
SQL Injection

Goal
n Learn how to exploit common SQL injections
n Learn how to fix common SQL injection

Outline
n Overview

• A simple case: Login Bypass
n Union-Based SQL Injections

• Retrieving The Database Structure: infomation_schema
n Blind SQL Injections
n Preventing SQL Injections

Overview
n Almost every web application saves data in some sort of database
n Most web applications use relational databases

Overview
n SQL Injections attacks are similar to code injections
n The issue arises when untrusted data make their way to the database
n In this case, an attacker can execute his/her query on the database

A Simple Case: Login Bypass
n The simplest case of an SQL Injection is the following Login Bypass
example

A Simple Case: Login Bypass
n The SQL query is dynamically generated to contain some inputs from the
user

n The code will then decide if the user has provided valid credentials based on
the response of the query

SELECT * FROM users WHERE email = 'admin@site.com'
and password = 'foobar'

A Simple Case: Login Bypass
n Similarly to code injections, if the input is not properly handled an attacker
can inject SQL code inside the query
n For example, for $_POST['email'] = " ' or 1=1 -- " the query becomes
n The database cannot discriminate between user input and actual code

SELECT * FROM users WHERE email = '' or 1=1 -- ' and password = ''

Always true A comment. Everything
after will be ignored

A Simple Case: Login Bypass
n This injection effectively leads to a change in the application's logic flow
n Since the attacker can inject a logic condition that makes the query return
every time a result, he/she can bypass the login

A Simple Case: Login Bypass
n Finding SQL Injections is very similar to finding code injection
n The go-to way is to try special characters that in SQL are:

• '
• \
• ”
• `

Exercise
http://web-17.challs.olicyber.it/logic

Union Based SQL Injections
n Other to change an application’s logic flow, an attacker may be interested in
stealing pieces of information from the database
n Depending on where it is possible to inject, there are different techniques to
do so
n The simplest case happens when the injection is inside a query whose result
is showed back inside the response page
n In this case, an attacker can have the query returning the information that
he/she wants, and then read it

Union Based SQL Injections
n These types of SQL Injection are called Union-Based SQL injections,
because they make use of the UNION statement
n The UNION combines the result of two or more SELECT queries into one

Union Based SQL Injections
n This query returns all the results from the first select and all the results of the
second select query

Union Based SQL Injections

SELECT column_1,column_2 FROM table1column_1 column_2

Lorem ipsum 3

Fecit 4

column_3 column_4

A text 11

Another text 12

Other text 12

UNION

Lorem ipsum 3

Fecit 4

A Text 11

Another text 12

Other text 12

SELECT column_3,column_4 FROM table2;

Union Based SQL Injections
n The two sub-queries must have the same number of columns
n Depending on the type of application, every column selected by the two sub-
queries must be of the same data type

• If the application is expecting the second column to be an Integer, then it will raise an
error if it finds a string

Union Based SQL Injections
n When exploiting SQL Injections, the UNION statement is effective because it
permits an attacker to retrieve the result of an arbitrary SELECT query
n Take the following query:

n There is an injection in the WHERE clause
n Using UNION in the injection an attacker can leak data stored in another
table

SELECT column_1 FROM table WHERE column_2 = $input

Union Based SQL Injections

n Using the payload

n The full query becomes

n And returns a table with every item of table.column_1 and every item of
secret.secrets

1 UNION SELECT secret FROM secrets

SELECT column_1 FROM table WHERE
column_2 = 1 UNION SELECT secret FROM secrets

Union Based SQL Injections
n Usually, a pentester finds these kinds of issues in a black-box environment.
The attacker/penetration tester doesn't know the specific query run by the
application
n This is problematic because in order to use the UNION statement the
number of columns used on the first SELECT must be known

Retrieving the Number of Columns

n Take the following query:

n An attacker in a blackbox environment cannot know that the select is
retrieving three different columns (id,title,body)
n Two main approaches are possible to retrieve the number of columns
needed:

• Using a Brute-force approach
• Using the ORDER BY keyword

SELECT id,title,body FROM posts WHERE id = $input

Retrieving the Number of Columns
n Brute-forcing is trivial; you simply add up columns until the query is
successful. For example, an attacker will try to inject the following payloads:
1 UNION SELECT 1 <-- Error
1 UNION SELECT 1,2 <-- Error
1 UNION SELECT 1,2,3 <-- Success The number of columns is 3

Retrieving the Number of Columns
n The ORDER BY keyword is more effective
n ORDER BY is used to order the result of a SELECT query by some of the
selected columns
n It supports the usage of integer numbers to reference the column

SELECT c_1,c_2,c_3 FROM table ORDER BY 2

Retrieving the Number of Columns
n If the index number provided is greater than the number of columns, the
query will raise an error
n In this way it is possible to retrieve the number of columns doing an
exponential or a binary search:
1 ORDER BY 1 <-- OK
1 ORDER BY 2 <-- Ok
1 ORDER BY 4 <-- Error
1 ORDER BY 3 <-- Ok The number of columns is 3

Union Based SQL Injections
n Usually, queries only select the first row of the resulting values (LIMIT 1)

• Example: In a blog, the page that shows the content of single post needs only to retrieve
the first row from a query (the post that is going to show)

n UNION clause works by appending the rows of the second select operation
to the first one
n The payload injected thus, must ensure that the first query returns nothing

Union Based SQL Injections
n Similarly, to the login bypass, some logic clauses can be injected in order to
"delete" all the results from the first SELECT
n The logic clause needs to make an "always false" condition

SELECT c_1,c_2,c_3 FROM table WHERE c_1 = 1
AND 1=0 UNION SELECT 1,2,3

Information_schema
n Another problem in a black-box environment is that the structure of the database
is unknown
n Some DBMS have a special schema, called INFORMATION_SCHEMA, that contains
all the meta-data of the database

Information_schema
n The structure of INFORMATION_SCHEMA is pretty simple but tends to vary
from DBMS to DBMS. In the sequel, we focus on MySQL, without loosing in
generality, being it almost the same for all the major DBMSs
n PostgreSQL, MSSQL, SQLite have similar way to store meta-data.

• https://www.postgresql.org/docs/9.1/information-schema.html
• https://docs.microsoft.com/en-us/sql/relational-databases/system-information-schema-

views/system-information-schema-views-transact-sql?view=sql-server-ver15
• https://wiki.tcl-lang.org/page/sqlite_master

Information_schema
n Useful tables of INFORMATION_SCHEMA for these attacks are:

• INFORMATION_SCHEMA.schemata
• A list of every schema that is present in the database

• INFORMATION_SCHEMA.tables
• A list of every table that is present in the database

• INFORMATION_SCHEMA.columns
• A list of every column that is present in the database

Information_schema
n The list of all schema in the database can be found inside the table
INFORMATION_SCHEMA.schemata
n Retrieving a list of all schema’s name is simple:

SELECT schema_name FROM information_schema.schemata

Information_schema
n Similarly, all the table names are found in the table
INFORMATION_SCHEMA.tables

n It is possible to "tune" a bit the query, selecting only the tables for a certain
schema

SELECT table_name FROM information_schema.tables

SELECT table_name FROM information_schema.tables WHERE table_schema
= 'someschema' -- Note that it is possible to use the DATABASE()
function to retrieve the current schema

Information_schema
n Finally, to retrieve all the columns for a given table_name:

n Or, to leak every column along its table name:

SELECT column_name FROM information_schema.columns WHERE
table_name = 'sometable'

SELECT table_name,column_name FROM
information_schema.columns WHERE table_schema = DATABASE()

Union Based SQL Injections: Recap
n Given the following vulnerable query in a black-box situation that shows back
only the first row:

n An attacker first needs to retrieve the number of columns used by the select

SELECT title, post FROM posts WHERE id = $input

Union Based SQL Injections: Recap
n Using a brute-force approach:

n Making the first select returns nothing:

SELECT title, post FROM posts WHERE id = 1 UNION SELECT 1
SELECT title, post FROM posts WHERE id = 1 UNION SELECT 1, 2

SELECT title, post FROM posts WHERE id = 1 and 1=0 UNION
SELECT 1, 2

Union Based SQL Injections: Recap
n The page now should show 1 and 2 instead of some text. Then it is
necessary to retrieve all the table/columns in the current database

n group_concat is used to combine all the results inside one
row (https://www.geeksforgeeks.org/mysql-group_concat-function/)

SELECT title, post FROM posts WHERE id = 1 and 1=0 UNION
SELECT 1,group_concat(table_name,':',column_name) FROM
INFORMATION_SCHEMA.columns WHERE table_schema = DATABASE()

Union Based SQL Injections: Recap
n Finally, when the structure of the database is known, one can leak every
entry of the database.

SELECT title, post FROM posts WHERE id = 1 and 1=0 UNION
SELECT 1,group_concat(username,':',password) FROM users

Excercise
http://web-17.challs.olicyber.it/union

Blind SQL Injection

Blind SQL injections
n The result of the query is not always readable by the attacker
n The "login bypass" injection is an excellent example of this:

• The only information that is reported back to the attacker is if the login is successful or
not

n These type of injections are called blind SQL Injections
n To retrieve data from these injections it is possible to use the injection as a
true/false oracle

Blind SQL injections
n For example, given the following injection:

n One can retrieve the content of the table password asking the following
question:

• Is the first character of the column password an 'a'? --> no
• Is the first character of the column password an 'b'? --> yes
• Is the second character of the column password an 'a'? --> yes
• ...

SELECT 1 FROM users WHERE username = '$input'

Blind SQL injections
n The general method to correctly craft an exploit is the following:

1. Find a payload that returns true/false based only on an injected logical expression
2. Find how to get the true/false response
3. Write a simple script to automatize the extraction of the data

Blind SQL injections

n The first point can be achieved by using some logic operators. Take the
following query:

n It is possible to have this query returning something or not by injecting an
AND

SELECT * FROM posts WHERE id = $input

SELECT * FROM posts WHERE id = 1 AND (expression) = 1

Blind SQL injections

n Then it is possible to compare the 1 with the return value of an inject query

n In this way, the whole query will return something if and only if the injected
query returns something. In this case the injected SELECT query has full
control on the returned value of the whole query

SELECT * FROM posts WHERE id = 1 AND (select 1 where
expression) = 1

Blind SQL injections
n Finally, we need to compare the character at the position n with a guess.
There are many ways to do this. In MySQL the most convenient ones are:

• The LIKE operator
• The function SUBSTR

Blind SQL injections

n The LIKE operator is used normally to search for patterns in strings
n It uses WILDCARDS:

• % : that will match one or more characters
• ?, _ (depending on the DBMS) : that will match one character

n For example:
• 'foobar' LIKE 'foo' --> false
• 'foobar' LIKE 'foo%’ --> true
• 'foobar' LIKE '%o%’ --> true
• 'foobar' LIKE 'fooba_’ --> true

n Note that LIKE is case insentive in MySQL
• 'foobar' LIKE 'FOOBAR’ --> true

Blind SQL injections

SELECT * FROM posts WHERE id=1 AND (SELECT 1 FROM users WHERE
id=1 AND password LIKE 'a%') = 1
SELECT * FROM posts WHERE id=1 AND (SELECT 1 FROM users WHERE
id=1 AND password LIKE 'b%') = 1
SELECT * FROM posts WHERE id=1 AND (SELECT 1 FROM users WHERE
id=1 AND password LIKE 'ba%') = 1
SELECT * FROM posts WHERE id=1 AND (SELECT 1 FROM users WHERE
id=1 AND password LIKE 'bb%') = 1
SELECT * FROM posts WHERE id=1 AND (SELECT 1 FROM users WHERE
id=1 AND password LIKE 'bc%') = 1

Blind SQL injections
n Finding a way to see if the query was successful or not depends entirely on
how the application was programmed

• In most cases, it is sufficient to make the query return a row as true and nothing as false.
Usually this will make some little differences in the page that is returned, or will
generate an error

• Make the query sleep, and observe the loading time of the response

Excercise
http://web-17.challs.olicyber.it/blind

Time Based SQL injections
n It is possible to force the query to take a longer time to complete by using a
function like sleep
n Time is a powerful tool, because it allows to see and exploit completely
invisible SQL Injections
n SQL Injections that require this technique to be exploited are called Time-
Based SQL Injections

Time Based SQL injections
n A query that uses a sleep function conditionally on some logic expression is:

n This query is going to sleep one second if the like condition is successful

SELECT sleep(1) FROM secrets WHERE secret LIKE 'a%' LIMIT 1

Excercise
http://web-17.challs.olicyber.it/time

Preventing SQL injection
n There are different ways to prevent SQL injections:

• Escape everything
• Use Prepared Statements
• Use an ORM (Object-relational mapping)

n Whatever method you use, the general rule is don't trust any data!

Preventing SQL injection
n Escaping everything is the simplest ways, but also the less effective:

• Escaping means replacing every dangerous character in its escaped version.
• For example:

• ' == \'
n This is the least effective because it is error-prone:

• It is very easy to forget to escape an input, especially in big web applications
n Then the security of this method relies on the security of the escaping
function used. In the past, some bypasses to such functions where common:

• https://lonewolfzero.wordpress.com/2017/07/03/addslashes-multibyte-sql-injection-
mysql-and-php-case-study/

Preventing SQL injection

n Prepared statements are a better alternative
n They work similarly to the "escape everything" solution, but they are less
error prone and they work way better
n They separate the code of the query from the input data so that the database
knows which part is SQL and which is data

Preventing SQL injection

n For example, PHP by default comes with PHP Data Objects (PDO)
extentions, a class that permits to do prepared statements:

n This code will send to the database the query and separately the username
and the password. In this way the database knows that :username and
:password don't contain any code

$sth = $dbh->prepare('SELECT * FROM users WHERE username =
:username AND password = :password');
$sth->bindParam(':username', $username);
$sth->bindParam(':password', $password);

Preventing SQL injection
n The best way to avoid completely SQL Injections is to avoid writing queries
n This is possible when using an Object–relational mapping (ORM)
n The idea is simple:

• Instead of writing a query anytime we need some data, the programmer model the data
she/he need as an object, and then she/he works with that

