

1

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

disk scheduling

2

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

Disk Performance Parameters
● To read or write, the disk head must be

positioned at the desired track and at the
beginning of the desired sector

not on
the book

3

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

Disk Performance Parameters
● Seek time

– Time it takes to position the head at the
desired track

– 1 to 20 ms. (average 8 ms)
● Rotational delay or rotational latency

– Time it takes for the beginning of the sector
to reach the head

– for 7200 rpm -> 8.3 ms for a full rotation and
4.2 for the average

not on
the book

4

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

Disk Performance Parameters

● access time
– sum of seek time and rotational delay
– the time it takes to get in position to read or

write
● data transfer occurs as the sector moves

under the head
– transfer occurs in the disk buffer...

– ...then in the controller buffer...

– ...than in main memory

– data transfer is much faster than access
● several hundreds of sectors per track in current HD

not on
the book

5

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

disk scheduling:
formal statement

● input:
– a set of requests (tracks to seek)

– current disk head location.

– other algorithm state (e.g. current head
direction)

● output: the next request to serve

not on
the book

6

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

goals
● max throughput
● fairness

– disk scheduling with priorities is rare
– avoid starvation

– avoid very long waits

● starvation vs. unfairness
– starvation: a request never served
– unfairness: certain requests wait longer
– warning: often confused!

not on
the book

7

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

FIFO

● process request sequentially
● fair, no starvation
● if there are many processes it performs

like random scheduling

8

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

LIFO

● Last-in, first-out
● Good for transaction processing systems

– The device is given to the most recent user
so there should be little arm movement

● possibility of starvation since a job may
never regain the head of the line

● only of theoretical interest

9

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

shortest service time first

● Select the disk I/O request that requires the least
movement of the disk arm from its current position

● optimal throughput!

● highly unfair!

● starvation when consecutive requests are for near
tracks

not on
the book

10

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

elevator
● famous, also called SCAN or LOOK
● arm moves in one direction only, satisfying all

outstanding requests until it reaches the last track in that
direction

● at the end direction is reversed

● good throughput

● unfair: average wait time for tracks on the edge is twice
that for the tracks in the middle

● starvation only for continous read on the same track

● used in practice

not on
the book

11

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

one-way (or cyclic) elevator
● anche detto C-SCAN

● like elevator but restricts scanning to one direction only

● when the last track is reached, the arm is returned to the
opposite end and the scan begins again

– performance penalty with respect to elevator
● good throughput

● fair

● starvation only for continous read on the same track

● used in practice

not on
the book

12

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

request merging

● requests for adjacent blocks are treated as
one

● avoid access time penalty
– use the access of the first request

● may increase performance
– e.g. irrelevant for SSTF, important for FIFO

● used in real systems

not on
the book

13

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

the “write-starving-reads”
problem

● writes can be issued sequentially
– processes usually do not depend on write

request been actually fulfilled

● read are not usually issued sequentially
– processes wait for the data before requesting

the next read operation

● not really “starvation”, actually is
“unfariness”

not on
the book

14

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

linux
● noop

– FIFO + request merging

● deadline
– one-way elevator

– reads cannot wait more 500ms, and writes 5s,
to avoid the write-starving-reads problem

● but it seeks back an forth to meet deadlines!

not on
the book

15

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

linux

● anticipatory
– request merging

– deadline approach

– after a read, waits 6ms for another read
● avoid the write-starving-reads problem
● no seek back and forth

– waiting is not always performed
● heuristics to estimate the behavior of the running

processes are implemented

– good for streaming, bad for dbms

not on
the book

16

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

linux
● complete fair queueing (cfq)

– request merging

– one-way elevator

– fair with a round robin approach
● schedule requests of each process for a few

milliseconds
● if no more requests for the scheduled process, wait

a bit for further requests in the time slice
● support process I/O priorities (command ionice)

– good for mutliuser environments

– latest versions performs as good as
“anticipatory” for streaming

– usually set as default

not on
the book

17

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

linux: disk scheduling switching

● scheduling algorithm can be switched
– at run time

– per device

pisolo:~# cat /sys/block/hda/queue/scheduler

noop anticipatory deadline [cfq]

pisolo:~# echo anticipatory >
/sys/block/hda/queue/scheduler

pisolo:~# cat /sys/block/hda/queue/scheduler

noop [anticipatory] deadline cfq

not on
the book

18

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

RAID

not on
the book

19

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

RAID

● Redundant Array of Independent Disks
● Set of physical disk drives viewed by the

operating system as a single logical drive
● improves...

– ...performance

– ...fault tollerance when one or more hard
drives fail

● availability: the service may still be available when
a fault occour

● data security: no data loss

not on
the book

20

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

degradation, rebuilding, and
spare disks

● when a disk fails the array enters
“degraded” (or critical) state
– performance and redundancy is not as the full

working array

● when the disk is substituted it must be
updated with the data to fully work in the
array: rebuilding
– lasts hours, performance may be even worse

● substitution can be automatic in systems
that have unused disks available (hot
spare disk)

not on
the book

21

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

techniques

● mirroring
– data are stored duplicated on (at least) two

disks

– duplexing: the two disks are controlled by a
distinct controller

● parity or humming error correction code
– redundant bits are stored with the data

● striping
– “consecutive” data are distributed across the

physical drives of an array

– bit, byte, block level granularity

not on
the book

22

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

several kinds of RAIDs
warning: this terminology is not followed by everybody

● RAID0 used a lot, inexpensive

● RAID1 used a lot, inexpensive

● RAID2 (not used any more)

● RAID3

● RAID4 similar to RAID3

● RAID5 used a lot

● RAID6 rare, expensive

● RAID7 proprietary

● nested (or multiple) RAID

– 01/10, 03/30, 05/50, 15/51, ecc.

not on
the book

23

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

type of requests

● sequential I/O
– big files (streaming, bulk)

– blocks are stored contiguously

● random I/O
– high frequency of requests for a very small

amount of data (OLTP)

– blocks are scattered through the disk

● read, write

not on
the book

24

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

RAID 0 (non-redundant)

● just striping
● I/O: always very good

– on average speedup xN (almost)

● failure of one disk makes all the array to fail

not on
the book

25

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

RAID0: mean time
between failures

● MTBF= 1/λ
– where λ is the fault frequency

● if a system A fail when one of its
components D1,..., DN fails
λ

A
=λ

D1
+λ

D2
+...+λ

DN

– frequencies can be summed up if faults are
independent

● if disks are identical and in RAID0

● MTBF
Array

=MTBF
Disk

/N

not on
the book

26

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

RAID 1not on
the book

4
3
2
1

4
3
2
1

● just mirroring (or duplexing)
– rarely more than one mirror

● one disk may fail but the other still works
● I/O:

– writes must be done on both disks

– reads can be done in parallel on the two disk

● limited in size by the size of a single disk

27

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i RAID 2

● bit-level striping, disks should be syncronized
● error correction by humming code, useful for

high bit error rate
– but now all HD have error correction code built in!

● requires expensive proprietary hw, never used!

not on
the book

28

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

RAID 3

● byte-level striping with dedicated parity disk
– a disk block contains more stripes

● usually less then 1024 bytes in length

● read: very good, see RAID0
● write: poor, parity disk is a bottleneck,

computation load on the CPU, hw
implementation is preferred

● tolerant to 1 disk failure (rebuilding by XOR)

not on
the book

29

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

RAID3 write: computing parity

● in the same row: stripes A, B, C and parity
stripe P = A xor B xor C

● A is written as A'
● new parity P' can be computed in two ways

– P' = A' xor B xor C
● read B and C? a cache may be very much useful

– P' = A' xor A xor P
● A may be read and in cache, P should be read.

not on
the book

30

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

RAID 4

● block-level striping with dedicated parity disk
– a stripe spans more disk blocks

● see RAID3

not on
the book

31

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i RAID 5

● block-level striping with distributed parity
● read: slightly better than RAID0 (1 disk more)
● write:

– better than RAID4 (no parity disk bottleneck)

– computation requires knowledge of the entire row
or old parity (read? cache?)

– cpu intensive, hw implementation is preferred

● tolerant to 1 disk failure (rebuilding by XOR)

not on
the book

32

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i RAID 6

● block-level striping with dual distributed parity
● two disks may fail without data loss
● read: slightly better than RAID5 (1 disk more)
● write: slightly worse than RAID5 (2 parities)
● costly

not on
the book

33

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

nested RAID arrays

● the idea: treat several raid array as a disk
and build a RAID array out of them

● notation: RAID XY
– means that you first have several RAID-X

array and you build a RAID-Y array out of
them

– warning: this notation is not followed by
everybody

not on
the book

34

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

RAID 10

7
5
3
1

8
6
4
2

not on
the book

7
5
3
1

8
6
4
2

● striping on mirroring
● performances very very good (see RAID0

and 1)
● each RAID1 array can support a disk

failure
● good performances also in rebuilding

– only the affected array is slowed down

35

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i RAID 01

● mirroring on striping
● as RAID 10 but when one disk fails the

whole RAID0 array is considered down by
many controllers

● avoid it

not on
the book

36

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

just a bunch of disks (JBOD)

● a.k.a spanning, not really a RAID
configuration

● same drawbacks as in RAID0
● sw/hw complexity as in RAID0
● usable with odd drives without wasting

space
● easier disaster recovery than RAID0

4
3
2
1

8
7
6
5

not on
the book

37

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

comparison

● from www.pcguide.com

not on
the book

Capacity Availability Cost
0 2,3,4,... S*N 100% none $
1 2 S*N/2 50% $$
2 many varies, large ~ 70-80% $$$$$
3 3,4,5,... S*(N-1) (N-1)/N $$
4 3,4,5,... S*(N-1) (N-1)/N $$
5 3,4,5,... S*(N-1) (N-1)/N $$
6 4,5,6,... S*(N-2) (N-2)/N $$$
7 varies varies varies $$$$$

01/10 4,6,8,... S*N/2 50% $$$
03/30 6,8,9,10,... S*N0*(N3-1) (N3-1)/N3 $$$$
05/50 6,8,9,10,... S*N0*(N5-1) (N5-1)/N5 $$$$
15/51 6,8,10,... S*((N/2)-1) ((N/2)-1)/N $$$$$

RAID
Level

Number of
Disks

Storage
Efficiency

Fault
Tolerance

Random
Read Perf

Random
Write Perf

Sequential
Read Perf

Sequential
Write Perf

http://www.pcguide.com/

38

©
 2

00
4

-
20

09
 w

ill
ia

m
 s

ta
lli

ng
s,

 m
au

riz
io

 p
iz

zo
ni

a
-

si
st

em
i o

pe
ra

tiv
i

implementation
● software (in the OS)

– no need for special drivers

– may be inefficient for parity computation

– Linux: (0, 1, 4, 5, and any kind of nesting)

– Windows: XP (0,jbod), 2000 Server (0,1,5, jbod)

● hardware (in the controller)
– need special drivers/software

– efficient when parity should be computed

● hybrid (the bios drives the controller)
– need special drivers

– inefficient when parity computation is required

not on
the book

	disk scheduling
	Disk Performance Parameters
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	RAID
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	RAID 0 (non-redundant)
	Slide 25
	Slide 26
	RAID 2 (redundancy through Hamming code)
	RAID 3 (bit-interleaved parity)
	Slide 29
	RAID 4 (block-level parity)
	RAID 5 (block-level distributed parity)
	RAID 6 (dual redundancy)
	Slide 33
	Slide 34
	RAID 1 (mirrored)
	Slide 36
	Slide 37
	Slide 38

