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disk scheduling
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(regular) Disk Performance 
Parameters

● To read or write, the disk head must be 
positioned at the desired track and at the 
beginning of the desired sector

not on 
the book

● this holds only for regular disks
● solid-state/flash drives and “virtual drives” 

really have different characteristics!
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Disk Performance Parameters
● Seek time

– Time it takes to position the head at the 
desired track

– 1 to 20 ms. (average 8 ms)
● Rotational delay or rotational latency

– Time it takes for the beginning of the  sector 
to reach the head

– for 7200 rpm -> 8.3 ms for a full rotation and 
4.2 for the average

not on 
the book
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Disk Performance Parameters

● access time
– sum of seek time and rotational delay
– the time it takes to get in position to read or 

write
● data transfer occurs as the sector moves 

under the head
– transfer occurs in the disk buffer...

– ...then in the controller buffer...

– ...than in main memory

– data transfer is much faster than access
● several hundreds of sectors per track in current HD

not on 
the book
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disk scheduling:
formal statement

● input:  
– a set of requests (tracks to seek)

– current disk head location.

– other algorithm state (e.g. current head 
direction)

● output:  the next request to serve

not on 
the book
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goals
● max throughput
● fairness

– disk scheduling with priorities is rare
– avoid starvation

– avoid very long waits

● starvation vs. unfairness 
– starvation: a request never served
– unfairness: certain requests wait longer
– warning: often confused!

not on 
the book
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FIFO

● process request sequentially
● fair, no starvation
● if there are many processes it performs 

like random scheduling 
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LIFO

● Last-in, first-out
● Good for transaction processing systems

– The device is given to the most recent user 
so there should be little arm movement

● possibility of starvation since a job may 
never regain the head of the line

● only of theoretical interest
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shortest service time first

● Select the disk I/O request that requires the least 
movement of the disk arm from its current position

● optimal throughput!

● highly unfair! 

● starvation when consecutive requests are for near 
tracks

not on 
the book
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elevator
● famous, also called SCAN or LOOK
● arm moves in one direction only, satisfying all 

outstanding requests until it reaches the last track in that 
direction

● at the end direction is reversed

● good throughput

● unfair: maximum wait time for tracks on the edge is 
twice that for the tracks in the middle (same average)

● starvation only for continous read on the same track

● used in practice

not on 
the book
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one-way (or cyclic) elevator
● also called C-SCAN

● like elevator but restricts scanning to one direction only

● when the last track is reached, the arm is returned to the 
opposite end and the scan begins again

– performance penalty with respect to elevator
● good throughput

● fair

● starvation only for continous read on the same track

● used in practice

not on 
the book
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request merging

● requests for adjacent blocks are treated as 
one

● avoid access time penalty
– use the access of the first request

● may increase performance
– e.g. irrelevant for SSTF, important for FIFO

● used in real systems

not on 
the book
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the “write-starving-reads”
problem

● writes can be issued sequentially
– processes usually do not depend on write 

request been actually fulfilled

● read are not usually issued sequentially
– processes wait for the data before requesting 

the next read operation

● not really “starvation”, actually is 
“unfariness”

not on 
the book



 

14

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i 

linux
● noop

– FIFO + request merging

● deadline
– one-way elevator 

– reads cannot wait more 500ms, and writes 5s, 
to avoid the write-starving-reads problem

● but it seeks back an forth to meet deadlines!

not on 
the book
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linux

● anticipatory
– request merging

– deadline approach

– after a read, waits 6ms for another read
● avoid the write-starving-reads problem
● no seek back and forth

– waiting is not always performed
● heuristics to estimate the behavior of the running 

processes are implemented

– good for streaming, bad for dbms

not on 
the book
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linux
● complete fair queueing (cfq)

– request merging

– one-way elevator

– fair with a round robin approach
● schedule requests of each process for a few 

milliseconds
● if no more requests for the scheduled process, wait 

a bit for further requests in the time slice
● support process I/O priorities (command ionice)

– good for mutliuser environments

– latest versions performs as good as 
“anticipatory” for streaming

– usually set as default 

not on 
the book
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linux: disk scheduling switching

● scheduling algorithm can be switched 
– at run time

– per device

pisolo:~# cat /sys/block/hda/queue/scheduler

noop anticipatory deadline [cfq]

pisolo:~# echo anticipatory > 
/sys/block/hda/queue/scheduler

pisolo:~# cat /sys/block/hda/queue/scheduler

noop [anticipatory] deadline cfq

not on 
the book
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solid state (flash/pen) drives
● no seek time!

– elevator does not bring any benefit

● random writes performs poorly on SSD

● write-starving-reads is still a problem

– but this is an application behavior 
problem

● open issues

– auto select scheduler?

– which scheduler!
● noop is recommended

● google for speed-up tricks for SSD or on 
installing DBMS on SSD

not on 
the book
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virtual drives (virtual machines)

● it should be treated as an ideal drive
● optimization should be performed by the 

virtualization layer
● different underlying technologies are 

possible
– plain file on conventional disk

– plain file on SSD

– Storage Area Network

– etc.

not on 
the book
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RAID

not on 
the book
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RAID

● Redundant Array of Independent Disks
● Set of physical disk drives viewed by the 

operating system as a single logical drive
● improves...

– ...performance

– ...fault tollerance when one or more hard 
drives fail

● availability: the service may still be available when 
a fault occour

● data security: no data loss

not on 
the book
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degradation, rebuilding, and 
spare disks

● when a disk fails the array enters 
“degraded” (or critical) state
– performance and redundancy is not as the full 

working array

● when the disk is substituted it must be 
updated with the data to fully work in the 
array: rebuilding
– lasts hours, performance may be even worse

● substitution can be automatic in systems 
that have unused disks available (hot 
spare disk)

not on 
the book
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techniques

● mirroring
– data are stored duplicated on (at least) two 

disks

– duplexing: the two disks are controlled by a 
distinct controller

● parity or humming error correction code
– redundant bits are stored with the data

● striping
– “consecutive” data are distributed across the 

physical drives of an array

– bit, byte, block level granularity

not on 
the book
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several kinds of RAIDs
warning: this terminology is not followed by everybody

● RAID0 used a lot, inexpensive

● RAID1 used a lot, inexpensive

● RAID2 (not used any more)

● RAID3

● RAID4 similar to RAID3 

● RAID5 used a lot

● RAID6 rare, expensive

● RAID7 proprietary

● nested (or multiple) RAID

– 01/10, 03/30, 05/50, 15/51, ecc.

not on 
the book
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type of requests

● sequential I/O
– big files (streaming, bulk)

– blocks are stored contiguously

● random I/O 
– high frequency of requests for a very small 

amount of data (OLTP) 

– blocks are scattered through the disk

● read, write

not on 
the book
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RAID 0 (non-redundant)

● just striping
● I/O: always very good

– on average speedup xN (almost)

● failure of one disk makes all the array to fail

not on 
the book
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RAID0: mean time 
between failures

● MTBF= 1/λ
– where λ is the fault frequency

● if a system A fail when one of its 
components D1,..., DN fails
λ

A
=λ

D1
+λ

D2
+...+λ

DN

– frequencies can be summed up if faults are 
independent

● if disks are identical and in RAID0

● MTBF
Array

=MTBF
Disk

/N

not on 
the book
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RAID 1not on 
the book

4
3
2
1

4
3
2
1

● just mirroring (or duplexing)
– rarely more than one mirror

● one disk may fail but the other still works
● I/O:

– writes must be done on both disks

– reads can be done in parallel on the two disk

● limited in size by the size of a single disk
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● bit-level striping, disks should be syncronized
● error correction by humming code, useful for 

high bit error rate
– but now all HD have error correction code built in!

● requires expensive proprietary hw, never used!

not on 
the book
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RAID 3

● byte-level striping with dedicated parity disk
– a disk block contains more stripes 

● usually less then 1024 bytes in length

● read: very good, see RAID0
● write: poor, parity disk is a bottleneck, 

computation load on the CPU, hw 
implementation is preferred

● tolerant to 1 disk failure (rebuilding by XOR)

not on 
the book
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RAID3 write: computing parity

● in the same row: stripes A, B, C and parity 
stripe P = A xor B xor C 

● A is written as A'
● new parity P' can be computed in two ways

– P' = A' xor B xor C
● read B and C? a cache may be very much useful

– P' = A' xor A xor P
● A may be read and in cache, P should be read.

not on 
the book
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RAID 4

● block-level striping with dedicated parity disk
– a stripe spans more disk blocks

● see RAID3

not on 
the book
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● block-level striping with distributed parity
● read: slightly better than RAID0 (1 disk more)
● write: 

– better than RAID4 (no parity disk bottleneck)

– computation requires knowledge of the entire row 
or old parity (read? cache?) 

– cpu intensive, hw implementation is preferred

● tolerant to 1 disk failure (rebuilding by XOR)

not on 
the book
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i RAID 6

● block-level striping with dual distributed parity
● two disks may fail without data loss
● read: slightly better than RAID5 (1 disk more)
● write: slightly worse than RAID5 (2 parities)
● costly

not on 
the book
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nested RAID arrays

● the idea: treat several raid array as a disk 
and build a RAID array out of them

● notation: RAID XY 
– means that you first have several RAID-X 

array and you build a RAID-Y array out of 
them

– warning: this notation is not followed by 
everybody

not on 
the book
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example: RAID 10
● it is like composition of mapping functions

not on 
the book

7
5
3
1

8
6
4
2

7
5
3
1

8
6
4
2

7
5
3
1

8
6
4
2

Standard RAID 0

RAID 10: that is...
   RAID 0 on top of disks implemented as RAID 1

The two mappings 
are independently 
performed.
This process does 
not depends on the 
type of RAID 
considered
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RAID 10

7
5
3
1

8
6
4
2

not on 
the book

7
5
3
1

8
6
4
2

● striping on mirroring
● performances very very good (see RAID0 

and 1)
● each RAID1 array can support a disk 

failure
● good performances also in rebuilding

– only the affected array is slowed down
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● mirroring on striping
● as RAID 10 but when one disk fails the 

whole RAID0 array is considered down by 
many controllers

● avoid it

not on 
the book
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RAID: suggested 
exercises

● how are organized blocks of a logical disk in 
– RAID 50, RAID 05

– RAID 51, RAID 15

– choose the number of disks as you think is more 
useful

● apply the same rule for a three level RAID
– RAID 150

– this configuration is never (or rarely) used in 
practice

not on 
the book



 

40

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i 

just a bunch of disks (JBOD)

● a.k.a spanning, not really a RAID 
configuration

● same drawbacks as in RAID0
● sw/hw complexity as in RAID0
● usable with odd drives without wasting 

space
● easier disaster recovery than RAID0

4
3
2
1

8
7
6
5

not on 
the book
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comparison

● from www.pcguide.com

not on 
the book

Capacity Availability Cost
0 2,3,4,... S*N 100% none $
1 2 S*N/2 50% $$
2 many varies, large ~ 70-80% $$$$$
3 3,4,5,... S*(N-1) (N-1)/N $$
4 3,4,5,... S*(N-1) (N-1)/N $$
5 3,4,5,... S*(N-1) (N-1)/N $$
6 4,5,6,... S*(N-2) (N-2)/N $$$
7 varies varies varies $$$$$

01/10 4,6,8,... S*N/2 50% $$$
03/30 6,8,9,10,... S*N0*(N3-1) (N3-1)/N3 $$$$
05/50 6,8,9,10,... S*N0*(N5-1) (N5-1)/N5 $$$$
15/51 6,8,10,... S*((N/2)-1) ((N/2)-1)/N $$$$$

RAID 
Level

Number of 
Disks

Storage 
Efficiency

Fault 
Tolerance

Random 
Read Perf

Random 
Write Perf

Sequential 
Read Perf

Sequential 
Write Perf

http://www.pcguide.com/
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implementation
● software (in the OS)

– no need for special drivers

– may be inefficient for parity computation

– Linux: (0, 1, 4, 5, and any kind of nesting)

– Windows: XP (0,jbod), 2000 Server (0,1,5, jbod)

● hardware (in the controller)
– need special drivers/software

– efficient when parity should be computed

● hybrid (the bios drives the controller)
– need special drivers

– inefficient when parity computation is required

not on 
the book
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