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Abstract—The huge diversity of database technologies in use
inside organizations pose today new challenges of data man-
agement and integration. Polystores provide a solution to this
scenario based on a loosely coupled integration of data sources
and the direct access, with the local language, to each storage
engine for exploiting its distinctive features. However, given the
absence of a global schema, it is hard to know if a query to
one system can be satisfied with data stored elsewhere in the
polystore. We address this issue by introducing query augmenta-
tion, a data manipulation operator for polystores based on the
automatic enrichment of the answer to a local query with related
data in the rest of the polystore. Augmentation can be used to
implement two effective methods for data access in polystores:
augmented search and augmented exploration. We show that they
provide effective tools for information discovery in polystores
that avoid middleware layers, abstract query languages, and
shared data models. We also illustrate the design of QUEPA,
a system that fully implements our approach in an efficient way.
A comprehensive campaign of experiments done with QUEPA
shows that our approach is feasible and, unlike other approaches,
scales nicely as the polystore grows in the number of stores and
size of databases.

I. INTRODUCTION

When dealing with data management, organizations are
becoming polyglot: they tend to use the most suitable database
system depending on the specific kind of data they manage
and/or the specific activity [12], [17], [18], [23], [30]. Recent
research has shown that, on average, each enterprise appli-
cation is backed by at least two or three different types of
database engines [32].

Running Example 1: Let us consider, as a practical exam-
ple, the databases of a company called Polyphony selling music
online. As shown in Fig. 1, each department uses a storage
system that best fits its specific business objectives: (i) the sales
department guarantees ACID properties for its transactions
database with a relational system, (ii) a warehouse department
supports search operations with a document store catalogue,
where each item is represented by a JSON document, and (iii)
a marketing department uses a graph database of similar-items
supporting recommendations. In addition, there exists a key-
value store containing discounts on products, which is shared
among the three departments above.

In this framework, it is of strategic importance to provide
mechanisms for searching through all the available data, pos-
sibly by means of a simple user interface [14]. The traditional
approach to address this issue is based on a middleware

Fig. 1. A polyglot environment.

layer involving a unified language, a common interface, or a
universal data model [3], [6], [17], [20], [33], [34]. However,
this solution adds computational overhead at runtime and,
more importantly, hides the specificity and functionality that
these systems were adopted for [30]. In addition, it is hard to
maintain, having an inherent complexity that increases signif-
icantly as new database systems take part to the environment.

Polystore systems (or simply, polystores) have been pro-
posed recently as an alternative solution for this scenario [30].
The basic idea is to provide a loosely coupled integration
of data sources and allow direct access, with the local lan-
guage, to each specific storage engine to exploit its distinctive
features. This approach meets the “one size does not fit all”
philosophy as well as the need to support business cases where
heterogeneous databases have to co-exist.

In polystores, it is common that a user is only aware of a
single (or a few) available database but does not know anything
about other databases (neither the content, nor the way to
query them and, sometimes, not even their existence). This
clearly poses new challenges for accessing and integrating
data in polystores in an effective way. To recall a relevant
discussion about this approach, the issue is that “if I knew
what query to ask, I would ask it, but I don’t” [30].

In this paper, we provide a contribution to this problem
by proposing, in a formal way, (query) augmentation, a new
construct for data manipulation in polystores that, based on the
simple notion of probabilistic relationship between objects in
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different data stores, allows the enrichment of query answering
over a local database with data outside the database but
available in the polystore. The implementation of this operator
does not require the addition of an abstraction layer involving
query translation and therefore has a minimal impact on the
applications running on top of the data layer. The goal is to
provide a soft mechanism for data integration in polystores
that complements other approaches, such as those based on
cross-db joins [3], [12], [17], [20].

Two effective methods for data access in polystore can be
defined with the augmentation construct: augmented search
and augmented exploration.

Augmented search consists of the automatic expansion of
the result of a query over a local database with data that is
relevant to the query but which is stored elsewhere in the
polystore. This is very useful in common scenarios where
information is shared across the organization and the various
databases complement or overlap each other. Assume for
instance that Lucy, an employee of Polyphony working in
the sales department who only knows SQL, needs all the
information available on the album “Wish”. Then, she submits
in augmented mode the following query to the relational
database transactions in Fig. 1.

SELECT *
FROM inventory
WHERE name like ’%wish%’

By exploiting augmentation, the result of this query is the
augmented object reported below, revealing details about the
product that are not in the database of the sales department,
including the fact that it is currently on a 40% discount.

< a32, Cure, Wish > ⇒ (discounts: 40%)
⇓

(catalogue:{ title: Wish,
artist id: a1,
artist: The Cure,
year: 1992,
... } )

In an augumented search, each retrieved element e is associ-
ated with the probability that e is related to an element of the
original result. Such probability is derived off-line from mining
techniques and integrity constraints. Colors (as in the example
above) and rankings can be used in practice to represent
probability in a more intuitive way.

Augmented exploration makes use of the augmentation
operator to provide a more interactive and flexible way to
access data, which consists of a guided expansion of the result
of a local query. For example, if Lucy submits in exploratory
mode another SQL query to the database transactions for
retrieving all the sales whose total income is greater than
15, she obtains the tuple that follows, in which the links
suggest that further information, related to the returned tuple,
is available elsewhere and allows her to decide with a click
how to deepen the result. As above, the result is probabilistic.

<s8, John Doe, 20.0 >
on−click
9999999K ( { id: c1,

name: John,
surname: Doe,
city: NYC,
... } )

This process is iterative and provides a method of database
exploration [7], [9], [29], where the user can freely find her
way through the polystore, by just clicking on the links as
soon as they are made available.

We have implemented our approach in QUEPA1, a polystore
system equipped with the augmentation operator that provides
the access methods discussed above and is compatible with
most modern database engines. QUEPA operates in a plug-
and-play mode and does not affect the access modalities of
the various storage systems, thus reducing the need for ad-
hoc configurations and for a middleware involving unified
query languages or shared data models. In addition, we have
developed an optimization technique that relies on machine
learning methods to tune the execution of the augmentation.

In sum, the contributions of this paper are the following:
● We propose a general data model for polystores and

introduce formally, in this model, an operator for data
manipulation in polystores that: (i) provides a lightweight
mechanism for data integration, (ii) keeps data in the
original format, (iii) allows the use of the original query
languages or APIs and (iv) avoids any query translation.

● We present two effective methods for data access in
polystores that rely on the new operator: augmented
search enhances the capability of standard query answer-
ing in polystores while augmented exploration adds to the
picture a mechanism for database exploration.

● We illustrate in detail a series of techniques for efficiently
using memory, CPU and network resources available
in the polystore system when augmenting a query. In
addition, we describe a rule-based optimizer that relies on
machine learning for deciding among different options for
executing the augmentation. In polystores, this technique
is easier to employ than cost-based optimizers, usually
adopted by the state-of-the-art.

● We discuss a comprehensive campaign of experiments on
a polystore involving several popular database systems.
The results demonstrate that the approach is feasible
and that the adopted optimization techniques guarantee
an efficient execution of the augmentation operator, also
when compared with other approaches.

The rest of the paper is organized as follows. In Section II
we introduce the augmentation operator and the two access
methods based on it. In Section III, we describe the architec-
ture of a system supporting augmentation, while in Section IV
we illustrate the techniques for executing the augmentation
more efficiently. In Section V we discuss our rule-based
optimizer and, in Section VI, we compare our approach with
related work. Section VII contains the experimental results and
Section VIII our conclusions.

1A demo of the first release of QUEPA has been shown in [18].

2



II. AUGMENTED ACCESS TO POLYSTORES

A. A general data model for polystores

In PDM (Polystore Data Model) a polystore P is made of
a set of databases P = {D1, . . . ,Dn} stored in a variety of
data management systems S1, . . . ,Sn respectively (relational,
key-value, graph, etc.). A database D ∈ P consists of a set of
data collections D = {C1, . . . ,Ck} where each data collection
C is a set of (data) objects. An object o ∈ C is just a key-
value pair: o = ⟨k, v⟩ where k identifies uniquely o in C and
v is an atomic piece of data. A tuple and a JSON document
are examples of data objects in a relational database and in a
document store of a polystore, respectively.

By definition, given a database D of a polystore P , a data
collection C in D and a data object o = ⟨k, v⟩ in C, we can
uniquely identify o in P by means of k, C and D. We call
k̂ = D.C.k the global-key of o in P .

Example 1: Consider the polystore scenario in Fig. 1.
Document ⟨d1, id ∶ d1, title ∶Wish, . . .⟩ is an object in the
(unique) collection of the catalogue database whereas tuple
⟨s8, (s8, John Doe,20.0)⟩ is an object of the collection sales
in the transactions database. The global-key of the latter is
transactions.sales.s8.

This model captures polystores involving any database
system satisfying the minimum requirement that every stored
data object can be identified and accessed by means of a key.
It should be noted however that the granularity of objects
inevitably depends on the designer’s choice (see for instance
the discussion in [5]) and the nature of data (less structured
databases are expected to have more coarse-grained objects).

The other main ingredient of PDM is the ability to correlate
data objects of possibly different databases of the polystore by
means of the following basic notion, which we call p-relation
(for relation in a polystore).

Definition 1 (p-relation): A p-relation on two objects o1
and o2, denoted by o1Rpo2, represents the existence of a
relation R between o1 and o2 with probability p (0 < p ≤ 1),
where R can be one of the following types:

● the identity, denoted by ∼: a reflexive, symmetric and tran-
sitive relation (i.e., an equivalence relation), representing
the fact that o1 and o2 refer to the same real-world entity;

● the matching, denoted by 
: a reflexive and symmetric
relation (not necessarily transitive), representing the fact
that o1 and o2 share some common information.

We assume that in a polystore, p-relations are “consistent” in
the sense that they always satisfy the following condition.
CONSISTENCY CONDITION. For each triple of objects o1, o2
and o3 in a polystore P such that o1 
 o2 and o2 ∼ o3 it is
also the case that o1
 o3.

While this is a natural condition (two equivalent objects
should match the same objects), it guarantees that the augmen-
tation construct behaves consistently with equivalent objects,
as we will show in the following.

Example 2: Consider the polystore in Fig. 1. By denoting
the objects with their global keys we have for instance that:

● catalogue.albums.d1 ∼0.8 discount.drop.k1:cure:wish,

● catalogue.albums.d1 ∼0.9 transactions.inventory.a32,
● transactions.inventory.a42 ∼0.6 similarItems.ties.n4,
● transactions.inventory.a32
1transactions.sales-details.i4.

Basically, while the identity relation serves to represent
multiple occurrences of the same entity in the polystore, the
matching relation models general relationships between data
different from the identity (e.g., those typically captured by
foreign keys in relational databases or by links in graph
databases). On the practical side, p-relations are derived from
the metadata associated with databases in the polystore (e.g.,
from integrity constraints) or are discovered using probabilistic
mining techniques. For the latter task, we rely on the state-
of-the-art techniques for probabilistic record linkage [22],
that is, algorithms able to score the likelihood that a pair
of objects in different databases match. Note however that
also deterministic techniques can be used here by assigning
p = 1.0 to each retrieved link. In Section III-D, we will
give more details on methods and tools currently used in the
implementation of our approach for collecting and score p-
relations.

B. The augmentation construct

This section gives a more formal definition of the augmen-
tation construct, which is the basic operator of our approach.
It takes as input an object o of a polystore and returns the
augmented set αn

(o), which iteratively returns data objects in
the polystore that are related to o with a certain probability.
This probability is computed by combining the probabilities
of the relationships that connect o with the retrieved objects.

Definition 2 (Augmentation construct): Let o be a set of
objects in a polystore P . The augmentation αn of level n ≥ 0 of
o is a set o′ of objects op, where o ∈ P and p is the probability
of membership of o to o′, defined as follows (m > 0):

● α0
(o) = o ∪ {op ∣ o ∼p o

′
∧ o′ ∈ o}

● αm
(o) = αm−1

(o) ∪ {op̂ ∣ o
p′ o
′
∧ o′p ∈ o ∧ p̂ = p ⋅ p′}

Example 3: Let o be the object in the polystore in
Fig. 1 with global-key catalogue.albums.d1. Then, accord-
ing to the p-relations in Example 2 we have α0

({o}) =

{o, o0.81 , o0.92 } where o1 and o2 are the objects with global-key
discount.drop.k1 ∶cure ∶wish and transactions.inventory.a32
respectively.
Note that, by combining probabilities by multiplication, we
are assuming strong independence between each p-relation.
We believe that this is reasonable in a highly heterogeneous
framework in which no assumption can be made on the
relationships between objects belonging to different databases.

Note also that, by construction, for every k ≥ 0, if o ∈ αk
(o)

then o′ ∈ αk
(o) for each o′ ∼ o. Indeed, if o belongs to αk

(o)
because of an object o′′ ∈ αk−1

(o) such that o′′ 
 o, the
consistency condition above implies that if o ∼ o′, we have
also that o′′
 o′ and so, by Definition 2, o′ ∈ αk

(o).
The augmented construct can be at the basis of two alter-

native ways to access a polystore. They will be illustrated in
the following two subsections.
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C. Augmented Search

An augmented search consists of the expansion of the result
of a query over a local database with data that are relevant to
the query but are stored elsewhere in the polystore.

Consider again a polystore P composed of a set of databases
stored in different data management systems each equipped
with a specific query language. Now, let QS denote a query
expressed in the query language of the storage system S and
let QS(D) be the set of objects in the result of QS over a
database D stored in S .

Definition 3 (Augmented search): The augmentation of
level n ≥ 0 of a query QS over a database D stored in S,
denoted by QS(n)(D), consists in the augmentation of level
n ≥ 0 of the result of QS over D ordered according to the
probability of its elements.

Example 4: Let Q be an SQL query over the relational
database transactions in Fig. 1 that returns the object
o with global-key catalogue.albums.d1. Then we have
Q(0)(transactions) = (o, o0.92 , o0.81 ), where o1 and o2 are
the objects with global-key discount.drop.k1 ∶cure ∶wish and
transactions.inventory.a32, and Q(1)(transactions) =

(o, o0.92 , o0.93 , o0.94 , o0.81 ), where o3 and o4 are the
objects with global-key transactions.sales−details.i1 and
transactions.sales−details.i4.

D. Augmented Exploration

Exploratory computing is a new trend in big data access
that aims at helping users make sense of very big data sets by
means of step-by-step interaction with the system oriented to
the progressive refinement of the data retrieval process [7], [8],
[11]. The augmentation construct can provide effective support
for exploratory computing in a polystore through a process
that we call augmented exploration. Intuitively, augmented
exploration consists of a guided expansion of the result of a
query over a local database with related data stored elsewhere
in the polystore. It works as follows: we start with a query QS

expressed in the query language of the storage system S in the
polystore and execute QS over a database D stored in S . We
then select, from the answer of the query an object o and apply
to o the augmentation construct of level 0 (step 1) and order
the result according to the probability of each element. Again,
we select, from the result we obtain, an object o1 and apply
to it the augmentation construct of level 1 (step 2) and order
the result. We then proceed similarly, by selecting an object oi
from the result of the previous step and apply the augmentation
construct of level 1 to oi, until the user is satisfied with her
search. This can be formalized as follows.

Definition 4 (Augmented exploration): An augmented ex-
ploration of a polystore P starting from a query QS over
a database D stored in S consists of a sequence of k steps:
[(o0 ⇢ o0); (o1 ⇢ o1); . . . ; (ok ⇢ ok)] where:

● o0 ∈ Q
S
(D) and o0 = α0

({o0}),
● oi ∈ oi−1 and oi = α1

({oi}) (i > 0).
Example 5: Consider the query in Example 4 and the

objects therein discussed. Then, a possible augmented explo-

Fig. 2. Architecture of QUEPA.

ration involves the steps:

(o⇢ {o1, o2}); (o1 ⇢ {o3, o4}); (o3 ⇢ {o6})

where o6 has global-key catalogue.customers.c1.

III. A SYSTEM SUPPORTING AUGMENTATION

A. Architecture of components and their interactions

The architecture of the system is in Fig. 2. The components
are briefly described as follows:

● Augmenter: implements the augmentation operator and
orchestrates augmented query answering. Section IV and
Section V will give more details about different variants
of this component.

● A+ index: stores p-relations and will be described in more
detail in Section III-B and Section III-C.

● Collector: this component is in charge of discovering,
gathering and storing p-relations in the A+index. Since
this aspect is not a contribution of our work, the Col-
lector component will be briefly described in the next
Section III-D.

● Connectors: they are used to interact with the polystore.
Each connector is able to communicate with a specific
database system by sending queries in the local language
and returning the result. Data objects are parsed into an
internal representation.

● Validator: is used to assess whether a query can be
augmented or not. For example, queries containing ag-
gregative functions cannot be augmented. The validator
can also rewrite queries by adding all identifiers of data
objects that are not explicitly mentioned in the query.

● User Interface: receives inputs and shows the results
using a REST interface.

Since QUEPA does not store any data, it is easy to deploy
multiple instances of the system that can answer independent
queries in parallel. In this case, each instance has its own
A+index replica and its own augmenter. Now we show the
interactions among the components of QUEPA for answering
a query QS in augmented mode with level n (step À in
Figure 2).
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Fig. 3. A+index.

The validator first checks if the query is correct (step Á)
and possibly rewrites it into Q

S
(step Â) before its execution

over the target database (step Ã). The local answer a is
returned to the augmenter which is now ready to compute the
augmentation (step Ä). It gets from the A+index the global
keys of data objects reachable from a with n applications
of the augmentation primitive (step Å). These global keys
are used to retrieve data objects from the polystore with
local queries Qi (step Æ). Finally, the augmented answer is
returned to the user (step Ç). The interaction in the augmented
exploration is similar but simplified since, at each step, only
a single data object is augmented.

Figure 6(a) illustrates an augmentation process, in which
circles stand for data objects and each database is represented
by a different color. The original answer contains four results,
i.e. the green circles. Each result is connected, by means of
arrows, to the objects to include in the augmented answer.
The augmentation iterates over the four results and retrieves
11 additional objects with 11 direct-access queries.

B. The A+ Index

The augmenters use a repository, called A+index, for retriev-
ing objects on the basis of p-relations. A+index is a graph index
where each global-key is represented by one node, and there
are two types of edges connecting global-keys, representing
identity and matching p-relations.

Example 6: Fig. 3 represents the A+ index of the polystore
in Fig. 1. The double lines represent the identity p-relations,
while the solid lines represent matching p-relations. On each
edge, we keep the probability of the corresponding p-relation.
For instance, the node representing the object whose global-
key is catalogue.albums.d1 is connected to the node with
global-key transactions.inventory.a32 with a probability of 0.9
(i.e. catalogue.albums.d1 ∼0.9 transactions.inventory.a32).

C. Maintenance of the A+ index

a) Insertion of p-relations: To facilitate the execution
of the augmentation operator at runtime, we enforce the
CONSISTENCY CONDITION in the A+ index, and therefore we
apply the transitivity property when an identity p-relation is
inserted.

Example 7: In Fig. 4(a) a new identity is added to the A+

index, between global-key catalogue.albums.d1 and global-
key discount.drop.k1 ∶cure ∶wish. For the transitivity property,

there is also an identity between catalogue.albums.d1 and
all the identities of discount.drop.k1 ∶cure ∶wish, that in this
case, is with transactions.inventory.a32. We materialize this
inferred p-relation in the graph as in Fig. 4(b) by considering
the product 0.8 × 0.85 of the two connecting edges as proba-
bility, i.e. 0.68.

(a) New identity added

(b) Addition of identity p-relations for transitivity

Fig. 4. Maintenance of identity p-relations.

b) Deletion of p-relations: We adopt a lazy approach
for deleting p-relations, that is, an object o is removed from
the A+index only if it turns out that, during the application
of the augmentation construct, o is no longer present in the
polystore. This is done by deleting the corresponding node in
the A+index and all its incident edges. We opted for a strategy
that, when a p-relation x is deleted, the p-relations inferred via
x are kept in the A+index. In order to cover those use cases
that require data oblivion, we will embed a lineage system that
allows cascading deletions of inferred p-relations.

D. Collector

The collector is the component that collects p-relations
whenever an A+index is not already provided. In principle,
any known technique for record linkage or, more generally,
for identifying data relationships across multiple data sources
can be used in the collector. The A+index used in Section VII
is generated by using state-of-the-art approaches to record
linkage as black boxes. Record linkage techniques operate
typically in two main phases: blocking and pairwise matching.
We used BLAST [28] for non-supervised blocking of data
objects, that is, to partition the data objects of the polystore in
blocks so that the subsequent phase is restricted to the objects
of the same block, and thus it is more efficient. BLAST fits
our needs since it does not require any pre-existing knowledge
of data sources. Pairwise matching is then performed using
DuKe 2. This tool has many built-in comparators and a genetic
algorithm that we have used for tuning the configuration.
On the basis of the final matching score provided by DuKe,
we decide whether a pair of data objects forms a p-relation,
and if yes, if it is an identity or a matching p-relation. In
addition, we consider the rule under which, two different data
object belonging to the same dataset cannot participate to an
identity p-relation with the same object in a different database.
This is because we assume that deduplication remains a local
responsibility. If this is not the case after the pairwise matching
phase, we keep the p-relations with higher probability only.

2https://github.com/larsga/Duke
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a) Promotion of p-relations: In addition to the method
mentioned above that can create an A+index from scratch, we
have defined a simple, yet effective, learning mechanism that
adds matching p-relations depending on the behavior of users
when they access a polystore in exploratory mode.

We keep track in an internal repository, called DP , the
full paths of the A+index that are traversed by users during
augmented exploration. By full path we mean a sequence
t = v0, v1, . . . , vk of nodes of the A+index (with k > 1) such
that v0 contains the initial object of a user exploration and
vk the final object. DP also stores the number of times that
each full path t is traversed. The idea is that when the number
of visits of a path t reaches a threshold τt, an edge (i.e. a
matching p-relation x) between v0 and vk, if not yet present,
is added in the A+index. The probability of x is computed by
the average of all probabilities in the edges of t.

The rationale of this method is that a path visited many
times highlights an interesting way to explore the polystore
and so we try to anticipate user’s intention by creating a
shortcut. The threshold τt is chosen in such a way that its
value decreases as the length of the path increases since the
longer is a path the less and likely it is to be traversed.

Example 8: Figure 5 shows a full path in the A+index
whose number of visits exceeds the threshold for a path of
length three, and so a new edge is added between the ends of
the path. It follows that we have inferred a matching relation
between the data object in v3 and the data object in v5.

Fig. 5. Promotion of p-relations.

IV. AUGMENTERS

A. Network-efficient augmenter

Polystores are often deployed in a distributed environment,
where network traffic has a significant impact on the overall
performance of query answering. Augmentation, in particular,
generates a non-negligible traffic by executing many local
queries over the polystore, each one requesting a single data
object. We implemented a BATCH augmenter that groups
global keys by target database and submits them in one query.
Next, BATCH arranges returned data objects to produce the an-
swer. This batching mechanism tends to minimize the number
of queries over the polystore, and so it also limits the burden of
communication roundtrip on the overall execution. BATCH uses
the parameter BATCH SIZE that holds the maximum number
of global keys per query.

In Fig. 6(b) we show the process of the BATCH augmenter in
a graphical fashion on the same augmented query answering
represented in Fig. 6(a). Global keys are grouped by store,
as represented by the dotted internal boxes, and are retrieved
with one query once the corresponding group reaches the
BATCH SIZE limit or when the process terminates. In the
example, we set BATCH SIZE = 4 and only one query per

(a) SEQUENTIAL (b) BATCH (c) INNER

Fig. 6. Augmenters.

database is submitted, resulting in six queries less than the
sequential augmentation (i.e. 5 instead of 11).

B. CPU-efficient augmenter

Augmented answers include data objects coming from dif-
ferent databases and so local queries can be submitted in
parallel. We have designed a few strategies that leverage the
multi-core nature of modern CPUs by assigning independent
queries to parallel threads. These strategies are implemented in
different augmenters, all parameterized with THREADS SIZE,
the maximum number of simultaneous running threads.

(a) OUTER (b) OUTER-BATCH (c) OUTER-INNER

Fig. 7. Outer concurrency based augmenters.

a) Inner concurrency: This strategy exploits the obser-
vation that objects sharing an identity relation can be retrieved
in parallel. In Fig. 6(c) we show this augmentation with
THREADS SIZE = 2 on the example in Fig. 6(a). The main
process iterates over the result of the local query and, for each
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object in the result, two threads compute the augmentation.
This augmenter is very efficient for augmented exploration, in
which a single result at a time needs to be augmented.

b) Outer concurrency: Differently from the previous
strategy, the OUTER augmenter parallelizes the computation
over the result of the local query. As shown in Fig. 7(a), the
main process of OUTER iterates over the results in the result
launching a thread for each of them without waiting for their
completion. Then, each thread retrieves all objects related to
the result in a sequential way.

c) Outer-Batch concurrency: The OUTER-BATCH aug-
menter combines multi-threading with batching. Differently
from BATCH, the groups of global keys are processed by
several threads. The main advantage here is that the main
process can continue filling these groups while threads are
taking care of query execution. This augmenter is parameter-
ized with both THREADS SIZE and BATCH SIZE. In Fig. 7(b)
we show the augmented process of the OUTER-BATCH with
BATCH SIZE = 2 and THREADS SIZE = 4.

d) Outer-Inner concurrency: The OUTER-INNER aug-
menter tries to benefit from both “inner” and “outer” concur-
rency. The number of available threads, i.e. THREADS SIZE,
are used for the two levels of parallelism. It follows that
THREADS SIZE

2
threads process the results of the original an-

swer in parallel, and further THREADS SIZE
2

threads perform the
augmentation for each result. Of course, this strategy tends
to create many threads because of many simultaneous inner
parallelizations. In Fig. 7(c) we show the augmentation process
in OUTER-INNER with THREADS SIZE = 4.

C. Memory-efficient strategies

All augmenters rely on a caching mechanism with a LRU
policy that allows the fast access to the last accessed data ob-
jects by means of their global-key. The cache is implemented
using Ehcache3 with a suitable choice of CACHE SIZE, the
maximum number of objects in the cache. At runtime, we
check whether the data object is already in the cache before
asking for it to the polystore. Caching is potentially useful
in two cases: (i) with augmented exploration, where the user
accesses objects that were likely retrieved in previous queries,
and (ii) with queries having level > 0, where augmented results
of the same answer can overlap.

V. ADAPTIVE AUGMENTATION

QUEPA can run with different configurations. A configu-
ration is a combination of the augmenter in use, CACHE SIZE
and, if needed, BATCH SIZE and THREADS SIZE. As the
experiments in Section VII point out, none of the various
configurations of QUEPA outperform the others in all possible
scenarios. For example, some configuration excels on huge
queries only, while others excel in a distributed environment.
It follows that an optimizer is needed to choose the right
augmenter and its parameterization in any possible situation.

3http://www.ehcache.org/

Traditional cost-based optimizers are difficult to implement
in a polystore because we might not have enough knowledge
about each database system in play. Therefore, we designed
an ADAPTIVE, rule-based optimizer to dynamically predict the
best configuration according to the query and the polystore
characteristics. It relies on a machine learning technique that
generates rules able to select a well-performing configuration
for the augmentation. The full process is as follows.

Phase 1 - Logs collection. We keep the logs of the com-
pleted augmentation runs. They include QUEPA parameters
such as BATCH SIZE or THREADS SIZE, the overall execution
time and the characteristics of the query (i.e. target database,
number of original data objects in the result, number of
augmented data objects). All these historical logs form our
training set. In general, the larger is the training set, the higher
is the accuracy of the trained models. When the training set is
too small, we run, in background, previously executed queries
with different configurations or we execute random queries
against the polystore.

Phase 2 - Training. We train the following models:
T1 : a decision tree to decide the augmenter to use among

those available (e.g., OUTER, INNER, BATCH, etc.). The
tree is trained with the C4.5 algorithm [27];

T2 : a regression tree to decide BATCH SIZE whenever T1
selects OUTER-BATCH or BATCH. As we use Weka4, this
tree is trained with the REPTree algorithm [26];

T3 : a regression tree to decide THREADS SIZE whenever
a concurrent augmenter is selected by T1. This is also
trained with the REPTree algorithm;

T4 : a regression tree to decide CACHE SIZE. This is trained
with the REPTree algorithm.

The training of the models can be done periodically when
a fixed number of run logs are added to the training set.

Phase 3 - Prediction. Given a query, we use our models
to predict the parameters of QUEPA on how to augment the
query. First, we determine with T1 which augmenter we have
to use. Then, according to the result, we use T2 and T3 for
BATCH SIZE and THREADS SIZE. Finally, T4 is used to decide
the CACHE SIZE. Since the benefits of the cache are spread
over all future queries to run and not only on the next one, it
has not much sense to change continuously the CACHE SIZE.
For example, increasing a lot CACHE SIZE would just insert
many empty cache slots. Rather, we want to determine slight
variations of CACHE SIZE that adapt to the queries currently
being issued by the user.

The variation is calculated in the following way.
We consider the CURRENT CACHE SIZE and the PRE-
DICTED CACHE SIZE determined by T4. Then, we use the
formula (PREDICTED CACHE SIZE − CURRENT CACHE SIZE)

10
, where 10 is

an arbitrary value set by us experimentally.
Fig. 8 shows an example of the decision tree T1. When a

new query has to be executed, we navigate the tree from the
root to a leaf according to the characteristics of our setting.

4http://www.cs.waikato.ac.nz/ml/weka/
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The leaves indicate the final decision, i.e. the augmenters to
choose.

Fig. 8. An example of decision tree T1.

VI. RELATED WORK

A. Data Integration in Polystores

The integration of heterogeneous databases is typically
achieved with a middleware layer that manages a global
schema that is the reference for queries. Existing middleware
solutions are basically different recipes of the same dish, each
one flavouring with the basic ingredients: data modeling, query
optimization, storage organization and query languages. For
simplicity, we separate the discussion into different categories.

a) Tightly-coupled integration with a multi-model archi-
tecture: Multi-model architectures address the heterogeneity
issues in a “one size fits all” fashion. They basically propose
an all-in-one platform to avoid the proliferation of engines in
use within an organization. They unify, in a tightly-coupled
architecture, the storage and the query optimizer for all
supported data models [2], [4], [21]. AsterixDB relies on a
flexible data model with open and closed types to subsume
both structured and semi-structured data [2]. ArangoDB [4]
and OrientDB [21] have similar architectures supporting both
graph and document-based data. ArangoDB includes also key-
value structured data. Unified architectures have the advantage
to natively use a single query language, but on the other hand,
they usually perform worse than a specialized system.

b) Loosely-coupled integration with common interfaces:
Most of the approaches provide a common interface to het-
erogenous database systems [3], [6], [17], [20], [33], [34].
They readapt strategies used for data mediators and database
federation [15], [24]. Apache Metamodel [3], SQL++ [20] and
CloudMdsQL [17] provide an interface to several types of
database systems and are equipped with a SQL-like query
language. The user specifies the global schema along with
the definition of views over each data source. The middleware
optimizes query execution taking into account the specificity of
each engine for “pushing down” query fragments to the stores.
Query optimization and query rewriting in modern polystores
are still open areas of research, where the main challenge is to
generalize the middleware for capturing database engines [23].
RACO is a middleware for heterogeneous query languages that
is used in Myria for federating multiple backend systems [34].
SOS [6] proposes a common interface to NoSQL engines
that is based on basic access primitives, though it does not
deal with data integration. UnQL proposes an experanto query

language for querying different database systems [33]. Having
a common interface is good for switching from one system to
another, but users have to sacrifice performance of the local
system. In addition, sharing all the features would require a
major redesign of each database engine.

c) Other loosely-coupled integration architecture: Poly-
glot architectures are also used in analytical scenarios [1],
[12], [13]. BigDAWG federates heterogeneous engines with a
“scope & cast” strategy that makes it possible to run analytics
queries over large-scale polystores [12]. It considers islands of
information defined by the user where data can be migrated
from a system to another. The system decides in which engine
query execution has to take place, possibly taking into account
the cost of data migration. RHEEM optimizes and processes
big data workloads when multiple processing engines are
available. It offers a set of primitives that are split into more
granular operations, each one executed on the system that
is more suitable for each primitive over each workload [1].
MuSQLE is a SQL multi-engine optimizer based on Spark
that interfaces with the polystore via APIs [13].

Our approach to data access in polystores differs from all
the above and applies well to contexts where we do not
have a global schema of the polystore. With respect to a
short paper illustrating a demo of the first implementation
of QUEPA [18], we present here the precise semantics of
the augmentation-based operators and all the technical details
under the hood that, according to our experimental campaign,
make the approach viable, efficient, and replicable. Moreover,
the techniques proposed in this paper for efficiently using
memory, CPU and network can provide a contribution to the
general problem of supporting integration and query answering
in polystores.

B. Discovery and Exploratory Search
Exploratory search emerged a decade ago for empowering

search interfaces with browsing features. Nowadays, the ability
to discover interesting information is of major relevance in
data science where users are not fully aware of the massive
quantities of data available. Many approaches leverage on
dependencies and correlations between attributes to suggest
portions of the database to explore [7], [9], [29], [35]. DB-
Explorer proposes a summarization technique that considers
conditional dependencies between attribute values, both within
and across attributes [29]. Buoncristiano et al. consider views
of the database organized in a lattice [7]. Das et al. extend
a search engine with a faceted search technique to return the
most interesting facets (i.e. surprising and unexpected) with
respect to a set of documents matching input keywords [9].
InfoGather provides entity augmentation to collect relevant
information from Web tables [35].

All these approaches help in exploring portions of the same
dataset but, differently from ours, are difficult to apply over
polystores.

C. Linked data and query relaxation
Our approach is also related to the problem of querying

linked data [16] since in our approach a polystore can be
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viewed as an RDF-like graph in which the nodes are data
objects, possibly stored in different databases, and the links
represent the p-relations between them. However, our scenario
is rather different since in polystores data are not freely
accessible, as it happens on the Web, but are stored in internal
databases for which a global view is usually not available (and
so SPARQL-like queries are not possible). Moreover, and more
important, in our approach the graph is transparent to the user
as she can only perform augmented searches, using the local
language, or augmented explorations, by clicking on retrieved
data. In addition, it should be observed that the augmentation
construct provide a form of query relaxation [10], [19], [25],
in that it allows the user to extend the exact answer to a query
with further interesting data.

VII. EMPIRICAL EVALUATION

A. Setting

a) Polystore setting: We used a polystore compliant
to the running example in Fig. 1, in which the warehouse
department has a MongoDB v.3.0.12 instance, the sales de-
partment uses MySQL v.5.6.30, the marketing department
relies on Neo4j v.3.1.0 and the shared key-value store is on
Redis v.3.0.5. However, we point out that the findings of this
experimentation are invariant with respect to the choice of the
systems composing the polystore.

We used real data to populate the databases. Songs and
their similarities are taken from Last.fm dataset5, albums are
reconstructed from the songs by using the MusicBrainz web
service [31]. Customers’ profiles, sales details, and discounts
are generated synthetically. The size of the polystore is as
follows: around 8 million json documents in MongoDB,
around 20 million tuples in MySQL, around 4 million entries
in Redis, around 5 million nodes and 20 millions of edges in
the similar-items of Neo4j.

With the techniques and tools described in Section III-D we
populated the A+index with almost 100 millions of nodes and
500 millions of edges. We set the thresholds experimentally
as follows. Matching p-relations are those having probability
included between 0.6 and 0.89, while identity p-relations have
probability equal or higher than 0.9. However, the quality
and the semantics of the generated p-relations are irrelevant
to the purpose of this experimentation, which is focused on
performance and scalability of the augmentation construct.

We replicated the databases, and updated the A+index
accordingly, to create different but comparable versions of
polystores with increasing size. Each database was replicated
three times with the exception of Redis that remains a single
instance in all the polystore versions. Each replica runs as a
separate instance and so, from QUEPA’s perspective, each
replica is seen as a completely different database.

The polystores are deployed in a centralized and in a
distributed environment using Amazon EC2 machines. The
centralized environment is on a m4.4xlarge machine equipped
with 16 vCPU, 64GB and running a 2,3 GHz Intel Xeon

5http://labrosa.ee.columbia.edu/millionsong/lastfm

with 18 cores. The distributed environment runs QUEPA on a
m4.4xlarge machine and the replicated databases on different
t2.medium machines. Each machine is placed in a different
region to increase network latency.

b) Test bed setting: We created a set of queries in the
following way. For each of the four databases, we consider
queries with different result size: they retrieve 100, 500, 1.000,
5.000 and 10.000 objects. The number of data objects within
the augmented answers of these queries over the polystores
described above range from 400 to 1 million. When experi-
ments are shown with respect to the query size, we show the
average execution time of the corresponding queries on each
target database.

The graph of the A+index is uniformly dense and so it
does not bias the analysis of performance with respect to the
query size. In other words, queries of the same size return
answers with a comparable number of data objects and the
number of data objects increases linearly with the number
of results in the original query. All queries are submitted
with augmented search since augmented exploration is just a
simplified procedure that would have been unfair to compare
against competitors.

We conducted cold and warm cache experiments. The
cold-cache runs were performed dropping both the operating
system cache (by executing /bin/sync and echo 3 >
/proc/sys/vm/drop_caches) and the DBMSs caches
(by restarting them before executing the query). The running
time of each warm-cache run was taken from a subsequent
execution of the corresponding cold-cache run. All the times
reported are “end-to-end” query performance and include the
outputting of results. Every test was executed three times, out
of which we consider the average.

c) Middleware tools setting: We compare QUEPA
against publicly available middleware tools. We used Apache
Metamodel 4.5.46, Talend Open Studio for Big Data 6.27

and ArangoDB 3.1.78. Apache Metamodel is a representative
of the loosely-coupled integration interfaces and allowed us
to integrate MySQL, Neo4j and MongoDB instances in our
polystore (that is, Redis is not supported). On Metamodel,
we implemented the augmentation process in two different
ways. The first uses native operators based on joins, while
the second simulates the augmentation algorithm of QUEPA.
Talend is a representative of the traditional data integration
techniques. We created a workflow for executing augmentation
over the polystore by using Neo4J, MySQL and MongoDB
connectors (that is, Redis is not supported). The workflow was
compiled and used as a standalone tool. ArangoDB is an in-
memory database management system that represents multi-
model architectures. It allowed us to import our key-value,
graph and document databases (that is, relational databases
are not supported). We stored the A+index and the polystore
in ArangoDB and, as for MetaModel, we implemented the

6http://metamodel.apache.org/
7https://www.talend.com/download/talend-open-studio
8https://www.arangodb.com/
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augmentation on ArangoDB in a native way and in QUEPA-
style. The former implementation executes the augmentation
with a single AQL (ArangoDB Query Language) query. The
latter implementation uses a modified version of QUEPA
augmentation algorithm that interacts with ArangoDB just to
access data objects and the A+index.

B. Performance of QUEPA
In this section, we evaluate the configurations and the op-

timization techniques implemented in QUEPA and discussed
in Section III and in Section IV. For a comprehensive view,
we opted to show both cold-cache and warm-cache queries, at
level 0 and level 1, respectively.

(a) w.r.t. BATCH SIZE (b) w.r.t. BATCH SIZE

Fig. 9. Scalability of augmentation with batching.

a) Network-based optimizations: We show the effect of
batching when varying BATCH SIZE for both BATCH and
OUTER-BATCH over original queries with 10.000 results in
a polystore with 10 stores (see Fig. 9(a) and Fig. 9(b) taking
into consideration the log scale of the x-axis). BATCH is more
sensitive to BATCH SIZE than OUTER-BATCH, which on the
other hand can also benefit from multi-threading (for this
campaign THREADS SIZE = 4). However, the multi-threading
effect tends to vanish during warm-cache run.

We tested the batching in the distributed deployment as
well, where the network latency reaches, in some cases, few
hundred milliseconds. Considering the log scale, we observe
the strong boost of the batching compared to the sequen-
tial counterpart (see Fig. 10(a) and Fig. 10(b)). It is also
evident how batching is more effective in distributed rather
than in centralized polystores. The improvement increases as
BATCH SIZE also increases. For high values of BATCH SIZE,
BATCH and OUTER-BATCH tend to behave similarly, that is, the
effect of batching can, to a certain extent, dissolve the benefit
of multi-threading. The batching has not only the advantage
of decreasing execution time, but it scales better with larger
inputs than other systems (see Fig. 10(c) and Fig. 10(d)).

b) CPU-based optimizations: We conducted a campaign
of experiments to test the impact of multi-threading. Initially,
as shown in Fig. 11(a) and Fig. 11(b), we check the behaviour
of augmenters when varying THREADS SIZE. All concurrent
augmenters decrease their performance when THREADS SIZE
increases. Generally, INNER performs worse than the outer
concurrency-based augmenters because it is limited by the
number of different stores, which is lower than the num-
ber of results in the original query. We can see that all

(a) w.r.t. BATCH SIZE (b) w.r.t. BATCH SIZE

(c) w.r.t. the query size (d) w.r.t. the query size

Fig. 10. Distributed augmentation with batching.

augmenters speed-up until 16 running threads and stabilize
afterward. From further experiments not present in this paper
and conducted on less performing machines, we witness that
this behavior is due to the cores of the underlying machine
(i.e. 18 in our case). Therefore, there is further room for
improving performance on infrastructures with more cores.
We also notice that, sometimes, the bottleneck is represented
by the underlying stores that cannot manage many concurrent
requests. This was due to the fact that the stores are running on
a machine slower than the machine where QUEPA is running.

Figures 11(c)-11(d)-11(e)-11(f) enrich our experimentation
by showing the scalability of the augmenters when the size of
the queries and the number of underlying databases increases.
There is only one run in which the concurrent augmenters
perform worse than the sequential. However, in best case sce-
narios, where the query size is much smaller and the number
of stores is reduced, SEQUENTIAL performs better than others
because of the overhead of creating and synchronizing threads.
Overall, OUTER-BATCH is the best and INNER is the worst.

c) Memory-based optimizations: Another campaign of
tests was conducted to evaluate the effect of caching. We
do not illustrate these tests here for lack of space but we
report that augmentation is, in the centralized deployment,
less sensitive to CACHE SIZE than to other parameters. This
is basically due to the fact that each local database system
has its own caching mechanism, making QUEPA’s cache
partly redundant. Caching resulted beneficial in the distributed
deployment where machines are not co-located since, as well
as batching, it allows to “save” inter-machine communication.

C. Quality of the Optimization

In this section, we show the accuracy of ADAPTIVE, which
we have trained with the logs of almost 2 million runs.
We compare ADAPTIVE against a HUMAN optimizer and a
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(a) w.r.t. THREADS SIZE (b) w.r.t. THREADS SIZE

(c) w.r.t. number of stores (d) w.r.t. number of stores

(e) w.r.t. query size (f) w.r.t. query size

Fig. 11. Scalability of concurrent augmenters.

RANDOM optimizer. The campaign was planned as follows.
We have generated 25 queries of a different kind that were
not present in the training set. Each query is run on each of
our four polystore variants (4, 7, 10 and 13 databases) and for
both level 0 and level 1 augmentation search. This means that
for each query we have 8 runs.

For the HUMAN optimizer, we defined the configuration
for each run that could, in our opinion, result to be the
most performing. A configuration consists of THREAD SIZE,
BATCH SIZE and CACHE SIZE. Each configuration is executed
for each of the six available augmenters. In addition, we
defined a random configuration for each run in order to
emulate a RANDOM optimizer. Finally, we have another run
whose configuration is determined by ADAPTIVE. Note that
the use of CACHE SIZE in this campaign of experiments work
in the same way it is described in Section V. For this reason,
we first run all the HUMAN runs, followed by RANDOM and
then ADAPTIVE.

For each configuration, we need to select the best perform-
ing run out of the 13 (i.e. 1 for ADAPTIVE and 6 for both
HUMAN and RANDOM).

In Fig. 12(a) we compare the number of times that an
optimizer is the best. Although the number of candidates for
ADAPTIVE was six times lower than the other optimizers, it

was the best in most of the cases. In Fig. 12(b) we show the
number of times that the ADAPTIVE run was in the top-1, top-
2, top-3 and top-5 runs. ADAPTIVE is always able to find a
good configuration for the query. The accuracy of ADAPTIVE
increases as the number of databases increases because the dif-
ferences of execution times between configurations increase,
thus making it easier for the decision trees to split the domain
of the parameters.

(a) (b)

Fig. 12. Accuracy of the ADAPTIVE augmenter optimization.

D. Comparison with middleware approaches

In this section, we show the performance of QUEPA com-
pared to middleware layer approaches running in their default
configuration. For QUEPA, we use the default augmenter,
ADAPTIVE, which is able to select a convenient configuration
for running the query. The suffix “AUG” applied to Metamodel
(i.e. META) and to ArangoDB (i.e. ARANGO) stands for the
implementation of augmentation that simulates our algorithm,
while the suffix “NAT” stands for an implementation that uses
native operators. We indicate the points after which the runs
go out-of-memory with a red ’X’.

(a) w.r.t. query size (b) w.r.t. query size

(c) w.r.t. number of stores (d) w.r.t. number of stores

Fig. 13. Comparison vs middleware approaches.

In Fig. 13(a) and Fig. 13(b) we show the scalability of all
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systems with respect to the size of the query (note the log scale
for both axes) in a polystore with 9 stores. We do not show
the performance on top of the polystore with 12 databases
because META-NAT and ARANGO-NAT go out-of-memory with
most of the queries. As we can see, QUEPA is the most
performing. The two versions of ArangoDB are the least
performing because they need to warm up at start-up, with
ARANGO-AUG performing slightly better than ARANGO-NAT.
Metamodel scales only with the augmentation operator and
goes often out-of-memory otherwise. Talend behaves similarly
to META-AUG for small queries but overall the trend presents
the steepest slope.

It is interesting to analyse the scalability of the approaches
over the number of databases involved in the polystore (see
Fig. 13(c) and Fig. 13(d)). Given that ArangoDB is an in-
memory database, it performs well on warm-cache runs, but
its performance decrease significantly when we add databases
to the polystore and, indeed, it falls often into out-of-memory
situations. Metamodel is able to scale similarly to QUEPA
when emulating the augmentation operator and it is not
practicable with native operators. Talend confirms previous
experiments showing, again, a steep trend. QUEPA scales
smoothly as the polystore becomes larger, thus demonstrating
a nice way to leverage parallelism.

The takeaway from this experimentation is that augmen-
tation is an efficient way to access a polystore that can
be implemented on existing polystore engines. In addition,
the augmentation operator allows for a series of tailored
optimizations that can be used to further enhance performance.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new approach for querying
and exploring a polystore that relies on query augmentation,
a novel data manipulation operator for polystores that allows
the automatic expansion of the answer to a query on a local
datastore with related data stored in the rest of the polystore.

The computation of this operator does not require mid-
dleware layers, global schemas or universal data models.
The augmentation operator can be used for implementing
augmented search and augmented exploration, two practical
methods for data access that support information discovery
and data integration in polystores. We have also illustrated the
design and the optimization techniques of a system that fully
implements our approach in an efficient way. A number of
experiments have confirmed that the approach is feasible and
scales smoothly over very large polystores.

As a direction of future work, we would like to extend
augmentation to data analytics scenarios. We are also studying
more performing strategies to implement our A+ index.
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