
©
 2

0
1

7
-2

0
2

4

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

smart contracts

1

©
 2

0
1

7
-2

0
2

4

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

smart contracts

• a smart contract allows the users to customize the consensus
rules to support specific applications
– i.e., the consensus rules ask for the successful execution of all smart

contracts executed within each transaction.

• it is not a “legal contract”
it is just a software executed by nodes during the validation
– they may realize/support legal contracts

– it might be recognized as a contract, if parties agree that “code is law”

– however, agreement between parties is essential for a legal contract
since code is usually hard to understand, the agreement can hardly be
based on it

• in Italy they are regulated by Legge 11 feb. 2019 n.12

2

©
 2

0
1

7
-2

0
2

4

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

intrinsic security features of SCs

• when you ask a centralized server to execute something, you
have to trust the server

• when you ask a blockchain for a smart contract execution,
correctness of execution is guaranteed
under the assumptions of used consensus approach

• however, input and output (and state, for Ethereum) are
essentially public

• Integrity: OK, availability: OK, confidentiality: NO
– lack of confidentiality should be carefully considered when

compliance with privacy regulation is needed

3

©
 2

0
1

7
-2

0
2

4

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

smart contracts flavors
• in Bitcoin they were attached to UTXOs and used to check if related

cryptocurrency can be spent

– just true/false predicates

– spent UTXO the contract cannot be used

– no state persistency

• SCs are stored as bytecode in the blockchain as an independently
addressable account

– they do have state and perform computations (part of the consensus rules), not just
checks

– many take this approach (e.g., Ethereum, EOS, Cardano, etc.)

• just the bytecode hash is stored

– to save space

– in this case the transaction should provide the bytecode which is checked against the
hash (used in Algorand ASC1)

• the whole source code may be stored

– this make code verification easier, but the blockchain should take in charge of
compilation as part of consensus 4

©
 2

0
1

7
-2

0
2

4

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

smart contract problems

• SCs are written by users and run by nodes

• errors in SCs and abuse may impact the whole network
– the halting problem

• what if the execution does not finish?

– resource consumption
• what if the execution consume a large amount of memory or takes a lot

of time?

• in permissioned DLT the subject that own the contract is
known
– a timeout on the execution is usually enough to avoid faulty

code to impact the whole blockchain network

5

©
 2

0
1

7
-2

0
2

4

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

smart contracts in permissionless DLTs
two approaches:

• limit the expressiveness of the smart contracts

a typical choice:

– smart contracts are attached to accounts to allow just the customization of transaction
acceptance

– Turing incomplete (no loops)

– no persistent state

this is the Bitcoin approach

• ask a payment for resource consumption and limit it

– smart contracts are independent object with their own account and balance

– they allow persistent state (paid)

– Turing completeness (pay each executed instruction),
i.e., the fees of the transaction depends on the resources consumed by the
execution (part of the consensus rules)

– fees are usually transferred to block producers

this is the Ethereum approach
6

©
 2

0
1

7
-2

0
2

4

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

the Ethereum smart contract model

• in Ethereum we have two kinds of accounts

– Externally Owned Accounts (EOA): owned by users
• a user has a private key to unlock founds, EOA are identified by a public key

(address)

– contract accounts: associated with a smart contract
• no private key (no user), just an identifier of the account

• this also stores the state of the SC

• the execution consumes gas which is paid with Ethereum
cryptocurrency (ETH)

– execution is performed on the Ethereum Virtual Machine (EVM)
• which executes bytecode

– each instruction has its gas consumption

7

©
 2

0
1

7
-2

0
2

4

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

Ethereum SC and contracts accounts

• each contract account is associated with a software
object, which is an instance of the smart contract
– very much like a software object of OOP

• each smart contract has a state stored in its account
– persisted in the blockchain

• smart contract has operations
– to be called externally by a transaction or by another smart

contract (in the same transaction)

8

©
 2

0
1

7
-2

0
2

4

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

operations

• an operation is executed within a transaction

• it can…
– change the state of the object

– take parameters

– return values

• essentially, they are the methods of the object/contract

9

©
 2

0
1

7
-2

0
2

4

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

accounts recap

EOA contract accounts

associated private

keys

yes no

balance yes yes

other persistent

values/variables

no yes

it also stores EVM bytecode

as a transaction

recipient…

• can receive ETH • can receive ETH

• always executes an operation

(possibly the fallback one)

as a transaction

sender…

• can send ETH

• can call operations on a

contract

contracts cannot really send

transaction but

• can call operations on another

contract

in the same received

transaction

• can send ETH

10

©
 2

0
1

7
-2

0
2

4

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

Ethereum transactions fields
• (sender address)

• recipient address

• value (exchanged ETH)

– this is transferred from the balance of the sender address to the one of the recipient address

• data

• nonce (increasing, to avoid replay attack)

• gas limit

– this limit the execution, it should be high enough for a regular execution to complete but not too
high, since this is the limit of what is paid if the stimulated operation loops indefinitely

• gas price

– this is the amount paid for one unit of consumed gas in ETH. The node that makes the block could
deem it too low and never pick the transaction from the pool.

• max fee = gas price * gas limit

– actual fee depends on the consumed gas which depends on the executed code

– if a tx runs “out of gas”, state changes are reverted, but fee is taken from the sender balance
anyway

11

©
 2

0
1

7
-2

0
2

4

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

Ethereum: contract lifecycle

• written in a high-level language

– Solidity (javascript-like, statically typed)

• compiled to EVM bytecode
– EVM: Ethereum Virtual Machine (used also by other DLTes)

• deployed
– transaction sent to special address 0x0 and bytecode in the data field of tx

– Ethereum returns the address of the contract

• operations are called on the contract
– as part of tx’s, which may update its state, change balance, call other

contracts (within the same tx, tx sender pays), etc.

• cannot be deleted, but the contract can destruct itself
– the current balance must be sent to some address

12

©
 2

0
1

7
-2

0
2

4

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

a solidity example

• anyone can withdraw funds from this contract

13

©
 2

0
1

7
-2

0
2

4

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

evolution

• state variables

• constructors

• inheritance

• custom
modifiers

• assertions

• events

14

©
 2

0
1

7
-2

0
2

4

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

simple things might be complex

• for example, requiring a multisignature to unlock funds

15

©
 2

0
1

7
-2

0
2

4

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

libraries

• libraries can be imported in a project as included code…

• …or from the blockchain!
– …if you trust it!

– operations can call other operations in other smart contracts

– the execution occurs in the same transaction, paid with the gas
for that transaction

16

©
 2

0
1

7
-2

0
2

4

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

remix
• a basic web based editor, emulator,

debugger

• https://remix.ethereum.org

17

©
 2

0
1

7
-2

0
2

4

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

contracts security

• contracts are usually not very long

• writing contracts is easy

• writing secure contracts is difficult
– Solidity/EVM semantic may be subtle

– mistakes may cost a lot of money!
Atzei N. et al. A survey of attacks on ethereum smart contracts. International Conference on
Principles of Security and Trust 2017

18

©
 2

0
1

7
-2

0
2

4

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

reducing the costs

• executing a smart contract on a permissionless blockchain is
expensive

• approaches to cost reduction

– make smart contracts as simple as possible

– move as much as possible of the system off-chain
• usually centralizing part of the system

• level 2 solutions (a.k.a. roll-ups)

– move computation and storage off-chain

– use the original blockchain to ensure integrity

– may coordinate off-chain p2p infrastructures

– may involve additional blockchains (side-chains)

19

©
 2

0
1

7
-2

0
2

4

m

a
u

ri
z
io

p
iz

z
o

n
ia

 –
c
y
b

e
rs

e
c
u

ri
ty

 –
u

n
ir

o
m

a
3

a comparison of some real blockchains
Bitcoin Ethereum EOS Algorand Cardano Solana Avalanche

consensus PoW PoS PoS PoS PoS PoH Snowflake

blocktime ~10min ~12sec ~1sec ~4sec ~20sec ~0.5sec ~3sec

language stack

based,

assemb

ly-like

solidity, js-

like, EVM

C++ TEAL,

assembly-

like

Plutus,

Haskell-

like

Rust, C, C++,

compiled into

Solana

Bytecode

Format

solidity, js-like, see

Ethereum (EVM)

pros famous famous, well

supported,

easy to

program

cheap cheap cheap scalability modular

architecture, see

Ethereuem for pros

cons slow,

costly

hard to write

secure smart

contracts,

costly

not

much

decent

ralized

hard to

program

you have

to learn

Haskell

functional

language

PoH has

received some

critics and

attacks

new

20

