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Physical Memory vs Virtual Memory?
• Physical memory refers to the actual, tangible

memory modules installed in a computer.

• Virtual memory is a memory management
technique that extends the available memory
beyond the physical RAM.
• It creates an illusion for the operating

system and applications that there is
more RAM than physically exists.

• Virtual memory uses techniques like paging
and swapping to manage the transfer of data
between physical memory and the storage
device.
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Physical Memory vs Virtual Memory
• The operating system uses a memory management unit (MMU)

to translate virtual addresses used by programs into physical
addresses in the RAM.
• This translation allows the programs to operate as if they

have access to a large, contiguous block of memory.

• When the physical memory is insufficient, virtual memory lets
the operating system to use a portion of the computer's non-
volatile storage as an extension of the physical RAM.
• Pages of data are swapped between physical memory

and the storage device as needed.
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Paging – at a very high level
• Each process has its own virtual address space, which is divided into pages. 

• The size of  a page is typically 4 KB, but this can vary.

• Physical memory is also divided into pages, called frames, generally 4KB large.

• The Linux kernel maintains page tables for each process. 
• Page tables map the virtual addresses to the corresponding physical addresses
• Each entry stores, along with the Physical Frame Number, some information about the page.

• Linux uses various optimization techniques, such as multilevel page tables, to efficiently manage 
large virtual address spaces, but we’ll ignore them for the time being.
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Paging – at a very high level
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Intro to DRAM
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Dynamic Random-Access Memory Basics
• It’s called dynamic because needs to be refreshed, but it’s cheaper and smaller than Static RAM.

• It has relatively fast access speeds, but slower than SRAM

• Each cell is composed of  1 capacitor and 1 transistor

• DRAM stores data as electrical charges in capacitors:
• Each bit of  data is represented by the presence or absence of  an elec. charge in a capacitor. 
• The charge in the capacitors needs to be refreshed periodically, as it leaks away over time.

• DRAM is volatile, meaning it loses its stored information when power is removed...
• Tip: look at cold boot attacks ⛄
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Dynamic Random Access Memory Basics
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Dynamic Random Access Memory Basics
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Dynamic Random Access Memory Basics
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DRAM Characteristics
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• We mentioned that:
• The charge in the capacitors needs to be refreshed periodically, as it leaks away over time.

• Also, cells are REALLY small (20 to 30 nm, or less)
• Capacitors can thus only hold a tiny charge

• Little difference between a 1 or 0
• They’re tightly packed

• Little isolation among cells

• As technology evolves, cells keep decreasing in size
• E.g., DDR3 cells were larger than DDR4 ones.



Dynamic Random Access Memory Basics
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• How do you interact with a DRAM module?
• You don’t, the CPU Memory controller does. It’s transparent to the user.
• The DRAM protocol specifies the available commands, which are standardized.

• We will focus on the 3 most important commands:
• PRECHARGE a.k.a store: write the row buffer content back to its original row

• ACTIVATE a.k.a. load: load row into row buffer

• REFRESH: technically, same as ACTIVATE, but with shorter timing constraints.



DRAM: starting point
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DRAM: ACTIVATE
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DRAM: PRECHARGE

Introduction to Hardware Vulnerabilities



What if…
• … there was a way to accelerate the leakage? 

• … that leakage caused perturbations in the adjacent cells?

I’ll show you that

• … we can gain read and write access to the whole physical memory!

• … we can gain root privileges without exploiting any software vulnerabilities!

Introduction to Hardware Vulnerabilities



Rowhammer
DRAM vulnerability



What is Rowhammer?
• Rowhammer is a hardware vulnerability and reliability issue that affects DRAM. 

• Causes: tiny chargers in capacitors and tightly packed cells suffer from parasitic currents.

• Consists in repeatedly activating ("hammering") a row of  memory cells to induce errors in 
nearby rows. 
• The ”hammered” rows are called attacker rows
• The adjacent ones are called victim rows.
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Single-sided

Types of patterns

Double sided



What is Rowhammer?
• Repeated activations of  one (or more) row cause intense electrical activity in the memory array. 

• This also induces a disturbance in adjacent rows, leading to potential bit flips in those rows.

• Which devices are vulnerable? 
• Most DDR3 modules
• Almost all DDR4/LPDDR4 modules
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What can you do with a bitflip?
Definition: a bitflip is a change in state of  a DRAM cell:

• E.g., From 0 à 1, or vice versa.

• Are all bitflips exploitable?
• No, it depends (among other things) on the index of  the bit that flipped

• Spoiler: we need to flip a bit in the PFN in a PTE

• Exploitable:        0x8001000230 à 0x8000000230
• Non exploitable: 0x8001000231 à 0x8001000230

• Why? 
• Remember the structure of  a PTE: a flip in the last 12 bits does not change the PFN
• They might still be useful…
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Rowhammer overview
The attack can generally be divided in 3 phases:

1. Memory Templating
• Am I able to reliably trigger the same, exploitable bitflips?

2. Memory Massaging
• How can I manage to cause the victim to put data at a vulnerable (or arbitrary) position?

3. Exploitation
• How can I escalate privileges or leak sensitive information?
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Exploiting bitflips
• If  we manage to flip a bit in a PTE, such that it makes the PTE point to a (last-level) page table, 

we just gained read/write access to the whole RAM.
• How can we do that? 
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Exploiting bitflips
• If  we manage to flip a bit in a PTE, such that it makes the PTE point to a (last-level) page table, 

we just gained read/write access to the whole RAM.
• How can we do that? 

• In fact, by accessing the virtual address corresponding to the flipped PTE, we can edit the Page 
Table at will. 

• By changing the value (the physical frame number) of  one (or multiple) entry, we can easily 
sweep all the RAM.

• For example, we could find the data structure holding the permissions of  the current
process, change them to root and escalate privileges.
• https://elixir.bootlin.com/linux/latest/source/include/linux/cred.h
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Or… shellcode injection!
• Another option to escalate privileges is the following:

1. Find an executable which is world readable, owned by root and with the setuid bit set.
• sudo is a great candidate for this.

2. Load it into memory (with the read only flag), ask the OS (mmap) to use one of  the virtual 
addresses covered by the corrupted page table

3. Change the _PAGE_RW bit to gain write access.
4. Replace the content of  the chosen executable with a program that elevates privileges 

• (legitimate operation, the file is still owned by root and still has the setuid bit set) 
and spawns a shell.

5. You just gained root access to the machine J

• But it will be hard to exploit this… right? 
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A quick demo
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Mitigations
• ECC? 

• Makes it harder but does not solve the problem

• Increase refresh frequency?
• Terrible impact on performance and doesn’t really fix the problem.

• Target Row Refresh (TRR): ideal mitigation
• Rowhammer mitigation which refreshes victim rows (hopefully) before they flip.
• Very closed source: not disclosed to researchers
• Very effective against the original, uniform Rowhammer patterns

• Problem: limited capabilities in tracking victim rows due to lack of  resources
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Pseudo-TRR vs TRR
• Pseudo-TRR

• Mitigation implemented on the CPU Memory Controller
• Not documented
• Present only on very few Intel CPUs
• Unusable in practice, due to DRAM modules not following the standard

• (Declaring the module is Rowhammer-free, while evidently it isn’t)

• TRR:
• Mitigation implemented on DIMM
• Few resources available
• Not documented
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(pseudo-)TRR
• How does the mitigation work?

• Samples activations
• Keeps track of  the most accessed rows
• If  above threshold, refresh to prevent bitflips

• However,
• It can only track a handful of  aggressors 
• It is possible to avoid sampling
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TRR has been defeated as well…
• TRRespass

• Fuzzer that leverages aggressor row location and cardinality (number of  aggressors) to 
generate new patterns

• Able to bypass TRR on 40% of  DDR4 DIMMS

• Blacksmith
• Fuzzer that generates non-uniform hammering patterns
• 100% of  the tested DIMMS were vulnerable
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Blacksmith
• New class of  non-uniform Rowhammer access patterns that bypass in-DRAM Target Row Refresh 

(TRR) while operating in a production setting.

• Observation:
• Smaller technology nodes make underlying DRAM technologies more vulnerable, and 

significantly fewer accesses are nowadays required to trigger bit flips

• Three temporal properties, namely 
• order (phase)
• regularity (frequency)
• and intensity (amplitude)

play a crucial role in constructing non-uniform patterns that can escape TRR.
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REGA - Refresh-generating activations
• Rowhammer is caused by activations

à we need a way to issue refreshes with each activation.

• It’s a hardware, on-DIMM mitigation, which modifies the row buffer

• Essentially, it consists in adding a second series of  (low-overhead) sense amplifiers which act 
like a buffer to the original sense amplifiers.
• The new sense amplifiers take care of  the reads/writes, 
• allowing the preexisting ones to refresh other rows.
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Dynamic Random Access Memory  Basics
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Rowhammer attacks 
beyond local machines
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Memory Deduplication
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Memory Deduplication  😈
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Flip Feng Shui
• Flip Feng Shui (FFS) is a new exploitation vector that allows an attacker to induce bit flips over 

arbitrary physical memory in a fully controlled way. 

• FFS relies on two underlying primitives: 
• the ability to induce bit flips in controlled (but not predetermined) physical memory pages;
• the ability to control the physical memory layout to reverse-map a target physical page into 

a virtual memory address under attacker control

• By abusing Linux’ memory deduplication system (Kernel Same-page Merging) [apparently very 
popular in the cloud], and the widespread Rowhammer DRAM bug, an attacker can reliably flip a 
single bit in any physical page in the software stack with known contents.
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Throwhammer
• The common assumption is that attackers first need to obtain code execution on the victim 

machine to be able to exploit Rowhammer 
• either by having (unprivileged) code execution on the victim machine or by luring the victim 

to a website that employs a malicious JavaScript application. 

• Instead, an attacker can trigger and exploit Rowhammer bit flips directly from a remote machine 
by only sending network packets. 
• This is made possible by increasingly fast, RDMA-enabled networks, which are in wide use in 

clouds and data centers

• As bit flips occur at the physical level, they are beyond the control of  the operating 
system and may well cross security domains.
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Throwhammer
• In the original experimental setup, they observed bit flips when accessing memory 

• 560,000 times in 64 ms, 
• which translates to 9 million accesses per second. 

• Even regular 10 Gbps Ethernet cards can easily send 9 million packets per second to a remote 
host that end up being stored on the host’s memory.

• The attack relies on the commonly-deployed RDMA technology in clouds and data centers for 
reading from remote DMA buffers quickly to cause Rowhammer corruptions outside these 
untrusted buffers. 

• Compared to local attackers, remote attackers can only target memory that is allocated for DMA 
buffers. Hence, instead of  protecting the entire memory, we only need to make sure that
these buffers cannot cause bit flips in the rest of  the system.
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Throwhammer
• Throwhammer has two components: 

• a server
• and a client process 

running on two nodes connected via an RDMA network. 

• On the server side, we allocate a large virtually-contiguous buffer and configure it as a DMA 
buffer to the NIC. 
• We set all bits to 1 when checking for 1à0 bit flips and vice versa.

• On the client side, we repeatedly ask the server’s NIC to send us packets with data from various 
offsets within this buffer. 

• Given the remote nature of  our attack, we cannot make any assumption on the physical 
addresses that map our target DMA buffers and cannot rely on side channels for 
inferring this information
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Drammer
• An attacker has control over an unprivileged Android app on an ARM-based device and wants to 

perform a privilege escalation attack to acquire root privileges. 

• No constraints on the attacker-controlled app or the underlying environment. 
• In particular, the attacker-controlled app has no permissions, and the device runs the latest 

stock version of  the Android OS with all updates installed, all security measures activated, 
and no special features enabled.

• Drammer implements an attack which is deterministically able to gain root privileges, by gaining 
write access to physical memory and becoming thus able to change the current process 
permissions.
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Recap
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CPU Caches



CPU Caches
• Faster Access: 

• provides quicker access to frequently used data 
compared to fetching it from the main memory (RAM).

• Cache Line:
• Data is stored in cache lines, small blocks of contiguous 

memory.

• It’s the least amount of data you can address 
(spatial locality)
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If  data is in cache,

Then load it from there à FAST

Data Access

If  not,

Load from RAM à SLOW



Flush and Reload
Flush and Reload is a side-channel attack that exploits cache behavior to infer sensitive 
information being processed by a victim application.

Remember:
• Cache access times depend on whether the data is already in the cache or needs to be 

fetched from RAM.
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Flush and Reload
Flush and Reload is a side-channel attack that exploits cache behavior to infer sensitive 
information being processed by a victim application.

How it works:
1. Flush:

• The attacker flushes a specific memory region from the cache. This forces the victim's 
data to be loaded from RAM when accessed.

• Use dedicated instructions (_mm_clflush if  available, all CPUs support it) 
• or build an eviction set if, for instance, running from a browser.

2. (Victim) Access:
• The victim application accesses data in the flushed region, causing it to be loaded into 

the cache.
3. Reload:

• The attacker monitors the time it takes to reload the flushed memory region into the 
cache. Short reload times indicate that the victim accessed data in that region.
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1) Fetch
• The CPU fetches the next instruction from memory in the 

order it appears in the program.

2) Decode

3) Execute

• The fetched instruction is decoded to determine the 
operation to be performed and the operands involved.

• The decoded instruction is executed, and the results are 
stored in the appropriate registers or memory locations.

In-order 
Execution

1) Fetch …



The problem
• Dependency chains and stalls can occur when an instruction depends on the result of  a 

previous instruction.

• e.g., if (condition)
x = myarray[0]

• There is a stall while the CPU evaluates the condition. 
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Pipeline stalls and bad resource utilization à wasted performance

How do we fix this?
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The solution
• Out-of-order execution is a CPU optimization technique that allows the processor to execute 

instructions not necessarily in the order they appear in the program.

• It predicts the likely outcome of  branch instructions to execute instructions speculatively.
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Out-of-order Execution
• Results:

• Increased throughput by minimizing pipeline stalls caused by dependencies, keeping the 
CPU busy à better resource utilization

• What if  the speculation was wrong?

• The results of  the mis-predicted instructions are discarded, and the CPU reverts to the 
correct state.
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Out-of-order Execution – issues
• The instructions still impose side effects on the microarchitecture (cache). 

• For example, transient secret-dependent memory operations leave observable traces in the 
caches despite being rolled back.
• READ:  char value = probe_buf[*secret_ptr * {...}];
• WRITE: probe_buf[*secret_ptr * {...}] = 0x69;

• The OS performs a check on whether the program has the privileges to access the pointer.

• Even if  the pointer cannot be (legally) accessed, its data will be very likely found in L1d cache
• x = a_very_secret_kernel_array[0]
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Transient Execution 
Attacks
Meltdown, Spectre

speculative execution 
optimization implemented in a 
microprocessor is exploited to 

leak secret data



Meltdown
• Result: privileged memory can be transiently used by a user-mode program — essentially 

breaking the isolation between user and OS.
• You can read data from any address that is mapped to the current process's memory space.
• (Often, this means a great portion of  physical memory)

• Affects basically every CPU (older than Coffee Lake Refresh), except for AMD. Why?
• Even iPhones, Apple TVs, IBM Z systems
• https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html

• Cause: 
• To efficiently handle OS interactions like system calls and interrupts, kernel memory is 

commonly mapped in the address space of  the user processes. 
• The kernel memory is marked inaccessible from the process by clearing the _PAGE_USER bit 

in its respective PTEs. 
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Meltdown
• Result: privileged memory can be transiently used by a user-mode program — essentially 

breaking the isolation between user and OS.
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Meltdown
• Result: privileged memory can be transiently used by a user-mode program — essentially 

breaking the isolation between user and OS.

• Cause: 
• To efficiently handle OS interactions like system calls and interrupts, kernel memory is 

commonly mapped in the address space of  the user processes. 
• The kernel memory is marked inaccessible from the process by clearing the _PAGE_USER bit 

in its respective Page Table Entries. 
• Due to the deferred check of  this bit, however, Meltdown attacks transiently access this 

memory. 
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Meltdown
• Result: privileged memory can be transiently used by a user-mode program — essentially 

breaking the isolation between user and OS.

• Cause: 
• Due to the deferred check of  this bit, however, Meltdown attacks transiently access this 

memory. 
• This allows for leaking secrets like browser data, passwords, SSH keys, or anything in 

physical memory that can be brought into L1d. 
• After the check, the incorrectly executed instructions are rolled back. 
• However, the instructions still impose side effects on the microarchitecture. 

• For example, transient secret-dependent memory operations leave observable
traces in the caches despite being rolled back.
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Show me the code!
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Okay, I might have lied a bit… what’s wrong?
• Directly accessing kernel memory from user mode results in a Page Fault (#PF), which will signal 

a Segmentation Fault (SIGSEGV) to your user process, causing it to exit with an error status. 

• However…
• there are at least three different methods to suppress the PF from the illegal memory access 

to later infer what memory was illegally accessed:
1. Registering a Signal Handler
2. Using TSX
3. Using Spectre J
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How could it be fixed?
• Mitigation of  the vulnerability requires changes to the hardware or to the operating system 

kernel code, including increased isolation of  kernel memory from user-mode processes.

• Linux kernel developers have referred to this measure as kernel page-table isolation (KPTI)

• It was reported that implementation of  KPTI may lead to a reduction in CPU performance.
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KPTI
• Leaves only a minimal set of  kernel-space mappings that provides the information needed to 

enter or exit system calls, interrupts and exceptions
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Spectre v1 – Bounds Check Bypass
• Result: conditional branch misprediction

• e.g., You can bypass a bounds check on an array.
• Very limited possibilities, but can be combined with Meltdown to suppress seg-faults

• Affected basically every CPU 

• How it works: 
• Train the branch predictor at a given program location to go e.g., Taken
• Flush the data that controls the branch
• Give a branch input that makes it go the other way
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Spectre v1 – Bounds Check Bypass
• Result: conditional branch 

misprediction
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Branch Target Buffer (BTB)
• Main task: store information about the target addresses of  branch instructions, helping the 

processor to predict the next instruction to execute.

• The BTB stores entries that map branch instructions to their likely target addresses.

• How it works:
1. BTB Entry Lookup:

• When a branch instruction is encountered, the CPU looks up the BTB to check if  there is an entry for that 
specific branch.

2. Prediction and Speculative Execution:
• If  an entry is found in the BTB, the processor uses the associated target address as the next instruction to 

execute speculatively

3. Validation and Commit:
• If  the prediction was correct, the speculative work is committed, and the pipeline continues without interruption. 

• If  the prediction was incorrect, the incorrectly executed instructions are discarded, and the correct path is taken.
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Spectre v2 – Branch Target Injection
• Result:

• Speculatively executes instructions at a malicious target address, allowing the attacker to 
infer sensitive information. 

• Affected basically every CPU 

• How it works: 
• The attacker manipulates the BTB, which is a component of  the branch prediction 

mechanism. 
• By influencing the BTB, the attacker can cause the processor to speculatively execute code 

that it shouldn't, potentially leaking sensitive information.
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Other Spectre vulnerabilities
1. SpectreRSB (Return Stack Buffer or CVE-2018-3693):

• Exploits the Return Stack Buffer, a microarchitectural structure, to speculatively execute 
instructions that leak sensitive information.

2. SpectreNG (Next Generation Spectre) Variants:
• Encompasses several variants like Spectre-NG V1 (CVE-2018-3639) and Spectre-NG V2 

(CVE-2018-3640), which involve speculative execution attacks exploiting various 
aspects of  modern processors.

3. SpectreBHB (Bounds-Hitch Bound Check Bypass or CVE-2020-8694):
• Exploits the branch predictor and speculative execution to bypass bounds checks in 

software, potentially leading to information leakage.

4. Many more…
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Recap
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Thank you
Filippo Visconti

{filippo@, www.}filippovisconti.com


