until expiry.

Implementation of the Dispatch Operator:The most
significant operator for processing HyperQueries is the
Dispatch operator which splits the input stream into
multiple output streams. As the number of resulting
output streams cannot be determined ´a priori, we have
to fork oneDispatch operator for each new output
stream. The first instantiatedDispatch operator also
acts as the coordinator for the other forked operators and
keeps book of them. EachDispatch operator runs in
a separate thread; allDispatch operators share one
common input stream, from which eachDispatch op-
erator selects its relevant objects. Thus we obtain the
concurrent and independent routing of objects to the
sub-plans on all participating hosts.

4For the same reason sorting on the URI does not work well in
HyperQuery processing, as this would be the worst case for the asyn-
chronous approach.

Support of Long-Running Queries:To limit the du-
ration of queries, we introduced theexpires -clause,
which allows us to give a time-to-live (TTL) for queries.
Each instantiated sub-plan is annotated with this TTL
and is monitored on expiry. If the TTL elapses, the sub-
plans are aborted and only the objects gathered so far are
considered for the (approximate) result. As the TTL can
amount to days and open network connections are error-
prone, connections that have not transferred data for a
certain time but are still active, are closed temporarily,
without affecting the query execution itself.

Fault Tolerance: If a host does not respond to any
request, either a network failure occurred or the host is
down. As this could only be a short-term break and the
processing of a query lasts longer, we store all objects
that belong to the failure host and periodically re-try to
connect to the host. If the remaining query has finished
before the host responds, it is no longer waited for, and
the client is informed about the incomplete result. If the
host is accessible again while the remaining query runs,
the sub-plan is instantiated at the host, and the stored
objects are sent to the host where query processing con-
tinues as regular.

5 Performance Investigation
In this section we present a few initial benchmark re-
sults obtained from our QueryFlow system. In particu-
lar, we concentrate on investigating the scalability of our
approach in a distributed environment and show the ef-
fectiveness of the combination of multipleDispatch
operators.

5.1 Experimental Environment

Our test scenario constitutes a market place with 26 sup-
pliers. The data for our databases was taken from the
TPC-D [TPC99] benchmark suite of scale factor 1.0. To
suit our limited benchmark environment, we converted
the 10000 suppliers round robin bySUPPKEYto only
26 suppliers, each being allocated to an individual host.
ThePARTSUPPtable represented the market place and
the PART table was partitioned horizontally to obtain
severalPART@SUPPi tables that contained those parts
that the supplieri produced. Thus, each supplier offered

0

50

100

150

200

250

300

350

400

450

1 4 7 10 13 16 19 22 25

A
bs

ol
ut

e
R

un
ni

ng
 T

im
e

[s
ec

]

Number of Suppliers

100 Parts
1000 Parts

10000 Parts

0

200

400

600

800

1000

1200

1400

1 4 7 10 13 16 19 22 25

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
[m

se
c]

Number of Suppliers

100 Parts
1000 Parts

10000 Parts

0

200

400

600

800

1000

1200

5000 10000 15000 20000

R
un

ni
ng

 T
im

e
[s

ec
]

Requested Tuples

3 Sequencing Dispatchers
2 Sequencing Dispatchers

Combined Dispatcher

Varying the Number of Suppliers Combining MultipleDispatch Operators
(a) Absolute Running Times [sec] (b) Average Running Times [msec] (c) Absolute Running Times [sec]

Figure 11: Running Times

approximately 30000 parts, whereby each part was pro-
duced by 4 suppliers which lead to 800000 entries at
the market place and 200000 distinct parts.SUPPLY-
COSTandAVAILQTY became virtual attributes. The
databases were stored in commercial relational database
systems. Each participant of the market place ran its
database server on a separate host, whereby the mar-
ket place was placed on a Sun Enterprise 450 with four
400 MHz UltraSparc II processors and 4 GByte mem-
ory. The other database servers ran on machines of type
Sun Ultra 10 with 1 UltraSparc IIi processor at 333 MHz
and 128 MByte memory. All hosts were in the same
100 MBit LAN, running Solaris 2.7 and using Sun’s
JDK 1.2.2 as the basis for our QueryFlow system.

5.2 Scalability of HyperQuery Processing

For the first test we varied the number of requested sup-
pliers in our market place from 1 to 26. The query issued
by the client was:

select PARTKEY, COMMENT, SUPPKEY, SUPPLYCOST
from PARTSUPP
wherePARTKEY <’[sel]’ and SUPPKEY< ’[supps ’]

We used ’[supps]’ to limit the number of requested
suppliers. Further we varied ’[sel]’ and requested 100,
1000 and 10000 parts. As the parts were distributed
among 26 suppliers and each part was offered by 4 sup-
pliers, 4 · sel · supps/26 objects were returned. The
following HyperQuery was invoked at Supplieri:

select h.*, RETAILPRICE
from PART@SUPPi, HyperQueryInputStream h
wherePARTKEY = h.PARTKEY

As the number of resulting objects varied with the
number of requested suppliers, we normalized the re-
sults to the average time. The absolute running times for
this experiment, shown in Figure 11(a), are as expected:
the more suppliers take part, the bigger the market place
is, and the longer a query runs. But Figure 11(b) proves
that the average running time per resulting object de-
creases with a higher number of suppliers. This is an
indication that the increase of costs caused by additional
registered suppliers is sub-linear because of the parallel
HyperQuery processing. Comparing the average times

of 100 parts and 10000 parts of Figure 11(b) shows that
with an increasing number of requested objects the aver-
age time per object decreases by orders of magnitudes.
This results from the fact that the fixed costs of the plan
instantiation and the authentication overhead amortize
with increasing number of processed objects.

5.3 Evaluating Multiple Virtual Attributes

In this experiment we demonstrate the benefits of
bundling requests for multiple virtual attributes. All
26 suppliers were incorporated in this experiment. The
first query accessing the two virtual attributesSUPPLY-
COSTandAVAILQTY was:

select PARTKEY, SUPPKEY, COMMENT, ’[virtualattrs]’
from PARTSUPP
where PARTKEY <’[sel]’

We varied the selectivity ’[sel]’ of the query, i.e.,
the number of requested data objects from 100 up to
20000. The na¨ıve plan had two sequencingDispatch
operators requesting at firstSUPPLYCOSTand then
AVAILQTY, the optimized variant combines the eval-
uation of both virtual attributes in one request. For a
second query we extended the schema of thePART-
SUPP table by adding an additional virtual attribute
SHIPCOSTand queried three virtual attributesSUP-
PLYCOST, AVAILQTY, andSHIPCOST.

Figure 11(c) shows the running times for the queries.
The optimized variants are about a factor of 2 (3)
faster than the na¨ıve plans with two (three) sequencing
Dispatch operators, as the objects are sent only once.
Figure 11(c) shows only one plot of the optimized query,
as we found out, that it is neglectable, if the HyperQuery
joins two or three attributes to the input objects.

6 Conclusions
In this paper we proposed a framework for dynamic dis-
tributed query processing based on HyperQueries which
are essentially query evaluation plans “sitting behind”
hyperlinks. We illustrated the flexibility of this dis-
tributed query processing architecture in the context of
B2B electronic market places. Architecting an elec-
tronic market place as a data warehouse by integrat-

ing all the data from all participants in one central-
ized repository incurs severe problems. Using Hyper-
Queries, application integration is achieved via dis-
tributed query evaluation plans. Now the electronic mar-
ket place serves as an intermediary between clients and
providers executing their sub-queries referenced by hy-
perlinks. We demonstrated how these hyperlinks can
be embedded in the intermediary’s database as so-called
virtual attributes. Further we illustrated the execution
of HyperQueries and pointed out more complex scena-
rios that can be divided into hierarchical and broadcast
HyperQuery execution. Further we demonstrated some
effective optimization techniques for HyperQuery pro-
cessing, described some important implementation de-
tails and investigated the scalability of our technique.

Acknowledgments
We would like to thank the anonymous reviewers and
the ObjectGlobe team for their helpful comments.

References
[BCKK00] R. Braumandl, J. Claussen, A. Kemper, and

D. Kossmann. Functional join processing.The VLDB Jour-
nal, 8(3-4):156–177, 2000.

[BEK+00] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,
N. Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winer.
Simple Object Access Protocol (SOAP) 1.1.http://
www.w3.org/TR/SOAP , May 2000.

[BKK +01] R. Braumandl, M. Keidl, A. Kemper, D. Koss-
mann, A. Kreutz, S. Seltzsam, and K. Stocker. Object-
Globe: Ubiquitous query processing on the Internet.The
VLDB Journal, 2001 (to appear in “Special Issue on E-
Services”).

[CDTW00] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Nia-
garaCQ: A Scalable Continuous Query System for Internet
Databases. InProc. of the ACM SIGMOD Conf. on Man-
agement of Data, pages 379–390, June 2000.

[CKKW00] J. Claussen, A. Kemper, D. Kossmann, and
C. Wiesner. Exploiting early sorting and early partitioning
for decision support query processing.The VLDB Journal,
9(3): 190–213, December 2000.

[Cov] Covisint. http://www.covisint.com/ .

[Gra93] G. Graefe. Query Evaluation Techniques for Large
Databases.ACM Computing Surveys, 25(2):73–170, June
1993.

[GW00] R. Goldman and J. Widom. WSQ/DSQ: A Practi-
cal Approach for Combined Querying of Databases and the
Web. InProc. of the ACM SIGMOD Conf. on Management
of Data, pages 285–296, June 2000.

[HKWY97] L. Haas, D. Kossmann, E. Wimmers, and
J. Yang. Optimizing Queries Across Diverse Data Sources.
In Proc. of the Conf. on Very Large Data Bases (VLDB),
pages 276–285, August 1997.

[HN96] J. Hellerstein and J. Naughton. Query Execution
Strategies for Caching Expensive Methods. InProc. of the
ACM SIGMOD Conf. on Management of Data, pages 423–
434, June 1996.

[HSC99] J. M. Hellerstein, M. Stonebraker, and R. Caccia.
Independent, Open Enterprise Data Integration.IEEE Data
Engeneering Bulletin, 22(1):43–49, March 1999.

[Jhi00] A. Jhingran. Moving up the food chain: Supporting
E-Commerce Applications on Databases.ACM SIGMOD
Record, 29(4):50–54, December 2000.

[KW01] A. Kemper and C. Wiesner. HyperQueries:
Dynamic Distributed Query Processing on the Inter-
net. Technical report, Universit¨at Passau, Fakult¨at für
Mathematik und Informatik, October 2001. Avail-
able at http://www.db.fmi.uni-passau.de/
publications/papers/HyperQueries.pdf .

[LSK95] A. Y. Levy, D. Srivastava, and T. Kirk. Data
Model and Query Evaluation in Global Information Sys-
tems. Journal of Intelligent Information Systems (JIIS),
5(2):121–143, 1995.

[MMM97] A. O. Mendelzon, G. A. Mihaila, and T. Milo.
Querying the World Wide Web.Int. Journal on Digital
Libraries, 1(1):54–67, 1997.

[RS97] M. Tork Roth and P. Schwarz. Don’t Scrap It, Wrap
It! A Wrapper Architecture for Legacy Data Sources. In
Proc. of the Conf. on Very Large Data Bases (VLDB), pages
266–275, August 1997.

[SAHR84] M. Stonebraker, E. Anderson, E. Hanson, and
B. Rubenstein. QUEL as a Data Type. InProc. of the ACM
SIGMOD Conf. on Management of Data, pages 208–214,
June 1984.

[SAL+96] M. Stonebraker, P. Aoki, W. Litwin, A. Pfeffer,
A. Sah, J. Sidell, C. Staelin, and A. Yu. Mariposa: A
Wide-Area Distributed Database System.The VLDB Jour-
nal, 5(1):48–63, January 1996.

[SAP99] SAP. Business Networking in the Internet
Age. Technical report, SAP White Paper, Septem-
ber 1999. http://www.sap-ag.de/germany/
products/my-sap/pdf/bus_networking.pdf .

[SL90] A. Sheth and J. Larson. Federated Database
Systems for Managing Distributed, Heterogeneous, and
Autonomous Databases. ACM Computing Surveys,
22(3):183–236, September 1990.

[Sto85] M. Stonebraker. The Design and Implementation of
Distributed INGRES. Addison-Wesley, Reading, 1985.

[TPC99] Transaction Processing Performance Council TPC.
TPC Benchmark D (Decision Support). Standard Speci-
fication 2.1, Transaction Processing Performance Council
(TPC), February 1999.http://www.tpc.org/ .

[TRV96] A. Tomasic, L. Raschid, and P. Valduriez. Scaling
Heterogeneous Databases and the Design of DISCO. In
Proc. of the Intl. Conf. on Distributed Computing Systems,
pages 449–457, 1996.

[WDH+81] R. Williams, D. Daniels, L. Haas, G. Lapis,
B. Lindsay, P. Ng, R. Obermarck, P. Selinger, A. Walker,
P. Wilms, and R. Yost. R∗: An Overview of the Architec-
ture. IBM Research, RJ3325, December 1981. Reprinted
in: M. Stonebraker (ed.), Readings in Database Systems,
Morgan Kaufmann Publishers, 1994, pp. 515–536.

[YP00] J. Yang and M. P. Papazoglou. Interoperation Support
for Electronic Commerce.Communications of the ACM,
43(6):39–47, June 2000.

