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with its verti
es. We de�ne ' := jFj and denote by L the Hasse diagram (asan abstra
t graph) of the fa
e latti
e. Hen
e, L is a dire
ted rooted a
y
li
graph whose nodes 
orrespond to the elements of F . If `H ; `G are nodesin L, and H;G 2 F are the 
orresponding fa
es of P , then there is an ar
(`H ; `G) in L if and only if H � G and dim(G) = dim(H) + 1.The 
ombinatorial fa
e latti
e enumeration problem is the following:given a vertex-fa
et in
iden
e matrix of P (see Se
tion 2 for a de�nition),
onstru
t the Hasse diagram L of the fa
e latti
e. By de�nition, L is unla-beled. However, it might be desired to label ea
h node of L 
orrespondingto a fa
e F with the set of (indi
es of) verti
es 
ontained in F , the set of(indi
es of) fa
ets 
ontaining F , or with the dimension of F .Fukuda and Rosta [4℄ gave an algorithm for the 
ombinatorial fa
e latti
eenumeration problem for d-polytopes P whi
h runs in O�minfn;mg � d � '2�time, where m is the number of fa
ets and n is the number of verti
es of P .Sin
e ' 
an be exponential in n and m (
onsider the d-simplex, for instan
e)it is, however, desirable to have an algorithm whose running time dependsonly linearly on ' (and polynomially on n and m).For the geometri
 fa
e latti
e enumeration problem, whi
h asks for thefa
e latti
e of a polytope that is given by an inequality des
ription, thereare algorithms satisfying this requirement on the running time, see e.g. [3℄.However, in our 
ontext no geometri
 data are available.Ganter [6℄ des
ribed an algorithm whi
h, given the in
iden
es of atomsand 
oatoms of a general atomi
 and 
oatomi
 latti
e, enumerates all ele-ments of that latti
e in lexi
ographi
 order, where ea
h element is identi�edwith the set of its atoms. Spe
ialized to our situation, one obtains an al-gorithm that 
omputes all vertex sets of fa
es of P in O(minfn;mg � � � ')steps, where � is the number of vertex fa
et in
iden
es of P . We haved � maxfn;mg � � � n �m, in parti
ular, � is bounded polynomially in nand m. However, this algorithm does not 
ompute the in
lusion relationsbetween the fa
es, i.e., the edges of the Hasse diagram of the fa
e latti
e.Of 
ourse, on
e all (vertex sets of) fa
es are 
omputed, one may 
onstru
tthe Hasse diagram in an obvious way afterwards, but this would require anumber of steps whi
h is quadrati
 in the total number ' of fa
es.Inspired by Ganter's algorithm, we developed the (quite di�erent) al-gorithm presented below, whi
h 
omputes the entire Hasse diagram in thesame running time of O(minfn;mg � � � ') (see Theorem 1). In our algo-rithm the vertex set of ea
h fa
e or the set of fa
ets it is 
ontained in, as wellas its dimension, is readily available (or 
an be 
omputed without in
reas-ing the asymptoti
 running time). Of 
ourse, this may in
rease the (output)storage requirements signi�
antly. 2



Fukuda and Rosta [4℄ also 
onsidered the 
ombinatorial fa
e latti
e enu-meration problem for the spe
ial 
ase of simple or simpli
ial polytopes. Theypresented an algorithm that 
omputes the Hasse diagram of a simple orsimpli
ial polytope in O(d � ') steps, provided that in addition to the vertexfa
et in
iden
es a good orientation of the graph is given as input data, i.e.,an a
y
li
 orientation that indu
es pre
isely one sink on every non-emptyfa
e. Unfortunately, no polynomial time algorithm is known that 
omputesa good orientation of a simple polytope P | neither if P is given by itsvertex-fa
et in
iden
es nor if it is spe
i�ed by its whole fa
e latti
e.For simple or simpli
ial polytopes, our algorithm 
an be spe
ialized su
hthat it 
omputes the Hasse diagram of the fa
e latti
e in O(d � � � ') stepsfrom the vertex fa
et in
iden
es, where no good orientation is required (seeSe
tion 3.1).In Se
tion 2.1 we give a rough sket
h of the algorithm, whi
h is followedby a more detailed des
ription in Se
tions 2.2, 2.3, and 2.4. In Se
tion2.5 we analyze the algorithm. In Se
tion 3 we present a spe
ial versionof the algorithm for simple or simpli
ial polytopes (Se
tion 3.1), a variantthat 
omputes the k-skeleton (Se
tion 3.2), as well as a modi�
ation that
omputes the fa
e latti
e of an oriented matroid from its signed (
o-)
ir
uits(Se
tion 3.3).For the basi
 properties of polytopes that are important in our 
on-text, we refer to Ziegler's book [7℄. The few 
on
epts from the theory ofalgorithms and data stru
tures that play a role in the paper 
an be foundin any 
orresponding textbook (e.g. in the one of Cormen, Leiserson, andRivest [2℄).2 The AlgorithmDe�ne m to be the number of fa
ets and n the number of verti
es of thed-polytope P . Let A = (afv) 2 f0; 1gm�n be a vertex fa
et in
iden
e matrixof P . Hen
e the fa
ets of P 
an be identi�ed with F = f1; : : : ;mg and itsverti
es 
an be identi�ed with V = f1; : : : ; ng, su
h that afv = 1 if fa
etf 
ontains vertex v, and afv = 0 otherwise. Denote by � the number ofvertex fa
et in
iden
es, i.e., the number of ones in A. For S � V de�neF(S) := ff 2 F : afs = 1 for all s 2 Sg, the set of fa
ets 
ontaining allverti
es of S. For T � F de�ne V(T ) := fv 2 V : atv = 1 for all t 2 Tg, theset of verti
es 
ontained in all fa
ets of T .For S � V , the set S := V(F(S)) is the (vertex set of) the smallest fa
eof P 
ontaining S (in latti
e theoreti
 terms, the join of the elements in S).3



One easily 
he
ks that this de�nes a 
losure map on the subsets of V , i.e.,for all S; S0 � V we haveS � S; S = S; S � S0 ) S � S0 :The fa
es of P 
orrespond exa
tly to the 
losed sets (i.e., sets S � V withS = S) of V with respe
t to this 
losure map. Our algorithm 
ru
ially relieson the fa
t that 
losures 
an be 
omputed fast (see Se
tion 2.2).2.1 The Skeleton of the AlgorithmThe strategy is to build up the Hasse diagram L of the fa
e latti
e frombottom (?) to top (P ). Consequently, L is initialized with the single fa
e ?,and then enlarged iteratively by adding out-neighbors of nodes that havealready been 
onstru
ted. We will say that a fa
e has been seen, on
e its
orresponding node in L has been 
onstru
ted.During the algorithm, we keep a set Q 
ontaining those fa
es that wehave seen so far, but for whi
h we have not yet inserted their out-ar
s intothe Hasse diagram. At ea
h major step, we remove a fa
e H from the set Qand 
onstru
t the set G of all fa
es G withH � G and dim(G) = dim(H)+1.For ea
h fa
e G 2 G we 
he
k whether it has already been seen. If this isnot the 
ase, then a new node in L representing G is 
onstru
ted, and G isadded to Q. In any 
ase, an ar
 
onne
ting the node 
orresponding to H tothe node 
orresponding to G is inserted into L.In order to 
ompute the set G, we exploit the fa
t that G 
onsists of thein
lusion minimal fa
es among the ones that properly 
ontain H. Sin
e thefa
e latti
e of a polytope is atomi
, ea
h fa
e G 2 G must be of the formH(v) := H [ fvg for some vertex (atom) v; in parti
ular, the Hasse diagramhas at most n �' ar
s. Thus, we �rst 
onstru
t the 
olle
tion H of all H(v),v 2 V nH, and then 
ompute G as the set of in
lusion minimal sets of H.Computing H(v) for some v 2 V n H requires to determine a 
losure.In Se
tion 2.2 we des
ribe a method to perform this task in O(�) steps.Determining the in
lusion minimal sets in the 
olle
tion H 
learly 
ouldbe done in O�n3� steps by pairwise 
omparisons, sin
e H has at most nelements. However, in Se
tion 2.3 we show that this 
an even be performedin O�n2� time.In Se
tion 2.4 we des
ribe a data stru
ture that allows us to lo
ate thenode in L representing a given fa
e G, or to assert that G has not yet beenseen so far in O(�) steps.A summary of the analysis of the time 
omplexity of the algorithm, alongwith a pseudo-
ode des
ription of it, is given in Se
tion 2.5.4



2.2 Computing ClosuresIn order to be able to 
ompute 
losures fast, we store the in
iden
e matrixA in a sparse format both in a row and 
olumn based way. For ea
h vertexv 2 V , the elements in F(fvg) (a subset of f1; : : : ;mg) are sorted in
reasingly(in O(m) time, see [2, Chap. 9.2℄) and stored in a sorted list. Similarly, forea
h fa
et f 2 F , we store the sorted set V(ffg) in a list. This 
an bedone in O(n �m) time (whi
h is dominated by O(n � �) and thus does notin
uen
e the estimate of the asymptoti
 running time in Proposition 1).The sparse format uses O(�) storage.Whenever we want to 
ompute the 
losure of a set S � V , the �rst stepis to 
ompute F(S), i.e., the interse
tion of the lists 
orresponding to theelements in S. Sin
e the interse
tion of two sorted lists 
an be 
omputedin time proportional to the sum of the lengths of the two lists, and be
ausethe interse
tion of two lists is at most as long as the shorter one, F(S) 
anbe 
omputed in time O�Pv2S jF(fvg)j� � O(�). Similarly, V(T ) 
an be
omputed in time O(�) for a set T � F .Lemma 1. The 
losure S of a set S � V 
an be 
omputed in O(�) steps(provided that the vertex fa
et in
iden
e matrix is given in the sparse for-mat).2.3 Identifying the Minimal SetsSuppose that H � V is a fa
e of P and H is the 
olle
tion of fa
es H(v) =H [ fvg � V , v 2 V nH. Noti
e that for v; w 2 V nH with w 2 H(v), wehave H(w) � H(v), sin
e H(w) is the interse
tion of all fa
es 
ontaining Hand w (one of whi
h is H(v)).Our pro
edure to identify the set G of minimal sets in the 
olle
tion Hstarts by assigning a label 
andidate to ea
h vertex in V nH. Subsequently,the 
andidate label of ea
h vertex will either be removed or repla
ed by alabel minimal. We keep the following three invariants: for ea
h vertex vlabeled minimal we have H(v) 2 G; for two di�erent verti
es v and w bothlabeled minimal we have H(v) 6= H(w); G is 
ontained in the set of all H(v)for v labeled minimal or 
andidate. Clearly, if no vertex is labeled 
andidateanymore, the set of verti
es labeled minimal is in one-to-one 
orresponden
eto G via H(�).Suppose there is still some 
andidate v available. If H(v) 
ontains somevertex w whi
h is labeled minimal or 
andidate, then we remove the 
andi-date label from v (be
ause ofH(w) � H(v)). Otherwise, we label v minimal.5



It is guaranteed by indu
tion that the three invariants are satis�edthroughout the pro
edure. Moreover, at ea
h major step (
hoosing a 
an-didate v) the number of 
andidate labels de
reases by one. Sin
e ea
h su
hstep takes O(n) time, the entire pro
edure has 
omplexity O�n2�.Lemma 2. The set G of in
lusion minimal sets in the 
olle
tion H 
an beidenti�ed in O�n2� steps.2.4 Lo
ating NodesIn order to keep tra
k of the fa
es that we have seen so far and their 
or-responding nodes in L we maintain a spe
ial data stru
ture, the fa
e tree.In this data stru
ture, a fa
e S = fs1; : : : ; skg � V (with s1 < � � � < sk) isidenti�ed with the lexi
ographi
ally smallest set 
(S) � S that generates S(i.e., 
(S) = S). The map 
(�) is one-to-one; its inverse map is the 
losuremap.The set 
(S) 
an be 
omputed as follows. For 1 � k � 2 set 
(S) := S.For k � 3, 
(S) is 
omputed iteratively: initialize 
(S) with fs1; s2g; at ea
hiteration extend 
(S) by the smallest si su
h that 
(S) ( 
(S) [ fsig. Notethat j
(S)j � dim(S) + 1 � d + 1. Re
all that we stored the vertex fa
etin
iden
es in a sparse format (see Se
tion 2.2). Thus, the whole 
omputation
an be performed in O(�) steps, sin
e just the interse
tions F(fs1g) \ � � � \F(fsig), i = 1; : : : ; k, have to be 
omputed iteratively. Then, 
(S) is obtainedas the set of those si for whi
h the interse
tion be
omes smaller.The ar
s of the fa
e tree are dire
ted away from the root. They arelabeled with vertex numbers, su
h that no two ar
s leaving the same nodehave the same label and on every dire
ted path in the tree the labels arein
reasing. Via the sets of labels on the paths from the root, the nodes ofthe tree 
orrespond to the sorted sets 
(S) for the fa
es S � V that havebeen seen so far. Ea
h node has a pointer to the 
orresponding node of L.By 
onstru
tion, the depth of the tree is bounded by d+ 1.Suppose that we want to �nd the node `S 
orresponding to some fa
eS � V in the part of L that we have already 
onstru
ted or to assert thatthis fa
e has not yet been seen so far. We �rst sort S (a subset of f1; : : : ; ng)in O(n) steps (see [2, Chap. 9.2℄) and 
ompute 
(S) in O(�) steps. Then,starting from the root, we pro
eed (as long as possible) downwards in thefa
e tree along ar
s labeled by the su

essive elements of 
(S). Either we�nd an existing node in the tree whi
h 
orresponds to S or we have tointrodu
e new (labeled) ar
s in the tree until we have 
onstru
ted a noderepresenting S. 6



In the latter 
ase, it might be ne
essary to 
onstru
t an entire new pathin the tree. However, the de�nition of the representing sets 
(S) ensuresthat all \intermediate nodes" on that path will 
orrespond to representingsets of fa
es as well. Hen
e, the number of nodes in the fa
e tree alwayswill be bounded by '. The fa
es 
orresponding to intermediate nodes willbe seen later in the algorithm, and 
onsequently the 
orresponding pointerto L is set to nil for the meantime. Later in the algorithm, when we aresear
hing for the fa
e represented by su
h a tree-node for the �rst time, thenil-pointer will indi
ate that this fa
e is not yet represented in L. The nil-pointer is then repla
ed by a pointer to a newly 
reated node representingthe fa
e in L.In any 
ase, sin
e the fa
e tree has depth at most d+1 and the out-degreeof ea
h node is at most n, we need a total time of O(n+ �+ (d+ 1) � n) =O(�) to either lo
ate resp. 
reate the tree-node representing a 
ertain fa
e.Lemma 3. Using the fa
e tree, it is possible to lo
ate or 
reate the node in Lrepresenting G in O(�) steps (provided the vertex fa
et in
iden
e matrix isstored in the sparse format).In the des
ription given above we have assumed that for ea
h node inthe fa
e tree the out-ar
s are stored in a list whi
h is sear
hed linearly for a
ertain label when walking down the tree. Of 
ourse, one might store the setof out-ar
s in a sear
h tree (see, e.g., [2, Chap. 14℄), allowing to perform the
he
k for a 
ertain label in logarithmi
 time. In pra
ti
e, this might speedup the algorithm, while it does not improve the asymptoti
 running time.2.5 The AnalysisWe summarize the algorithm in pseudo-
ode below (Algorithm 1).Proposition 1. Algorithm 1 
omputes the Hasse diagram of the fa
e latti
eof a polytope P from its vertex fa
et in
iden
es in O(n � � � ') time. It 
anbe implemented su
h that its spa
e requirements (without output spa
e) arebounded by O(').Proof. Algorithm 1 works 
orre
tly by the dis
ussion above.Step 7 
an be performed in O(n � �) steps by Lemma 1. Lemma 2 showsthat we 
an do Step 8 inO�n2� � O(n � �) time. Hen
e Steps 7 and 8 in total
ontribute at most O(n � � � ') to the running time (sin
e the while-loop isexe
uted on
e per fa
e).The for-loop has to be exe
uted for ea
h of the O(n � ') ar
s in theHasse diagram L. Lemma 3 implies that ea
h exe
ution of the for-loop 
anbe performed in O(�) steps. Thus, the 
laim on the running time follows.7



Algorithm 1 Combinatorial enumeration of the fa
e latti
e of a polytope1: Input: in
iden
e matrix of a polytope P2: Output: Hasse diagram L of the fa
e latti
e of P3: initialize L and a fa
e tree with `? 
orresponding to the empty fa
e4: initialize a set Q � fnodes of Lg � fsubsets of V g by (`?;?)5: while Q 6= ? do6: 
hoose some (`H ;H) 2 Q and remove it from Q7: 
ompute the 
olle
tion H of all H(v), v 2 V nH8: 
ompute the set G of minimal sets in H9: for ea
h G 2 G do10: lo
ate/
reate the node `G 
orresponding to G in L11: if `G was newly 
reated then12: add (`G; G) to Q13: end if14: add the ar
 (`H ; `G) to L15: end for16: end whileSin
e ea
h node of the fa
e tree 
orresponds to a fa
e of P , the fa
etree has O(') nodes, and thus size O('). In order to guarantee that thespa
e required for the storage of Q is bounded by O(') as well, one hasto implement the algorithm slightly di�erently from its des
ription above.Instead of storing the pairs (lH ;H) (ea
h of whi
h might require 
(n) spa
e),we just store pointers to the 
orresponding nodes in the fa
e tree. The fa
etree is organized su
h that one 
an also walk towards its root. Then, inStep 6, we 
an 
ompute the pair (lH ;H) from su
h a pointer in O(�) time(walking upwards yields 
(H), 
omputing 
(H) yields H), whi
h does notin
rease the total running time (asymptoti
ally).If m < n, then it is more eÆ
ient to apply Algorithm 1 to the in
iden
esof the dual polytope, i.e., to the transpose of the in
iden
e matrix. Of 
ourse,after the 
omputations one then has to ex
hange the roles of verti
es andfa
ets again. This yields the main result of the paper.Theorem 1. The Hasse diagram of the fa
e latti
e of a polytope P 
anbe 
omputed from the vertex fa
et in
iden
es of P in O(minfn;mg � � � ')time, where n is the number of verti
es, m is the number of fa
ets, � isthe number of vertex fa
et in
iden
es, and ' is the total number of fa
esof P . The spa
e requirements of the algorithm (without output spa
e) 
anbe bounded by O('). 8



Whenever a new node representing a fa
e G in the Hasse diagram L is
onstru
ted, we 
an label that node with the vertex set of G, the set offa
ets 
ontaining G, or with the dimension of G without (asymptoti
ally)in
reasing the running time of the algorithm. However, the output mightbe
ome mu
h larger due to su
h labelings. For instan
e, labeling the Hassediagram of the d-
ube by vertex labels requires 
(4d) output storage spa
e,while the Hasse diagram with fa
et labels needs only O�d � 3d� spa
e.In pra
ti
e, the 
omputation 
an be speeded up by exploiting that everyvertex 
ontained in a fa
e G with H � G and dimG = dimH + 1 must be
ontained in some fa
et whi
h 
ontains H. Thus, it suÆ
es to 
onsider onlythe sets H(v), v 2 SS2F(H) S nH in Step 7.3 Extensions3.1 Simple or Simpli
ial PolytopesFor a simple d-polytope P with n verti
es, the above pro
edure 
an beimplemented more eÆ
iently. First observe that � = n � d in this 
ase.From the in
iden
es (stored in sparse format), the graph G(P ) of P (i.e., allone-dimensional fa
es) 
an be 
omputed in time O�n2 � d�, sin
e a pair ofverti
es forms an edge if and only if it is 
ontained in d� 1 
ommon fa
ets.After initialization with the verti
es instead of ? (in Steps 3, 4), Step 7 
annow be simpli�ed. For some arbitrary vertex v 2 H we only need to 
he
kthe at most d neighbors of v in G(P ) outside H. Ea
h of these will yieldan ar
 in the Hasse diagram, thus no non-minimal fa
es are 
onstru
ted inStep 7. Hen
e, Step 8 
an be skipped. The total running time for simpled-polytopes thus de
reases to O(d � � � ') (sin
e the for-loop is exe
uted atmost d �' times). The spa
e 
omplexity stays O(') (without output spa
e).By duality, the same running times and spa
e requirements 
an be a
hievedfor simpli
ial polytopes.Similarly to the situation with general polytopes, for both simple andsimpli
ial polytopes we 
an also output for ea
h fa
e its verti
es, the fa
ets
ontaining it, or its dimension without (asymptoti
ally) in
reasing the run-ning time.3.2 The k-SkeletonA variant of the algorithm 
omputes the Hasse diagram of the k-skeleton ofa polytope P . One simply prevents the 
omputation of fa
es of dimensionslarger than k by not inserting any (k� 1)-fa
e into the list Q. This leads to9



an O�n � � � '�k� time algorithm, where '�k is the number of fa
es of P ofdimension at most k.3.3 Oriented MatroidsAlgorithm 1 
an be applied to the enumeration of general atomi
 latti
eswith the property that one 
an 
ompute the join of a set of atoms. Forinstan
e, this holds for every atomi
 and 
oatomi
 latti
e if the atom-
oatomin
iden
es are given, be
ause in this 
ase one 
an 
ompute the joins of atomssimilarly to the 
ase of fa
e latti
es of polytopes.The (Edmonds-Mandel) fa
e latti
e of an oriented matroid (see Chapter4 of [1℄ for de�nitions and ba
kground) is the set of all 
ove
tors plus anadditional maximal element 1̂ (ordered by the usual partial order �). Thislatti
e is atomi
 and 
oatomi
. Hen
e, we 
an 
ompute its Hasse diagramfrom its abstra
t atom-
oatom in
iden
es as above.However, this is not the usual way to en
ode an oriented matroid. It ismore 
ommon to spe
ify an oriented matroid by a set of sign-ve
tors fromf�; 0;+gk , e.g., by its 
ove
tors. The 
o
ir
uits are the �-minimal 
ove
torsof the oriented matroid, i.e., the atoms of its fa
e latti
e. The join of two
ove
tors simply is their 
omposition, if their separation set is empty, or1̂ otherwise. Su
h a 
omposition 
an be 
omputed in O(k) steps, whi
henables us to 
ompute the fa
e latti
e (eÆ
iently) from its 
o
ir
uits by avariant of Algorithm 1.If n denotes the number of 
o
ir
uits of M, Step 7 
an be performedin O(n � k � ') steps altogether (where ' is the total number of 
ove
torsof M). Step 8 takes O�n2 � k � '� time in total. The fa
e tree is organizedas for Algorithm 1. One �xes an ordering C1; : : : ; Cn of the 
o
ir
uits. Fora 
ove
tor S let fi1; : : : ; irg (i1 < � � � < ir) be the set of atoms below S inthe fa
e latti
e. Then we iteratively form the joins of Ci1 ; : : : ; Cir , and let
(S) 
onsist of all those indi
es for whi
h the \joins 
hange." Computing
(S) from S takes O(n � k) steps.Using this modi�ed fa
e tree, a given 
ove
tor S 
an now be sear
hedin the same way as in the 
ase of fa
e latti
es of polytopes. The depth ofthe fa
e tree is bounded by k. Hen
e, lo
ation/
reation of a 
ove
tor 
anbe done in O(n � k) time. The rest of the analysis is similar to the proof ofProposition 1. Thus, the Hasse diagram of the fa
e latti
e of an orientedmatroid 
an be 
omputed in O�n2 � k � '� steps.The 
ase where the maximal 
ove
tors (i.e., the 
oatoms) of an orientedmatroid are given is a bit di�erent. Here, the number of fa
es is boundedby m2, where m is the number of maximal 
ove
tors. Hen
e, the size of10



the fa
e latti
e is polynomial in m. Fukuda, Saito, and Tamura [5℄ givean O�k3 �m2� time algorithm for 
onstru
ting the fa
es latti
e from themaximal 
ove
tors.A
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