

1

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

disk scheduling

2

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

(regular) Disk Performance
Parameters

● To read or write, the disk head must be
positioned at the desired track and at the
beginning of the desired sector

not on
the book

● this holds only for regular disks
● solid-state/flash drives and “virtual drives”

really have different characteristics!

3

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

Disk Performance Parameters
● Seek time

– Time it takes to position the head at the
desired track

– 1 to 20 ms. (average 8 ms)
● Rotational delay or rotational latency

– Time it takes for the beginning of the sector
to reach the head

– for 7200 rpm -> 8.3 ms for a full rotation and
4.2 for the average

not on
the book

4

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

Disk Performance Parameters

● access time
– sum of seek time and rotational delay
– the time it takes to get in position to read or

write
● data transfer occurs as the sector moves

under the head
– transfer occurs in the disk buffer...

– ...then in the controller buffer...

– ...than in main memory

– data transfer is much faster than access
● several hundreds of sectors per track in current HD

not on
the book

5

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

disk scheduling:
formal statement

● input:
– a set of requests (tracks to seek)

– current disk head location.

– other algorithm state (e.g. current head
direction)

● output: the next request to serve

not on
the book

6

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

goals
● max throughput
● fairness

– disk scheduling with priorities is rare
– avoid starvation

– avoid very long waits

● starvation vs. unfairness
– starvation: a request never served
– unfairness: certain requests wait longer
– warning: often confused!

not on
the book

7

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

FIFO

● process request sequentially
● fair, no starvation
● if there are many processes it performs

like random scheduling

8

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

LIFO

● Last-in, first-out
● Good for transaction processing systems

– The device is given to the most recent user
so there should be little arm movement

● possibility of starvation since a job may
never regain the head of the line

● only of theoretical interest

9

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

shortest service time first

● Select the disk I/O request that requires the least
movement of the disk arm from its current position

● optimal throughput!

● highly unfair!

● starvation when consecutive requests are for near
tracks

not on
the book

10

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

elevator
● famous, also called SCAN or LOOK
● arm moves in one direction only, satisfying all

outstanding requests until it reaches the last track in that
direction

● at the end direction is reversed

● good throughput

● unfair: maximum wait time for tracks on the edge is
twice that for the tracks in the middle (same average)

● starvation only for continous read on the same track

● used in practice

not on
the book

11

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

one-way (or cyclic) elevator
● also called C-SCAN

● like elevator but restricts scanning to one direction only

● when the last track is reached, the arm is returned to the
opposite end and the scan begins again

– performance penalty with respect to elevator
● good throughput

● fair

● starvation only for continous read on the same track

● used in practice

not on
the book

12

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

request merging

● requests for adjacent blocks are treated as
one

● avoid access time penalty
– use the access of the first request

● may increase performance
– e.g. irrelevant for SSTF, important for FIFO

● used in real systems

not on
the book

13

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

the “write-starving-reads”
problem

● writes can be issued sequentially
– processes usually do not depend on write

request been actually fulfilled

● read are not usually issued sequentially
– processes wait for the data before requesting

the next read operation

● not really “starvation”, actually is
“unfariness”

not on
the book

14

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

linux
● noop

– FIFO + request merging

● deadline
– one-way elevator

– reads cannot wait more 500ms, and writes 5s,
to avoid the write-starving-reads problem

● but it seeks back an forth to meet deadlines!

not on
the book

15

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

linux

● anticipatory
– request merging

– deadline approach

– after a read, waits 6ms for another read
● avoid the write-starving-reads problem
● no seek back and forth

– waiting is not always performed
● heuristics to estimate the behavior of the running

processes are implemented

– good for streaming, bad for dbms

not on
the book

16

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

linux
● complete fair queueing (cfq)

– request merging

– one-way elevator

– fair with a round robin approach
● schedule requests of each process for a few

milliseconds
● if no more requests for the scheduled process, wait

a bit for further requests in the time slice
● support process I/O priorities (command ionice)

– good for mutliuser environments

– latest versions performs as good as
“anticipatory” for streaming

– usually set as default

not on
the book

17

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

linux: disk scheduling switching

● scheduling algorithm can be switched
– at run time

– per device

pisolo:~# cat /sys/block/hda/queue/scheduler

noop anticipatory deadline [cfq]

pisolo:~# echo anticipatory >
/sys/block/hda/queue/scheduler

pisolo:~# cat /sys/block/hda/queue/scheduler

noop [anticipatory] deadline cfq

not on
the book

18

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

solid state (flash/pen) drives
● no seek time!

– elevator does not bring any benefit

● random writes performs poorly on SSD

● write-starving-reads is still a problem

– but this is an application behavior
problem

● open issues

– auto select scheduler?

– which scheduler!
● noop is recommended

● google for speed-up tricks for SSD or on
installing DBMS on SSD

not on
the book

19

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

virtual drives (virtual machines)

● it should be treated as an ideal drive
● optimization should be performed by the

virtualization layer
● different underlying technologies are

possible
– plain file on conventional disk

– plain file on SSD

– Storage Area Network

– etc.

not on
the book

20

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

RAID

not on
the book

21

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

RAID

● Redundant Array of Independent Disks
● Set of physical disk drives viewed by the

operating system as a single logical drive
● improves...

– ...performance

– ...fault tollerance when one or more hard
drives fail

● availability: the service may still be available when
a fault occour

● data security: no data loss

not on
the book

22

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

degradation, rebuilding, and
spare disks

● when a disk fails the array enters
“degraded” (or critical) state
– performance and redundancy is not as the full

working array

● when the disk is substituted it must be
updated with the data to fully work in the
array: rebuilding
– lasts hours, performance may be even worse

● substitution can be automatic in systems
that have unused disks available (hot
spare disk)

not on
the book

23

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

techniques

● mirroring
– data are stored duplicated on (at least) two

disks

– duplexing: the two disks are controlled by a
distinct controller

● parity or humming error correction code
– redundant bits are stored with the data

● striping
– “consecutive” data are distributed across the

physical drives of an array

– bit, byte, block level granularity

not on
the book

24

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

several kinds of RAIDs
warning: this terminology is not followed by everybody

● RAID0 used a lot, inexpensive

● RAID1 used a lot, inexpensive

● RAID2 (not used any more)

● RAID3

● RAID4 similar to RAID3

● RAID5 used a lot

● RAID6 rare, expensive

● RAID7 proprietary

● nested (or multiple) RAID

– 01/10, 03/30, 05/50, 15/51, ecc.

not on
the book

25

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

type of requests

● sequential I/O
– big files (streaming, bulk)

– blocks are stored contiguously

● random I/O
– high frequency of requests for a very small

amount of data (OLTP)

– blocks are scattered through the disk

● read, write

not on
the book

26

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

RAID 0 (non-redundant)

● just striping
● I/O: always very good

– on average speedup xN (almost)

● failure of one disk makes all the array to fail

not on
the book

27

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

RAID0: mean time
between failures

● MTBF= 1/λ
– where λ is the fault frequency

● if a system A fail when one of its
components D1,..., DN fails
λ

A
=λ

D1
+λ

D2
+...+λ

DN

– frequencies can be summed up if faults are
independent

● if disks are identical and in RAID0

● MTBF
Array

=MTBF
Disk

/N

not on
the book

28

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

RAID 1not on
the book

4
3
2
1

4
3
2
1

● just mirroring (or duplexing)
– rarely more than one mirror

● one disk may fail but the other still works
● I/O:

– writes must be done on both disks

– reads can be done in parallel on the two disk

● limited in size by the size of a single disk

29

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i RAID 2

● bit-level striping, disks should be syncronized
● error correction by humming code, useful for

high bit error rate
– but now all HD have error correction code built in!

● requires expensive proprietary hw, never used!

not on
the book

30

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

RAID 3

● byte-level striping with dedicated parity disk
– a disk block contains more stripes

● usually less then 1024 bytes in length

● read: very good, see RAID0
● write: poor, parity disk is a bottleneck,

computation load on the CPU, hw
implementation is preferred

● tolerant to 1 disk failure (rebuilding by XOR)

not on
the book

31

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

RAID3 write: computing parity

● in the same row: stripes A, B, C and parity
stripe P = A xor B xor C

● A is written as A'
● new parity P' can be computed in two ways

– P' = A' xor B xor C
● read B and C? a cache may be very much useful

– P' = A' xor A xor P
● A may be read and in cache, P should be read.

not on
the book

32

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

RAID 4

● block-level striping with dedicated parity disk
– a stripe spans more disk blocks

● see RAID3

not on
the book

33

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i RAID 5

● block-level striping with distributed parity
● read: slightly better than RAID0 (1 disk more)
● write:

– better than RAID4 (no parity disk bottleneck)

– computation requires knowledge of the entire row
or old parity (read? cache?)

– cpu intensive, hw implementation is preferred

● tolerant to 1 disk failure (rebuilding by XOR)

not on
the book

34

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i RAID 6

● block-level striping with dual distributed parity
● two disks may fail without data loss
● read: slightly better than RAID5 (1 disk more)
● write: slightly worse than RAID5 (2 parities)
● costly

not on
the book

35

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

nested RAID arrays

● the idea: treat several raid array as a disk
and build a RAID array out of them

● notation: RAID XY
– means that you first have several RAID-X

array and you build a RAID-Y array out of
them

– warning: this notation is not followed by
everybody

not on
the book

36

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

example: RAID 10
● it is like composition of mapping functions

not on
the book

7
5
3
1

8
6
4
2

7
5
3
1

8
6
4
2

7
5
3
1

8
6
4
2

Standard RAID 0

RAID 10: that is...
 RAID 0 on top of disks implemented as RAID 1

The two mappings
are independently
performed.
This process does
not depends on the
type of RAID
considered

37

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

RAID 10

7
5
3
1

8
6
4
2

not on
the book

7
5
3
1

8
6
4
2

● striping on mirroring
● performances very very good (see RAID0

and 1)
● each RAID1 array can support a disk

failure
● good performances also in rebuilding

– only the affected array is slowed down

38

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i RAID 01

● mirroring on striping
● as RAID 10 but when one disk fails the

whole RAID0 array is considered down by
many controllers

● avoid it

not on
the book

39

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

RAID: suggested
exercises

● how are organized blocks of a logical disk in
– RAID 50, RAID 05

– RAID 51, RAID 15

– choose the number of disks as you think is more
useful

● apply the same rule for a three level RAID
– RAID 150

– this configuration is never (or rarely) used in
practice

not on
the book

40

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

just a bunch of disks (JBOD)

● a.k.a spanning, not really a RAID
configuration

● same drawbacks as in RAID0
● sw/hw complexity as in RAID0
● usable with odd drives without wasting

space
● easier disaster recovery than RAID0

4
3
2
1

8
7
6
5

not on
the book

41

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

comparison

● from www.pcguide.com

not on
the book

Capacity Availability Cost
0 2,3,4,... S*N 100% none $
1 2 S*N/2 50% $$
2 many varies, large ~ 70-80% $$$$$
3 3,4,5,... S*(N-1) (N-1)/N $$
4 3,4,5,... S*(N-1) (N-1)/N $$
5 3,4,5,... S*(N-1) (N-1)/N $$
6 4,5,6,... S*(N-2) (N-2)/N $$$
7 varies varies varies $$$$$

01/10 4,6,8,... S*N/2 50% $$$
03/30 6,8,9,10,... S*N0*(N3-1) (N3-1)/N3 $$$$
05/50 6,8,9,10,... S*N0*(N5-1) (N5-1)/N5 $$$$
15/51 6,8,10,... S*((N/2)-1) ((N/2)-1)/N $$$$$

RAID
Level

Number of
Disks

Storage
Efficiency

Fault
Tolerance

Random
Read Perf

Random
Write Perf

Sequential
Read Perf

Sequential
Write Perf

http://www.pcguide.com/

42

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

implementation
● software (in the OS)

– no need for special drivers

– may be inefficient for parity computation

– Linux: (0, 1, 4, 5, and any kind of nesting)

– Windows: XP (0,jbod), 2000 Server (0,1,5, jbod)

● hardware (in the controller)
– need special drivers/software

– efficient when parity should be computed

● hybrid (the bios drives the controller)
– need special drivers

– inefficient when parity computation is required

not on
the book

	disk scheduling
	Disk Performance Parameters
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	RAID
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	RAID 0 (non-redundant)
	Slide 27
	Slide 28
	RAID 2 (redundancy through Hamming code)
	RAID 3 (bit-interleaved parity)
	Slide 31
	RAID 4 (block-level parity)
	RAID 5 (block-level distributed parity)
	RAID 6 (dual redundancy)
	Slide 35
	Slide 36
	Slide 37
	RAID 1 (mirrored)
	Slide 39
	Slide 40
	Slide 41
	Slide 42

