Quantum Computing

Misure e Observables

1

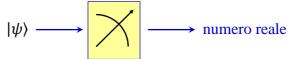
1

qubit – misura, ciò che sappiamo

- consideriamo un qubit in uno stato descritto da $|\psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle$
- quando $|\psi\rangle$ è *isolato* si trova in una superposition
- quando $|\psi\rangle$ viene *misurato* (*osservato*) collassa con probabilità $|\alpha_0|^2$ in $|0\rangle$ e con probabilità $|\alpha_1|^2$ in $|1\rangle$
- dopo l'osservazione i valori di ampiezza α_0 e α_1 sono *irrimediabilmente* perduti
 - la misura disturba lo stato del sistema

misura

• misurare è sottoporre uno o più qubit in un certo stato ad un'apparecchiatura di misura e osservare il risultato



- da cosa distinguiamo se $|\psi\rangle$ è collassato in $|0\rangle$ o in $|1\rangle$? dal numero che ci mostra lo strumento
 - ad es, magari ci mostra 0,5 se $|\psi\rangle$ è collassato in $|0\rangle$ e 0,8 se è collassato in $|1\rangle$
 - dipende da come è fatto lo strumento di misura

-

3

misura

- sappiamo anche che la misura può essere eseguita con riferimento a diverse basi ortonormali
 - quindi, con riferimento ad un singolo qubit, non solo rispetto alla base $|0\rangle$ e $|1\rangle$, ma magari rispetto alla base $|+\rangle$ e $|-\rangle$
- possiamo pensare che strumenti diversi possano misurare rispetto a basi diverse fornendo come risultato numeri reali diversi

4

observable

- in fisica un *observable* è una quantità misurabile
 - es: energia, momento, posizione

5

5

observable

- in matematica un *observable* è una matrice hermitiana
 - ricorda: una matrice A è hermitiana quando $A^{\dagger} = A$
- supponiamo che $|\psi\rangle$ sia uno stato in uno spazio di Hilbert a k dimensioni $(|\psi\rangle\epsilon\mathbb{C}^k)$
- un observable per $|\psi\rangle$ è una matrice hermitiana $k \times k$
- un *observable* rappresenta sinteticamente la *base* nella quale si effettua la misura e i *numeri reali* che l'apparecchiatura restituisce

observable – esempio

- la matrice $A = \begin{pmatrix} 1 & 1+i \\ 1-i & -2 \end{pmatrix}$ è hermitiana e quindi è un observable
- è hermitiana perché la sua trasposta è $A^T = \begin{pmatrix} 1 & 1-i \\ 1+i & -2 \end{pmatrix}$ e la coniugata di A^T è $\begin{pmatrix} 1 & 1+i \\ 1-i & -2 \end{pmatrix}$, uguale ad A
- ma cosa c'entra con la misura?

-

-

observable – base e risultato

- sappiamo che la misura di $|\psi\rangle$ può avvenire in diverse basi ortonormali
 - es. supponiamo che la base sia $|\phi_1\rangle$, ..., $|\phi_k\rangle$
 - possiamo esprimere $|\psi\rangle$ in questa base come $|\psi\rangle$ = $\alpha_1 |\phi_1\rangle + \cdots + \alpha_k |\phi_k\rangle$
 - la misura restituirà un certo valore j e farà collassare il sistema in uno stato $|\phi_j\rangle$ con probabilità $|\alpha_j|^2$

8

ጸ

proprietà delle matrici hermitiane

• una matrice hermitiana $A, k \times k$, ha autovettori ortonormali $|\phi_1\rangle, \cdots |\phi_k\rangle$ e autovalori reali $\lambda_1, \cdots, \lambda_k, \operatorname{con} A |\phi_i\rangle = \lambda_i |\phi_i\rangle$

9

9

observable

- una misura è caratterizzata dalla base ortonormale nella quale viene effettuata e dai valori che lo strumento di misura assume in corrispondenza dei vettori della base
- la matrice hermitiana specifica proprio:
 - la base ortonormale attraverso gli autovettori
 - i valori dello strumento di misura attraverso i corrispondenti autovalori

observable – base e risultato

• con riferimento all'observable A con autovettori ortonormali $|\phi_1\rangle, \cdots |\phi_k\rangle$ e autovalori reali $\lambda_1, \cdots, \lambda_k$ abbiamo che la misura restituirà un certo valore λ_j e farà collassare il sistema in uno stato $|\phi_j\rangle$ con probabilità $|\alpha_j|^2$

11

11

observable – esempio

- consideriamo il qubit $|\psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle$
- e l'observable $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
 - da non confondere con l'analogo operatore
- quali sono gli autovettori e gli autovalori di *X*?
 - gli autovettori sono $|+\rangle$ e $|-\rangle$
 - − con autovalori, rispettivamente, 1 e −1

observable – esempio

- quali sono gli autovettori e gli autovalori di *X*?
 - gli autovettori sono $|+\rangle$ e $|-\rangle$
 - − con autovalori, rispettivamente, 1 e −1
- verifica

- effettivamente
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = 1 \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$$

$$-\operatorname{e} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix} = -1 \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{pmatrix}$$

13

13

observable – esempio

- esprimiamo $|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$ nella base $|+\rangle$ e $|-\rangle$
- abbiamo $|\psi\rangle = \frac{\alpha_0 + \alpha_1}{\sqrt{2}} |+\rangle + \frac{\alpha_0 \alpha_1}{\sqrt{2}} |-\rangle$
- il risultato della misura sarà 1 con probabilità $\left|\frac{\alpha_0 + \alpha_1}{\sqrt{2}}\right|^2$ e -1 con probabilità $\left|\frac{\alpha_0 \alpha_1}{\sqrt{2}}\right|^2$
- lo stato dopo la misura sarà rispettivamente |+> oppure |->

observable – autovalori ripetuti

- visto che gli autovalori corrispondono agli output dello strumento di misura, autovalori ripetuti non consentono di stabilire univocamente lo stato nel quale è collassato il sistema
- cosa succede se l'observable è *I* (la matrice identità)?

15

15

quanto è generale l'idea di observable?

- supponiamo di voler effettuare una misura in una base ortonormale arbitraria $|\phi_1\rangle, \cdots, |\phi_k\rangle$ volendo come risultati della misura dei reali arbitrari $\lambda_1, \cdots, \lambda_k$
- esiste sempre un observable *A* con i corrispondenti autovettori e autovalori?
 - la riposta è affermativa: una matrice hermitiana A con le proprietà richieste esiste sempre

esempio di costruzione di observable

• supponiamo di voler costruire un observable con $|\phi_1\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{i}{\sqrt{2}}|1\rangle$ e $|\phi_2\rangle=\frac{1}{\sqrt{2}}|0\rangle-\frac{i}{\sqrt{2}}|1\rangle$ con autovalori $\lambda_1=1$ e $\lambda_2=-1$

17

17

un metodo per proiettare su una base

- se vogliamo proiettare uno stato |ψ⟩ su un vettore unitario qualunque |φ⟩ possiamo costruire una matrice di proiezione fatta così: |φ⟩⟨φ|
- applicandola a $|\psi\rangle$ otteniamo $|\phi\rangle\langle\phi||\psi\rangle$, ma quello sulla destra è un inner product, che restituisce un numero complesso
- quindi possiamo riscrivere $|\phi\rangle\langle\phi||\psi\rangle = \langle\phi|\psi\rangle|\phi\rangle$, dove $\langle\phi|\psi\rangle$ è l'ampiezza di $|\phi\rangle$

esempio di costruzione di observable

- facciamo la costruzione così: $A = \lambda_1 |\phi_1\rangle\langle\phi_1| + \lambda_2 |\phi_2\rangle\langle\phi_2|$
- proviamo a vedere se autovettori e autovalori sono quelli sperati
- calcoliamo $A|\phi_1\rangle$ e otteniamo $\lambda_1|\phi_1\rangle\langle\phi_1|\phi_1\rangle + \lambda_2|\phi_2\rangle\langle\phi_2|\phi_1\rangle$
 - ma il primo inner product è 1 e il secondo è 0
 - quindi abbiamo $A|\phi_1\rangle = \lambda_1|\phi_1\rangle$
 - e quindi $|\phi_1\rangle$ è un autovettore con autovalore λ_1
- analogo ragionamento per $|\phi_2\rangle$

19

19

esempio di costruzione di observable

• nel nostro esempio $A = \lambda_1 |\phi_1\rangle\langle\phi_1| +$

$$\lambda_{2}|\phi_{2}\rangle\langle\phi_{2}| = \begin{pmatrix} 1/\sqrt{2} \\ i/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & -i/\sqrt{2} \end{pmatrix} - \begin{pmatrix} 1/\sqrt{2} \\ -i/\sqrt{2} \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} & i/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 1/2 & -i/2 \\ i/\sqrt{2} & 1/2 \end{pmatrix} - \begin{pmatrix} 1/2 & i/2 \\ -i/2 & 1/2 \end{pmatrix} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

• è facile verificare che A è hermitiana

esempio di costruzione di observable

• inoltre,
$$A \begin{pmatrix} 1/\sqrt{2} \\ i/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} \\ i/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} \\ i/\sqrt{2} \end{pmatrix}$$

• e
$$A \begin{pmatrix} 1/\sqrt{2} \\ -i/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 1/\sqrt{2} \\ -i/\sqrt{2} \end{pmatrix} = \begin{pmatrix} -1/\sqrt{2} \\ i/\sqrt{2} \end{pmatrix} = -1 \times \begin{pmatrix} 1/\sqrt{2} \\ -i/\sqrt{2} \end{pmatrix}$$

21

21

costruzione generale

• l'observable con autovettori $|\phi_1\rangle$, ..., $|\phi_k\rangle$ e con autovalori λ_1 , ..., λ_k si ottiene con

$$A = \sum_{i=1}^{k} \lambda_i |\phi_i\rangle\langle\phi_i|$$

• quindi le possibilità di specificare una misura attraverso una base ortonormale o attraverso un observable sono equivalenti