

BitConeView: Visualization of Flows in the Bitcoin Transaction Graph

IEEE Symposium on Visualization for Cyber Security

G. Di Battista¹ - <u>V. Di Donato</u>¹ - M. Patrignani¹ M. Pizzonia¹ - V. Roselli¹ - R. Tamassia²

¹ DEPARTMENT OF ENGINEERING ROMA TRE UNIVERSITY ² DEPARTMENT OF COMPUTER SCIENCE BROWN UNIVERSITY

Outline

- Background on Bitcoin
- Bitcoin anonymity
- BitConeView: Requirements
- BitConeView: key concepts and metaphors
- Experiments
- Evaluation
- Conclusions and ongoing work

Peer-to-peer transactions

No need for third parties

Worldwide payments

Low processing fees

- 2008 S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Whitepaper on a popular cryptography mailing list
- 2009 released the first bitcoin software that launched the network and the first units of the bitcoin cryptocurrency

The numbers

Avg # ~every 10 min

- Bitcoins are trasferred by means of Transactions (Txs)
- All transactions are recorded in a public ledger called Blockchain

Inputs

Outputs

Inputs			
	ADDRESS	AMOUNT	
i_1	1AspUk7FPS2k6dW4JEBTSyESdyfnChvrce	4 BTC	
i_2	5FypDr7RP42k6dWFJEdTtrESSWfnPOha1cr	2 BTC	
i_3	13K3pHeqzmzEVUVsYiFVG1tQsrwbSQoatx	3 BTC	
i_4	1KoeyaqRfVcNUZD22kAahcma4GXNRbT7c	2 BTC	

Outputs				
	ADDRESS	AMOUNT		
o_1	1KoeyaqRfVcNUZD22kAahcma4GXNRbT7c	1 BTC		
02	1Kis3otnx9bYEHj55iRBWW5ZsvvEdJraEk	6 BTC		
03	1KoeyaqRfVcNUZD22kAahcma4GXNRbT7c	4 BTC		

 Once a tx has been processed, the only way to spend its outputs is to use them as inputs for other txs

n.b. some outputs may be unspent (UTXOs)

 Txs define a directed acyclic multi-graph

Bitcoin anonymity

Bitcoin is not always anonymous

- Identity behind Bitcoin addresses is revealed
 - during a purchase for delivery purposes
 - when buying USD at exchanges

- Third parties may be able to
 - track your future transactions
 - trace your previous activity

Mixing and Laundering

- Mixing services to improve anonymity
 - BitLaundry
 - Bitcoin Fog
 - Bitcoin Mixer
 - Bitcomix
 - BitSafe
 - ...

- Side effect
 - Mixing services facilitate money laundering

BitConeView: Requirements

- Starting from one (or more) transaction(s)
 - Follow Bitcoins over time
 - Reveal flow patterns of interest
 - Accumulation, distribution, mixing
 - Understand when Bitcoins are mixed up
 - Understand the degree of mixing of Bitcoins over time
 - Evaluate effectiveness of mixing websites

State of the Art: tx-graph analysis

- Several papers on the analysis of the tx-graph
 - [Meiklejohn et al., 2013]
 - [Reid and Harrigan, 2013]
 - [Ron and Shamir, 2013]
- Some include drawings of subgraphs of interest
 - Laboriously created by hand or
 - Generated with standard force directed graph drawing tools that often yield to cluttered layouts

State of the Art: fraud detection

- Financial fraud detection literature
 - [Chang et al., 2007]: A visual analytics system for discovering suspicious (traditional) bank wire transactions by providing multiple coordinated visualizations

BitConeView: System Architecture and prototype

BitConeView: Some key concepts

 The BitCone or cone of a transaction S is the subgraph reachable from S within a given time limit T

 Intruders are (grey) inputs coming from outside the cone and are responsible for the mixing

UTXOs may be unspent

at time T (grey)

at present time (black)

Other (white) outputs are spent

BitConeView: inputs

- One starting tx S through its 64 digits hash
- An ending date (time limit T)

The system will start computing cone(S, T):

But it will not draw it as is

Inputs of starting tx, and UTXO

10/26/2015

Intruders and UTXOs (unspent up to T or never-spent)

10/26/2015

Another intruder and another UTXO (unspent up to T)

No intruders, more unspent outputs

10/26/2015

[USAGE VIDEO]

BitConeView: Transfer Analysis

- We also defined a Transfer Analysis tool
- given the starting tx S and the UTXO u
- What is the maximum amount of the BTCs coming from S that could be transferred to u?
- May the two txs be connected?
- Consider the tx-graph as a flow network!

Experiments with BitLaundry

- Starting txs from [Moser et al. 2013]
- (a) the injected Bitcoins are mixed after ~10 h
- (b) BitLaundry is less effective

Experiments with Bitcoin Fog

- [Moser et al. 2013]
- BTCs used as payout by mixing services often come from txs that are part of long chains in which each tx distributes small amounts of BTCs
- At the apex of the chains is common to find very large txs that bundle Bitcoins

40,000 BTCs > 10M USD!

Accumulation pattern

- ~150 inputs in txs falling in the same block
- 1 final transaction bundling 1000 Bitcoins
- Twice!

Evaluation

- Informal usability study (9 users, 2 experts)
 - Six engineers in the 30–35 age range
 - Three detectives of an Italian Investigation Division in the 40–50 age range
- 30 minute tutorial on Bitcoin
- Demonstration of BitConeView on some examples answering questions
- Let the users play themselves with the interface exploring real-world data

Evaluation

Question topic	Avg. Score (1-5)
Understand usage of Bitcoins	3.67
Understand mixing processes	4.22
Understand money laundering activity	3.78
Usefulness of the concept of purity	3.67
Usefulness of the Transfer Analysis	3.44

- Users were asked to fill out forms
 - Six questions with a score from one to five
- Good feedbacks overall
 - Effectiveness in showing mixing processes

Conclusions

Conclusions

- We presented a system for the visual analysis of flows in the Blockchain
- We introduced the concept of purity of Bitcoins
- We analyzed many real money laundering processes
- We evaluated the system by means of a usability study

Ongoing work

- Scalability of the visualization
- Drill-down feature to explore the subgraph within a given block
- Support blockchains of different types of cryptocurrencies
- Integration with blockchain exploration platforms?

Questions?