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with its verties. We de�ne ' := jFj and denote by L the Hasse diagram (asan abstrat graph) of the fae lattie. Hene, L is a direted rooted ayligraph whose nodes orrespond to the elements of F . If `H ; `G are nodesin L, and H;G 2 F are the orresponding faes of P , then there is an ar(`H ; `G) in L if and only if H � G and dim(G) = dim(H) + 1.The ombinatorial fae lattie enumeration problem is the following:given a vertex-faet inidene matrix of P (see Setion 2 for a de�nition),onstrut the Hasse diagram L of the fae lattie. By de�nition, L is unla-beled. However, it might be desired to label eah node of L orrespondingto a fae F with the set of (indies of) verties ontained in F , the set of(indies of) faets ontaining F , or with the dimension of F .Fukuda and Rosta [4℄ gave an algorithm for the ombinatorial fae lattieenumeration problem for d-polytopes P whih runs in O�minfn;mg � d � '2�time, where m is the number of faets and n is the number of verties of P .Sine ' an be exponential in n and m (onsider the d-simplex, for instane)it is, however, desirable to have an algorithm whose running time dependsonly linearly on ' (and polynomially on n and m).For the geometri fae lattie enumeration problem, whih asks for thefae lattie of a polytope that is given by an inequality desription, thereare algorithms satisfying this requirement on the running time, see e.g. [3℄.However, in our ontext no geometri data are available.Ganter [6℄ desribed an algorithm whih, given the inidenes of atomsand oatoms of a general atomi and oatomi lattie, enumerates all ele-ments of that lattie in lexiographi order, where eah element is identi�edwith the set of its atoms. Speialized to our situation, one obtains an al-gorithm that omputes all vertex sets of faes of P in O(minfn;mg � � � ')steps, where � is the number of vertex faet inidenes of P . We haved � maxfn;mg � � � n �m, in partiular, � is bounded polynomially in nand m. However, this algorithm does not ompute the inlusion relationsbetween the faes, i.e., the edges of the Hasse diagram of the fae lattie.Of ourse, one all (vertex sets of) faes are omputed, one may onstrutthe Hasse diagram in an obvious way afterwards, but this would require anumber of steps whih is quadrati in the total number ' of faes.Inspired by Ganter's algorithm, we developed the (quite di�erent) al-gorithm presented below, whih omputes the entire Hasse diagram in thesame running time of O(minfn;mg � � � ') (see Theorem 1). In our algo-rithm the vertex set of eah fae or the set of faets it is ontained in, as wellas its dimension, is readily available (or an be omputed without inreas-ing the asymptoti running time). Of ourse, this may inrease the (output)storage requirements signi�antly. 2



Fukuda and Rosta [4℄ also onsidered the ombinatorial fae lattie enu-meration problem for the speial ase of simple or simpliial polytopes. Theypresented an algorithm that omputes the Hasse diagram of a simple orsimpliial polytope in O(d � ') steps, provided that in addition to the vertexfaet inidenes a good orientation of the graph is given as input data, i.e.,an ayli orientation that indues preisely one sink on every non-emptyfae. Unfortunately, no polynomial time algorithm is known that omputesa good orientation of a simple polytope P | neither if P is given by itsvertex-faet inidenes nor if it is spei�ed by its whole fae lattie.For simple or simpliial polytopes, our algorithm an be speialized suhthat it omputes the Hasse diagram of the fae lattie in O(d � � � ') stepsfrom the vertex faet inidenes, where no good orientation is required (seeSetion 3.1).In Setion 2.1 we give a rough sketh of the algorithm, whih is followedby a more detailed desription in Setions 2.2, 2.3, and 2.4. In Setion2.5 we analyze the algorithm. In Setion 3 we present a speial versionof the algorithm for simple or simpliial polytopes (Setion 3.1), a variantthat omputes the k-skeleton (Setion 3.2), as well as a modi�ation thatomputes the fae lattie of an oriented matroid from its signed (o-)iruits(Setion 3.3).For the basi properties of polytopes that are important in our on-text, we refer to Ziegler's book [7℄. The few onepts from the theory ofalgorithms and data strutures that play a role in the paper an be foundin any orresponding textbook (e.g. in the one of Cormen, Leiserson, andRivest [2℄).2 The AlgorithmDe�ne m to be the number of faets and n the number of verties of thed-polytope P . Let A = (afv) 2 f0; 1gm�n be a vertex faet inidene matrixof P . Hene the faets of P an be identi�ed with F = f1; : : : ;mg and itsverties an be identi�ed with V = f1; : : : ; ng, suh that afv = 1 if faetf ontains vertex v, and afv = 0 otherwise. Denote by � the number ofvertex faet inidenes, i.e., the number of ones in A. For S � V de�neF(S) := ff 2 F : afs = 1 for all s 2 Sg, the set of faets ontaining allverties of S. For T � F de�ne V(T ) := fv 2 V : atv = 1 for all t 2 Tg, theset of verties ontained in all faets of T .For S � V , the set S := V(F(S)) is the (vertex set of) the smallest faeof P ontaining S (in lattie theoreti terms, the join of the elements in S).3



One easily heks that this de�nes a losure map on the subsets of V , i.e.,for all S; S0 � V we haveS � S; S = S; S � S0 ) S � S0 :The faes of P orrespond exatly to the losed sets (i.e., sets S � V withS = S) of V with respet to this losure map. Our algorithm ruially relieson the fat that losures an be omputed fast (see Setion 2.2).2.1 The Skeleton of the AlgorithmThe strategy is to build up the Hasse diagram L of the fae lattie frombottom (?) to top (P ). Consequently, L is initialized with the single fae ?,and then enlarged iteratively by adding out-neighbors of nodes that havealready been onstruted. We will say that a fae has been seen, one itsorresponding node in L has been onstruted.During the algorithm, we keep a set Q ontaining those faes that wehave seen so far, but for whih we have not yet inserted their out-ars intothe Hasse diagram. At eah major step, we remove a fae H from the set Qand onstrut the set G of all faes G withH � G and dim(G) = dim(H)+1.For eah fae G 2 G we hek whether it has already been seen. If this isnot the ase, then a new node in L representing G is onstruted, and G isadded to Q. In any ase, an ar onneting the node orresponding to H tothe node orresponding to G is inserted into L.In order to ompute the set G, we exploit the fat that G onsists of theinlusion minimal faes among the ones that properly ontain H. Sine thefae lattie of a polytope is atomi, eah fae G 2 G must be of the formH(v) := H [ fvg for some vertex (atom) v; in partiular, the Hasse diagramhas at most n �' ars. Thus, we �rst onstrut the olletion H of all H(v),v 2 V nH, and then ompute G as the set of inlusion minimal sets of H.Computing H(v) for some v 2 V n H requires to determine a losure.In Setion 2.2 we desribe a method to perform this task in O(�) steps.Determining the inlusion minimal sets in the olletion H learly ouldbe done in O�n3� steps by pairwise omparisons, sine H has at most nelements. However, in Setion 2.3 we show that this an even be performedin O�n2� time.In Setion 2.4 we desribe a data struture that allows us to loate thenode in L representing a given fae G, or to assert that G has not yet beenseen so far in O(�) steps.A summary of the analysis of the time omplexity of the algorithm, alongwith a pseudo-ode desription of it, is given in Setion 2.5.4



2.2 Computing ClosuresIn order to be able to ompute losures fast, we store the inidene matrixA in a sparse format both in a row and olumn based way. For eah vertexv 2 V , the elements in F(fvg) (a subset of f1; : : : ;mg) are sorted inreasingly(in O(m) time, see [2, Chap. 9.2℄) and stored in a sorted list. Similarly, foreah faet f 2 F , we store the sorted set V(ffg) in a list. This an bedone in O(n �m) time (whih is dominated by O(n � �) and thus does notinuene the estimate of the asymptoti running time in Proposition 1).The sparse format uses O(�) storage.Whenever we want to ompute the losure of a set S � V , the �rst stepis to ompute F(S), i.e., the intersetion of the lists orresponding to theelements in S. Sine the intersetion of two sorted lists an be omputedin time proportional to the sum of the lengths of the two lists, and beausethe intersetion of two lists is at most as long as the shorter one, F(S) anbe omputed in time O�Pv2S jF(fvg)j� � O(�). Similarly, V(T ) an beomputed in time O(�) for a set T � F .Lemma 1. The losure S of a set S � V an be omputed in O(�) steps(provided that the vertex faet inidene matrix is given in the sparse for-mat).2.3 Identifying the Minimal SetsSuppose that H � V is a fae of P and H is the olletion of faes H(v) =H [ fvg � V , v 2 V nH. Notie that for v; w 2 V nH with w 2 H(v), wehave H(w) � H(v), sine H(w) is the intersetion of all faes ontaining Hand w (one of whih is H(v)).Our proedure to identify the set G of minimal sets in the olletion Hstarts by assigning a label andidate to eah vertex in V nH. Subsequently,the andidate label of eah vertex will either be removed or replaed by alabel minimal. We keep the following three invariants: for eah vertex vlabeled minimal we have H(v) 2 G; for two di�erent verties v and w bothlabeled minimal we have H(v) 6= H(w); G is ontained in the set of all H(v)for v labeled minimal or andidate. Clearly, if no vertex is labeled andidateanymore, the set of verties labeled minimal is in one-to-one orrespondeneto G via H(�).Suppose there is still some andidate v available. If H(v) ontains somevertex w whih is labeled minimal or andidate, then we remove the andi-date label from v (beause ofH(w) � H(v)). Otherwise, we label v minimal.5



It is guaranteed by indution that the three invariants are satis�edthroughout the proedure. Moreover, at eah major step (hoosing a an-didate v) the number of andidate labels dereases by one. Sine eah suhstep takes O(n) time, the entire proedure has omplexity O�n2�.Lemma 2. The set G of inlusion minimal sets in the olletion H an beidenti�ed in O�n2� steps.2.4 Loating NodesIn order to keep trak of the faes that we have seen so far and their or-responding nodes in L we maintain a speial data struture, the fae tree.In this data struture, a fae S = fs1; : : : ; skg � V (with s1 < � � � < sk) isidenti�ed with the lexiographially smallest set (S) � S that generates S(i.e., (S) = S). The map (�) is one-to-one; its inverse map is the losuremap.The set (S) an be omputed as follows. For 1 � k � 2 set (S) := S.For k � 3, (S) is omputed iteratively: initialize (S) with fs1; s2g; at eahiteration extend (S) by the smallest si suh that (S) ( (S) [ fsig. Notethat j(S)j � dim(S) + 1 � d + 1. Reall that we stored the vertex faetinidenes in a sparse format (see Setion 2.2). Thus, the whole omputationan be performed in O(�) steps, sine just the intersetions F(fs1g) \ � � � \F(fsig), i = 1; : : : ; k, have to be omputed iteratively. Then, (S) is obtainedas the set of those si for whih the intersetion beomes smaller.The ars of the fae tree are direted away from the root. They arelabeled with vertex numbers, suh that no two ars leaving the same nodehave the same label and on every direted path in the tree the labels areinreasing. Via the sets of labels on the paths from the root, the nodes ofthe tree orrespond to the sorted sets (S) for the faes S � V that havebeen seen so far. Eah node has a pointer to the orresponding node of L.By onstrution, the depth of the tree is bounded by d+ 1.Suppose that we want to �nd the node `S orresponding to some faeS � V in the part of L that we have already onstruted or to assert thatthis fae has not yet been seen so far. We �rst sort S (a subset of f1; : : : ; ng)in O(n) steps (see [2, Chap. 9.2℄) and ompute (S) in O(�) steps. Then,starting from the root, we proeed (as long as possible) downwards in thefae tree along ars labeled by the suessive elements of (S). Either we�nd an existing node in the tree whih orresponds to S or we have tointrodue new (labeled) ars in the tree until we have onstruted a noderepresenting S. 6



In the latter ase, it might be neessary to onstrut an entire new pathin the tree. However, the de�nition of the representing sets (S) ensuresthat all \intermediate nodes" on that path will orrespond to representingsets of faes as well. Hene, the number of nodes in the fae tree alwayswill be bounded by '. The faes orresponding to intermediate nodes willbe seen later in the algorithm, and onsequently the orresponding pointerto L is set to nil for the meantime. Later in the algorithm, when we aresearhing for the fae represented by suh a tree-node for the �rst time, thenil-pointer will indiate that this fae is not yet represented in L. The nil-pointer is then replaed by a pointer to a newly reated node representingthe fae in L.In any ase, sine the fae tree has depth at most d+1 and the out-degreeof eah node is at most n, we need a total time of O(n+ �+ (d+ 1) � n) =O(�) to either loate resp. reate the tree-node representing a ertain fae.Lemma 3. Using the fae tree, it is possible to loate or reate the node in Lrepresenting G in O(�) steps (provided the vertex faet inidene matrix isstored in the sparse format).In the desription given above we have assumed that for eah node inthe fae tree the out-ars are stored in a list whih is searhed linearly for aertain label when walking down the tree. Of ourse, one might store the setof out-ars in a searh tree (see, e.g., [2, Chap. 14℄), allowing to perform thehek for a ertain label in logarithmi time. In pratie, this might speedup the algorithm, while it does not improve the asymptoti running time.2.5 The AnalysisWe summarize the algorithm in pseudo-ode below (Algorithm 1).Proposition 1. Algorithm 1 omputes the Hasse diagram of the fae lattieof a polytope P from its vertex faet inidenes in O(n � � � ') time. It anbe implemented suh that its spae requirements (without output spae) arebounded by O(').Proof. Algorithm 1 works orretly by the disussion above.Step 7 an be performed in O(n � �) steps by Lemma 1. Lemma 2 showsthat we an do Step 8 inO�n2� � O(n � �) time. Hene Steps 7 and 8 in totalontribute at most O(n � � � ') to the running time (sine the while-loop isexeuted one per fae).The for-loop has to be exeuted for eah of the O(n � ') ars in theHasse diagram L. Lemma 3 implies that eah exeution of the for-loop anbe performed in O(�) steps. Thus, the laim on the running time follows.7



Algorithm 1 Combinatorial enumeration of the fae lattie of a polytope1: Input: inidene matrix of a polytope P2: Output: Hasse diagram L of the fae lattie of P3: initialize L and a fae tree with `? orresponding to the empty fae4: initialize a set Q � fnodes of Lg � fsubsets of V g by (`?;?)5: while Q 6= ? do6: hoose some (`H ;H) 2 Q and remove it from Q7: ompute the olletion H of all H(v), v 2 V nH8: ompute the set G of minimal sets in H9: for eah G 2 G do10: loate/reate the node `G orresponding to G in L11: if `G was newly reated then12: add (`G; G) to Q13: end if14: add the ar (`H ; `G) to L15: end for16: end whileSine eah node of the fae tree orresponds to a fae of P , the faetree has O(') nodes, and thus size O('). In order to guarantee that thespae required for the storage of Q is bounded by O(') as well, one hasto implement the algorithm slightly di�erently from its desription above.Instead of storing the pairs (lH ;H) (eah of whih might require 
(n) spae),we just store pointers to the orresponding nodes in the fae tree. The faetree is organized suh that one an also walk towards its root. Then, inStep 6, we an ompute the pair (lH ;H) from suh a pointer in O(�) time(walking upwards yields (H), omputing (H) yields H), whih does notinrease the total running time (asymptotially).If m < n, then it is more eÆient to apply Algorithm 1 to the inidenesof the dual polytope, i.e., to the transpose of the inidene matrix. Of ourse,after the omputations one then has to exhange the roles of verties andfaets again. This yields the main result of the paper.Theorem 1. The Hasse diagram of the fae lattie of a polytope P anbe omputed from the vertex faet inidenes of P in O(minfn;mg � � � ')time, where n is the number of verties, m is the number of faets, � isthe number of vertex faet inidenes, and ' is the total number of faesof P . The spae requirements of the algorithm (without output spae) anbe bounded by O('). 8



Whenever a new node representing a fae G in the Hasse diagram L isonstruted, we an label that node with the vertex set of G, the set offaets ontaining G, or with the dimension of G without (asymptotially)inreasing the running time of the algorithm. However, the output mightbeome muh larger due to suh labelings. For instane, labeling the Hassediagram of the d-ube by vertex labels requires 
(4d) output storage spae,while the Hasse diagram with faet labels needs only O�d � 3d� spae.In pratie, the omputation an be speeded up by exploiting that everyvertex ontained in a fae G with H � G and dimG = dimH + 1 must beontained in some faet whih ontains H. Thus, it suÆes to onsider onlythe sets H(v), v 2 SS2F(H) S nH in Step 7.3 Extensions3.1 Simple or Simpliial PolytopesFor a simple d-polytope P with n verties, the above proedure an beimplemented more eÆiently. First observe that � = n � d in this ase.From the inidenes (stored in sparse format), the graph G(P ) of P (i.e., allone-dimensional faes) an be omputed in time O�n2 � d�, sine a pair ofverties forms an edge if and only if it is ontained in d� 1 ommon faets.After initialization with the verties instead of ? (in Steps 3, 4), Step 7 annow be simpli�ed. For some arbitrary vertex v 2 H we only need to hekthe at most d neighbors of v in G(P ) outside H. Eah of these will yieldan ar in the Hasse diagram, thus no non-minimal faes are onstruted inStep 7. Hene, Step 8 an be skipped. The total running time for simpled-polytopes thus dereases to O(d � � � ') (sine the for-loop is exeuted atmost d �' times). The spae omplexity stays O(') (without output spae).By duality, the same running times and spae requirements an be ahievedfor simpliial polytopes.Similarly to the situation with general polytopes, for both simple andsimpliial polytopes we an also output for eah fae its verties, the faetsontaining it, or its dimension without (asymptotially) inreasing the run-ning time.3.2 The k-SkeletonA variant of the algorithm omputes the Hasse diagram of the k-skeleton ofa polytope P . One simply prevents the omputation of faes of dimensionslarger than k by not inserting any (k� 1)-fae into the list Q. This leads to9



an O�n � � � '�k� time algorithm, where '�k is the number of faes of P ofdimension at most k.3.3 Oriented MatroidsAlgorithm 1 an be applied to the enumeration of general atomi lattieswith the property that one an ompute the join of a set of atoms. Forinstane, this holds for every atomi and oatomi lattie if the atom-oatominidenes are given, beause in this ase one an ompute the joins of atomssimilarly to the ase of fae latties of polytopes.The (Edmonds-Mandel) fae lattie of an oriented matroid (see Chapter4 of [1℄ for de�nitions and bakground) is the set of all ovetors plus anadditional maximal element 1̂ (ordered by the usual partial order �). Thislattie is atomi and oatomi. Hene, we an ompute its Hasse diagramfrom its abstrat atom-oatom inidenes as above.However, this is not the usual way to enode an oriented matroid. It ismore ommon to speify an oriented matroid by a set of sign-vetors fromf�; 0;+gk , e.g., by its ovetors. The oiruits are the �-minimal ovetorsof the oriented matroid, i.e., the atoms of its fae lattie. The join of twoovetors simply is their omposition, if their separation set is empty, or1̂ otherwise. Suh a omposition an be omputed in O(k) steps, whihenables us to ompute the fae lattie (eÆiently) from its oiruits by avariant of Algorithm 1.If n denotes the number of oiruits of M, Step 7 an be performedin O(n � k � ') steps altogether (where ' is the total number of ovetorsof M). Step 8 takes O�n2 � k � '� time in total. The fae tree is organizedas for Algorithm 1. One �xes an ordering C1; : : : ; Cn of the oiruits. Fora ovetor S let fi1; : : : ; irg (i1 < � � � < ir) be the set of atoms below S inthe fae lattie. Then we iteratively form the joins of Ci1 ; : : : ; Cir , and let(S) onsist of all those indies for whih the \joins hange." Computing(S) from S takes O(n � k) steps.Using this modi�ed fae tree, a given ovetor S an now be searhedin the same way as in the ase of fae latties of polytopes. The depth ofthe fae tree is bounded by k. Hene, loation/reation of a ovetor anbe done in O(n � k) time. The rest of the analysis is similar to the proof ofProposition 1. Thus, the Hasse diagram of the fae lattie of an orientedmatroid an be omputed in O�n2 � k � '� steps.The ase where the maximal ovetors (i.e., the oatoms) of an orientedmatroid are given is a bit di�erent. Here, the number of faes is boundedby m2, where m is the number of maximal ovetors. Hene, the size of10
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