Virtual Memory

A memory: the point of view

not on

of the process

e structural

— one process address space divided in “legal’
memory regions

 for code (executable and libraries) and data (heap and
stack)

* rights (rwx)
* creation and change (mmap, brk, fork)
 sharing (libraries, IPC, threads, fork, copy on write)

e behavioral

- Just access to memory using machine language

JAN

* many regions:
- kernel (forbidden)
- stack (rw)
- code (rx)
- init data (rw)
- heap (rw, can grow)
- many other

e shared libraries
 memory mapped files
e efc.

» cat /proc/pid/imaps

= process address space in linux

Oxffffffff

kernel

0xc000000

stack

Oxb800000¢ sh. lib.

mmap

sh. lib.
T mmap

heap

0x8048000 -
0x0

3

VAN .
~w advantages of virtual memory

* a process may be larger than all of main
memory

* more processes may be maintained in main
memory
- only load in some of the pieces of each process
* with so many processes in main memory

- In Interactive systems users may run many
applications, interfaces, etc.

— it is very likely a process will be in the Ready
state at any particular time

 Resident set - portion of process that is in
main memory at a certain instant

virtual memory hw support

* hardware support
- typically “paging”
 memory references are dynamically

translated into physical addresses at run time
(by the hardware)

* no relocation problems
» support for pages that are not in memory
- “page not present” flag in page table entry
- special interrupt to manage the situation
 page fault

A page fault

the book

« page fault - interrupt generated when a
process access a memory address that is
not in main memory

» the operating system places the process in a

blocking state
- the process is waliting its page from disk

- this is equivalent to a blocking I/O request

— the process that generated the page fault is
placed in blocked state

— another process is scheduled/dispatched

— an interrupt is issued when disk I/O complete
which causes the operating system to place the
affected process in the Ready state

6

A page fault

the book

* major page fault
- when input from disk is needed
* minor page fault

- when input from disk is not needed
- eg.

* new free memory allocation (syscall brk, mmap)

- memory allocation create a region, does not allocate a frame!

 for same reason the page is not in the resident set of
the process but it is in a frame in main memory

- page buffering (we will see it)

no miracles: thrashing

 when physical memory is too short with
respect of processes memory demand

e swapping out a piece of a process just
before that piece is needed

— if this happens frequently a lot of I/O is needed

— at the extreme point all processes are waiting
for their pages from the disk

* the processor has nothing to execute
 the disk is overbusy transferring pages

fetch policy

» determines when a page should be brought
into memory

* prepaging brings in more pages than
needed

— if “prediction” is good, pages are already in
memory when they are needed

- rarely used

 demand paging only brings pages into
main memory when really needed
- save memory
- many page faults during process start up
— often used

Placement Policy

 Determines where, in real memory, a
process piece (segment or page) should
reside

* I[mportant in a segmentation-only system
- see memory allocation approaches and external
fragmentation

 Paging: MMU hardware performs address

translation
- placement policy is irrelevant

— In practice hw may impose some constraint

10

AN eviction policy

n
the book

» the strategy used by the OS to choose pages
to take out of the RS of the processes

* a good page to evict will not be accessed in
the near future

 the eviction strategy is the way the OS uses
to predict the future

* long research history

- optimal, Iru, fifo, clock, aging belady anomaly,
competitive on-line algorithms, etc....

- we will see many eviction strategies

11

cleaning policy

» before eviction of a modified (dirty) page this
has to be written to disk

e demand cleaning

- A page is written out only when it has been
selected for replacement

e precleaning

- Pages are written out in batches before
selection for replacement

- when disk is idle

12

cleaning policy and page buffering

» system always keeps a small amount of free
pages

* pages replaced are added to one of two lists
- Free page list, if page has not been modified

- Modified page list, otherwise

* pages in the modified list are periodically
written out in batches

* pages in the unmodified list are...

- reclaimed: if referenced again
- lost: if frame is assigned to another page

Page Buffering

* if the page is claimed again it may be given to
the process without any access to secondary
memory

* we have a page fault but with very small

overhead
- no disk reading

- just update data structures in main memory
» page buffer — RS of the process

14

page buffering as eviction
policy

 “correct” simple eviction policies

implementing a sort of LRU eviction

strategy
- we will see it

15

Load Control

* Desipte good design system may always
trash!

 Determines the number of processes that
will be resident in main memory

 Too many processes will lead to thrashing

 Too few processes, cpu under utilized

16

Processor Utili zation

Multiprogramming

Multiprogramming Level

17

Process Suspension

* Lowest priority process

* Faulting process

— This process does not have its working set In
main memory so it will be blocked anyway

» |ast process activated

— This process is least likely to have its working
set resident

18

Svirtual memory vs. disk caching

the book

 common objective

- keep in main memory only data and/or programs
that are really useful (frequently accessed)

e different action domain

- virtual memory: processes, pages, segments
- disk caching: files

ram disk
rarely used
virtual processes,
— swap area
memory pages or
segments
disk frequently used

caching B " parts of files

19

Lvirtual memory vs. disk caching

the book

» disk cache needs to take mostly the same
kinds of decisions as virtual memory

- fetch, placement, eviction, cleaning

- some files are used by more processes as some
pages are shared by more processes

— file parts are brought into memory “on demand”
as in demand paging

* common solution: memory-mapped files
* it is a new i/o primitive
- reads and writes are handled by ad-hoc caching

20

2 memory-mapped files

the book

e a process can ask to see a part of a file as
memory

- unix syscall mmap(void *start_hint, size t length,
int protection, int flags, int fd, off t offset)

* no input during the syscall, just creation of a
new memory region

» page fault brings in memory what is needed
» cleaning write on disk what is changed

* reads and writes are not performed as syscall
but as processor memory access: a lot faster! .,

o memory-mapped files

the book

e several kinds

- read-only, shared, private, anonymous (mapped
on swap area)

 typical usage

- executable: demand paging, shared libraries

« mmap called by dynamic linker which is the only think
IS loaded by execve syscall, it then mmap's the
executable and all shared libraries change them a bit
(private mmap)

- efficient i/o based applications: e.g. DBMS

22

o memory-mapped files

the book

 drawbacks

- need to read the page before writing

- real write is preferomed on "cleaning" or
unmapping of the file

 unsuitable when user should have control of when
something is written (eg. text editors, save...)

—- file size change unsupported

23

protection

pizzonia@pisolo:
08048000-0804£000 r-xp 00000000
0804£000-08050000 rw-p 00006000
08050000-08071000 rw-p 08050000
b7dec000-b7ded000 rw-p b7dec000
b7ded000-b7£36000 r-xp 00000000
b7£36000-b7£37000 r--p 00149000

b7£37000-b7£39000 rw-p
b7£39000-b7£3c
b7£55000-b7£57

b7£57000-b7£580 r-xp b/7x57000
b7£58000-b7£72000 r-xp 00000000
b7£72000-b7£74000 rw-p 00019000

bfb78000-bfb8d000 rw-p bffeb000

08:
08:
00:
00:
08:
08:
08:

device

- [vdso]

08:
08:
00:

an example

cat /proc/self/maps

03
03
00
00
03
03

3

filename
mapped

6750220 /bin/cat
6750220 /bin/cat | ANONYMOUS

0 [heap] = MAappPINg
0

11796591 /1lib/tls/i686/cmov/1libc-2.7.s0
11796591 /1lib/tls/i686/cmov/1libc-2.7.s0o

11796591 cmov/libec-2.7.s0

Inode
number

. UV

03
03
00

7061540 /1ib/1d-2.7.so
7061540 /1ib/1d-2.7.so

0 [stack]

24

hw support for
virtual memory

Hw Support Needed for
Virtual Memory

 Hardware must support paging and/or

segmentation...
- ...plus indication of “page not resident”

* Operating system must be able to manage
the movement of pages and/or segments
between secondary memory and main
memory

- and decide which is the "best page” to evict

- we will see that we need a few additional “bits”
from the hw

26

page table for virtual memory

 Each process has its own page table

 Each page table entry contains the frame
number of the corresponding page in main
memory

 An additional bit is needed to indicate
whether the page is in main memory or not

 An additional bit is needed to indicate
whethere the page has been altered since it

was last loaded into main memory
- no change — the frame does not have to be
written to disk when page is evicted

27

Paging

Virtual Address

Page Table Entry

Plvother Control Bt Frame Number

28

address translation for

Virtual Address

Physical Address

Frame #l Offset
r Y

paging

1
1

Page # | Offset '
1
i
1
' Register

n bits ' [Page Table Pir
1
1
' Page Table
[} F 3
1
-
i B
1
i | Frame #
1
1
1
1
1
1
Program I Paging Mechanism

1

m hats

J\

Main Memory

rame

very big page tables

* what if a process use a limited number of
small parts of the page table?

- other parts may be not used at the moment or not
used at all

- a lot of memory wasted for unused page table
entries

* page tables should be treated largely as part
of the process image

|

* hierarchical page tables, inverted page tables

0

4-kbyte root
page table

4-Mbyte user
page table

4- Ghyte user
address space

Two-Level Scheme for
32-bit Address (pentium like)

|

¥YYY

\

N\

¥¥¥

Figure 8.4 A Two-Level Hierarchical Page Table

31

address translation in a two-level schema

|
|
Virtual Address ! l
'
10 bits | 10 bits | 12 bits [Frame # Offset
: [
i
'
I
Root
:| table pir.
|
I
I
|
1 i
L’g’
I
|
|
I 4-kbyte page
I Root page table table (contains
1 (contains 1024 PTEs) 1024 PTEs)
|
|
Program . Paging Mechanism
'

}Pﬂge
L »
Frame

\/\

Main Memory

£ |nverted Page Table (IPT)

the book

* page number portion of a virtual address
and PID are mapped into a hash value

* the hash value points into the page table
entry

— entry contains info to check validity (pid and
page#) since it may not be related to the
process due to collision

* collisions are solved by chaining
- entry contains frame number

— as many entries as the number of frames

* used by PowerPC, UltraSPARC, and Intel
ltanium architecture

33

JAN

not on

the bgok
Virtual Address

n bits
I Page#l Offset I

iInverted page table

Plf lﬂ bits

hash i hits
function]’l
in general f#h

Control
bits
Process
Frame # Page # 1D Chain

{1

Inverted Page Table

Y
2" 1 me#l Offset I

m hits
Real Address

34

TAN updating the IPT (OS)

the book

- the frame h_ is computed by hashing, read the table
entry for h,

- if h_ is free
- update the entry h_ with pid/pagenumber/framenumber
and set chain=0
- else
- choose a new entry h, (e.g. by applying hashing again)

. if h,is free, update the entry of h, with

pid/pagenumber/framenumber, set chain=0 and set
chain of the entry h_to point to the entry h,

- if h, is occupied, iterate again possibly producing
longer chains

35

A reading the IPT (CPU)

- compute the hash h,

. if the entry for h_ contains the right pid and

page number, read the frame number from
this entry and perform memory access

» otherwise follow the chain until find the right
pid/pagenumber

* if chain end is reached, the page is not in
memory

- page fault or illegal memory access

36

JAN . .
poten, IPT In real architectures

e In real architectures the IPT does not have a
framet#t field

e the result of the hash function is the frame
number!

» this constrains OSes to select the frame
chosen by the hash function for hosting the

page...

— ...or to Introduce a chain

37

not on

the book I PT I n
Virtual Address
1 bits

real architectures

I Page#l Offset I

Plf lﬂ bits

hash m bits

function f

vY

IFrﬂmE#I Offset I

m bits
Real Address

JAN . .
poten, IPT In real architectures

 |PT are used when virtual address space is
really huge

* this happens in OS that...

— ... run on 64 bits hw architecture
- ... adopt a “single address space” model

39

= SAS vs. MAS

the book

 linux windows etc. are multiple address
space OSes (MAS-0S)

— each process occupies a distinct address spaces

* in single address space OSes (SAS-0S)
processes occupies distinct portions of the
same virtual address space

- no page table switching is needed when
switching process (but rights changes)

- sharing of memory is easier

- huge virtual address space is needed to host all
processes!

40

Translation Lookaside Buffer

* Each virtual memory reference can cause
two (or more) physical memory accesses

- One to fetch the page table entry
— One to read/write the data
* To overcome this problem a high-speed
cache is set up for page table entries
- Called a Translation Lookaside Buffer (TLB)

41

Translation Lookaside Buffer

* Contains page table entries that have been
most recently used

* it performs an associative mapping
between page numbers and page table
entries

42

direct vs. associative mapping

Virtual Address

Page # Offset
IS Iﬂ]ll

L

(a) Direct mapping

FPage Table

¥ h
37 | so2 |
Frame # Offset

Real Address

Yirtual Address

Page # Offset
IS Iﬂ]ll

Page # PT Entries
[19
i
37
27

14
1

T —
5 E

w e ow |E

Translation Lookaside Buffer

(b} Associative mapping

h 4
| 37 | 502 |
Frame # Offset
Real Address

43

Translation Lookaside Buffer

e Given a virtual address, processor examines
the TLB

* |f page table entry is present (TLB hit), the
frame number iIs retrieved and the real
address is formed

 |f page table entry is not found in the TLB
(TLB miss), the page number is used to
Index the process page table

44

Translation Lookaside Buffer

e if page is already in main memory the TLB is
updated to include the new page entry

- If not in main memory a page fault is issued and
OS is called

 TLB should be reset on process switch

— it caches entries of a certain page table.

- if the page table is changed (process
switch)TLB content became useless

45

address translation with TLB

Virtual Address

Page #

Offset

—® TLB hit

Translation
Lookaside BufTer

TLB miss

Page Table

2

¥ ¥
|E"rﬂme#| Offset

Page fault

Real Address

Main Memory

\—/'\

Lo
page

Secondary

Memory

\.../-\

46

lookup
algorithm
for
virutal
memory
paging
with
TLB

47

TLB and memory cache

TLB Operation
+ Virtual Address ’
v ! "
1 | Page # | Offset '
V= TLB 1
E TLE miss | .
' TLB .
' hit | Cache Operation .
S Y I o, .
i Real Address i
: | ¥ :
Y +» Tag | Remainder Hit Value
: Cache : »
"i-_-—-—i\rr-——-__..l' i
] M'
E iss] i
:-' J:
— =
\./\ Main
Memory
Page Table
Yalue
>

48

Page Size

Smaller page size, less amount of internal
fragmentation

Smaller page size, more pages required per
process

More pages per process means larger page tables

Larger page tables means large portion of page
tables in virtual memory

Secondary memory is designed to efficiently
transfer large blocks of data so a large page size is
better

49

Page Size

 Small page size, large number of pages will
be found in main memory

* As time goes on during execution, the pages
iIn memory will all contain portions of the
process near recent references. Page faults
low.

* |ncreased page size causes pages to
contain locations further from any recent
reference. Page faults rise.

50

Page Fault Rate

A

typical paging behavior

anomalous

typical/

ey

Page Fault Rate

P W N
(a) Page Sire (h) Number of Page Frames Allocated

P = size of entire process
W = working set size
N = total number of pages in process

Figure 8.11 Typical Paging Behavior of a Program

51

Example Page Sizes

Computer

Page Size

Atlas

Honevwell-Multics

512 48-bit words
1024 36-bit word

IBM 370/XA and 37T0/ESA 4 Kbvytes

VAX family 512 bytes

IBM AS/400 512 bytes

DEC Alpha 8 Kbytes

MIPS 4 kbves to 16 Mbytes
UltraSPARC & Kbytes to 4 Mbytes
Pentium 4 Kbvtes or 4 Mbytes
PowerPc 4 Kbvtes

Itanium 4 Kbvtes to 256 Mbytes

52

Segmentation

 Segments may have be unequal size

* segment size may dynamically increase
- may simplify handling of growing data
structures

* Allows modules of programs to be altered
and recompiled independently

* makes easy to share data among
processes

* implements protection mechanisms

53

Segment Tables

* one entry for each segment of the process

e each entry contains
- base address for the segment in main
memory

- the length of the segment

* A bitis needed to determine if segment is
already in main memory

* Another bit is needed to determine if the
segment has been modified since it was
loaded in main memory

54

Segment Table Entries

Virtual Address
Segment Number
Segment Table Entry

Pjvother Contot] Length | SegmentBase

(b) Segmentation only

55

address translation for segmentation

Virtual Address

Segment Table

Base + d

o

Segment Table

| Length | Base

Segmentation Mechanism

|
|
1
1

Sep # Offset = d 1
1
i
| .
' Register
1 Seg Table Ptr
|
|
1
1
1
' 5
L |
|
. r
|
|
|
|
1

Program :

1

K

\./"\

Main Memory

56

segmentation and virtual memory

e segments are usually very big
* impractical to use with virtual memory
* obsolete

- segments are usually divided into pages

57

Combined Paging and
Segmentation

* Paging is transparent to the programmer
 Segmentation is visible to the programmer

 Each segment is broken into fixed-size
pages

58

Combined Segmentation
and Paging

Virtual Address

Segment Namber

segment Table Entry

Comtrol Bits Length scpment Base

Page Table Entry

P|h¥Other Contrel Bi Frame Nurmber P= present bit
M = Modified bit

{(c) Combined segmentation and paging

59

address translation for segmentation/paging

systems
1 1
1 1
Virtual Address i
1 1
Sep# | Page# | Offset |4 . Frame # Offset
I I t
] [
L L
1 1
1 |Eieg Table Ptr 1
1 1
I Segment I Page
N Table N Tahle
1 & 1
1 n 1 Eﬂ
1 2L 1 =3
[l
@ .
1 F 1
1 1
1 1
1 1
1 1
[[
Program ' Segmentation ! Paging
1 . 1 .
" Mechanism " Mechanism

_/"\

Main Memory

rame

60

rss management and
eviction policies

61

rss management

rss allocation fixed variable
eviction
scope
local bad usage of e new process: allocate a number of page frames
main based on application type, program request, or
memory other criteria
e page fault: evict a page in the resident set of the
process that caused the fault
e Reevaluate allocation from time to time (see
working set)
global impossible o Easiest to implement

Adopted by many operating systems
Operating system keeps list of free frames

A free frame is added to resident set of a process
when a page fault occurs

If no free frame, evict one page from any process

62

principle of locality

* program and data references within a

process tend to cluster
- in time and space

» only a few pieces of the process address
space are needed over a short period of
time

* the behavior of a process in the imminent

future is likely to be the same as in the
recent past

 this suggests that virtual memory work
efficiently in all practical cases

63

principle of
locality

TW

B e
i,
b f
’ 2 M T, nl" I l
B o . Wl LiLm L
i me i
30 . ‘l Fil T R T ||| AN
[|t|1 - P
!m-:‘ “’ I“II Jp .

il
|th)
28 “‘I' :
- i'||l| '
||.||!!- -.

|||||| "'_Ef B

ﬁlmmwl"*ﬂﬂﬂk gy M
%“ﬁl%w- "

:‘II :m |||HI|||I ___ 1

3
”**-Z‘é?;r__.

o
E T‘ -_|| ‘I-.- Y M-ﬁ-m
h_ . g II"IIH" "'ll Y e ll"‘""‘m nnmlq:
E 20 I nm-.num“mn I,.,, " T TR -:'TTT!T‘.H"‘lI."“rﬂI-Ir \
- " .
Q) 1
&
=
oy
————
—

tempo di esecuzione

64

Replacement Policy

 Replacement Policy
- Which page is evicted?

- Page removed should be the page least likely to
be referenced in the near future

- Most policies predict the future behavior on
the basis of the past behavior

65

Replacement Policy

 Frame Locking
- If frame is locked, it may not be replaced
- Kernel of the operating system
— Control structures
- 1/O buffers
— Associate a lock bit with each frame

66

pager or swapper

* the part of the kernel that manage the RS of
the processes is called pager or swapper.

* it implements the replacement policy

- page replacement is the most critical problem to
solve for virtual memory efficiency/efficacy

67

Basic Replacement
Algorithms/Policies

 Optimal policy

- Selects for replacement that page for which the
time to the next reference is the longest
- results in the fewest number of page faults

- no other policy is better than this

- Impossible to implement
* it needs to have perfect knowledge of future events!!!

68

optimal policy example

* page references stream:

232152453252
3 frames are available

2 is referenced after 5 and 3

2 4 /5/1\ 2 5 2
5
3] a 1 . 3 2] [2
3 3 3 3 3 3
= 5 5 = 5 5
F F F

T

1 is no more referenced

Basic Replacement
Algorithms/Policies

 Least Recently Used (LRU)

- Replaces the page that has not been referenced
for the longest time

- By the principle of locality, this should be the
page least likely to be referenced in the near
future

- Each page is tagged with the time of last
reference. This would require a great deal of

overhead.
 timestamp update for each reference in memory!

70

LRU policy example

e~ STT

i STT

71

Basic Replacement
Algorithms/Policies

* First-in, first-out (FIFO)
- Treats page frames allocated to a process as a
circular buffer (queue)
- Pages are removed in round-robin style
- Simplest replacement policy to implement

- Page that has been in memory the longest is
replaced

- These pages may be needed again very soon

72

FIFO policy example

] 7373

- TT

Ly 7572

LT 7573

oflis

73

Basic Replacement
Algorithms/Policies

 Clock Policy (second chance)
— one additional for each page bit called a use
bit
- set use=1
* when a page is first loaded in memory

» each time a page is referenced

- when it is time to replace a page scan the
frames...
* the first frame encountered with use=0 is
replaced

» while scanning if a frame has use=1, set
use=0

74

clock policy example

n-1 0 ./

Fir ame in

circular buffer of
frames that are

candidates for replacement

ia) State of buffer just prior to a page replacement

75

clock palicy example

i(b) State of buffer just after the next page replacement

Figure 8.16 Example of Clock Policy Operation 76

clock policy example

2 3 2 1 5 2 4 5 3 2 5 2
(2%] [2*] [2*] D= 5 St 5* FeDE* | [3%] [3% | 3% | 3%
3® 3® 3% | %3 2% 2% 2% | o 2 |-»f 2% 2 2%
> 1* 1 | »xi 4% 4 1 x4 5% 5%

F F . F F F F F

77

Fage Faults per 1000 Refe rences

comparison of replacement

algorithms

40 A
15 FIFO
| CLOCK
3 LRU
20

15 OPT

10

3

0 B 10 12

Number of Frames Allocated

78

£ CLOCK approximates LRU

the book

e for each instance of CLOCK consider 2 sets

- A: recently used pages (pages with use=1)
- B: not recently used pages (pages with use=0)

» each time clock arm is moved a page is
demoted from A to B

— which one is quite arbitrary, depends on the
position of the arm

* a page is promoted from B to A when it is
accessed

79

CLOCK with “modified” bit

* we prefer to replace frames that have not
been modified

- since they need not to be written back to disk

» two bits are used (updated by the hardware)
- use bit
- modified bit

* frames may be in four states

- not accessed recently, not modified
- not accessed recently, modified
— accessed recently, not modified

preference increases

— accessed recently, modified

80

CLOCK with “modified” bit

1 look for frames not accessed recently and
not modified (use=0, mod=0)

2 if unsuccessful, look for frames not accessed
recently and modified (use=0, mod=1)

e ... while setting use=0 as in regular clock.
3 if unsuccessful, go to step 1

81

CLOCK dadified” bit

Page 94

niot secessed
recently;
ot musdified

Page 13
not accessed
recently;

not misdified

Page 47
not accessed
recently;

not misdified

3 Last
replaced

Next
replaced

Page 46
not accessed
]y :

Page 45
accessed
recently;
not modified

Figure 8.18 The Clock Page-Replacement Algorithm [GOLDSY]

JAN aging policy
the book om Tannenbaum),

« for each age keeps’an age “estimator’
- the less is the value the older is the page
* it periodically sweeps all pages...

- scans use bits and modifies estimator for each page

« example: for page p shift right (that is divide by two) and
insert the value of use bit for p as leftmost bit
- it records the situation of the use bits for the last (e.g. 8) sweeps

e theoretically, more complex extimators may be used

- clear all use bits to record page usage for the next
sweep

*» evict pages starting from older ones

— that is, those that have a lower estimator 83

JAN

aging policy

not on
the book
& boo version with right shift estimator value of use
bits for each
time sweep sweep sweep sweep page at the
- | ! ! ' sweep instant
1lo]1]0]|1 i 1lolo]|1 i 1lof1]o0 i olo|o]|1 i 1l1]o]o
O ... } .. i .. { .. JI ...
I | | I
Page : : : |
| | | I
o| 10000000 i 11000000 i 11100000 i 11110000 i 01111000
| | | |
| | | |
1 | €00000000 i 10000000 i 11000000 i 01100000 i 10110000
| | | |
| | | |
2| 10000000 i 01000000 i 00100000 i 00010000(i 10001000
| | | |
| | | |
3 00000000 i 00000000 i 10000000 i 01000000 i 00100000
| | | |
| | | |
4 10000000 : 11000000 | 01100000 : 10110000 : 01011000
| | | |
| | | 1
| | | |
5| 10000000 | 01000000 ! 10100000 | 01010000 | 00101000
| | | I
(a) (b) (c) (d) (e)

oldest pages

at a certain
instant

S

84

A estimator initialization

n
the book

 when a page is loaded from the disk what is
its estimator?

— 00000000
- 00000001
- 10000000
- 11111111

85

A estimator initialization

n
the book

* resonably this page should remain in memory
since it has been accessed right now

» estimator should indicate a havily accessed
page (e.g. 11111111)

86

£ aging approximates LRU

the book

e ages are quantized in time

- many references between two sweeps are
counted once

— aging policy is much less precise than LRU
» very old references are forgotten

— when an estimator reach zero it remains
unchanged

- impossible to discriminate among pages that
were not referenced for very long time

* LRU always maintains all the information it needs

87

working set

88

(memory) virtual time

» consider a sequence of memory references
generated by a process P

r(1), r(2),...

* (i) Is the page that contains the i-th address
referenced by P

e t=1,2,3,... is called (memory) virtual time for
P

it can be approximated by “process” virtual time

- memory references are uniformly distributed in
time

89

working set

» defined for a process at a certain instant (in
virtual time) f and with a parameter A
(window)

- denoted by W (t, A)

» W(t A)foraprocess P is the set of pages
referenced by P in the virtual time interval
[t—A+1,1]

- the last A virtual time instants starting from ¢

90

working set properties

the larger the window size, the larger the
working set.

W(t,A+1)2W (t,4)

upper bound for the size of W
1<|W (¢, 4)|<min(4,N)
N number of pages in the process image

91

working set

» values of |W (t, A)| varying A for
t fixed and t>>N
(W (t A)l

N

/7

92

winrls-inA et neaAarmnin

Sequenza
di riferiment;j
a pagina

Dimensione della finestra, A

24

15

18

23

24

17

18

24

18

17

17

15

24

17

24

18

2 3 4 5

24 24 24 24
24 15 24 15 24 15 2415
15 18 2415 18 24 15 18 24 15 18
18 23 15 18 23 2415 1823 241518 23
2324 18 23 24 . .
2417 2324 17 18232417 |1518232417
17 18 241718 . 18232417
18 24 . 241718 .

. 18 24 . 2417 18
18 17 24 18 17 . .

17 18 17 . .
17 15 1715 I8 17 15 241817 15
1524 17 1524 17 15 24 .
2417 . . 1715 24

. 2417 . .
18 24 17 24 18 241718 15241718

93

ipico ne

— TN . . . o W e — — —

T e e e e wmrw A o S e — o — —

|
|
|
I
|
|
|
|
I
I
i
|
f
I
I
I
|
f
I
I
I
I
I

— e A A o . e S . - w—

e
®)
d
o
mO

o
©
O
mm

working set

195 SUfIom [3p JUOISUIWI(]

= Tempo

S e

In transizione

e —

In transizione

R

In transizione

In transizione

94

Stabile Stabile

Stabile

Stabile

our goal

* ideally we would like to have always the

working set of each process in memory
(RS=WS, for a fixed A)

WS (theoretical) strategy

— monitor the WS of each process

- update the RS according to the WS

 page faults add pages to WS (and to RS)

* periodically remove pages of the resident set that are
not in the WS. In other words, LRU with variable
resident set size.

95

working set stra

e optimal A?

tegy: problems

- larger A — less page faults and larger |W|
- trade-off between number of page faults and WS

size!
- In any case the optlmal

value may depend on time

A'<<A

few | ffew | ffew i
'page; (page: ipage:

. leven |
few | more . more
'page, | page; |page!

| I | I {
' faults | faults faults ' faults ! faults i faults
S S— __,_, ;_.,_, Tempo — —— __,_, —— Tempo
In transizione In transizione In transizione Int In transizione In transizione In transizione Int
Stabile Stabile Stabile Stabile

Stabile Stabile Stabile Stabile

96

working set strategy:
Implementation problems

* we need to maintain the history of the
reference for A

- more and more difficult as A increase
e |t should be done In real-time

- keep a list of the memory reference in hw?

- count memory reference and mark pages with
the current value of the counter?

- In any case we need hw support

97

WS strategy approximation

» consider the frequency of page faults for a
process (PFF)

o if the RS size of the process is larger than the
WS size, PFF is low

e if the RS size of the process is smaller than
the WS size, PFF is high

 we can use PFF to estimate the relationship
between RS size and WS size

98

page fault frequency (PFF)

e if PFF is below a
threshold for P,

decrease RSS of P

* the whole system
will benefit

PFF(P)

Page Fault Rate

rF Y

PFF threshold

(b} Nu :

RSS(P)

of Page F :lmes Allocated

N

-

99

page fault frequency (PFF)

e if PFF is above a
threshold for P,

Increase RSS of P

e P will benefit

PFF(P)

}

Page Fault Rate

rF Y

PFF threshold

RSS(P) W

} Number of Page Frames Allocated

N

-

100

- PFF policy implementation

the book

* maintain a counter t of the memory
references (it count virtual time)

» on each page fault update estimation of PFF
- keeping the time t, of the last page fault PFF=1/(t-t)

» keeping a first order estimator

PFF,,,=0- lt -(1—a) PFF
RS

ac€(0,1/

e decide action on estimated PFF

prev

101

PFF policy implementation
o if PFF is above the PFF

threshold
— increse the RSS

o iIf PFF is below the PFF

threshold

- evict at least two pages from the resident set

* one to make space for the new one and one to reduce
the RSS

* in any case load in the page

» to avoid oscillations usually two distinct
thresholds are used: PFF__ and PFF__

- PFF,__>PFF_,

PFF policy

* it may be used with page buffering

* it performs poorly in transient periods

- RSS grows rapidly while changing from one
locality to another

A

del working set

Dimensione

I
— — ‘ I —» Tempo
1 Int 1 1

Stabiie Stabile Stabile Stabile 1 03

	Virtual Memory
	Slide 2
	Slide 3
	Advantages of Breaking up a Process
	Hardware and Control Structures
	Execution of a Program
	Slide 7
	Thrashing
	Fetch Policy
	Placement Policy
	Slide 11
	Cleaning Policy
	Slide 13
	Slide 14
	Slide 15
	Load Control
	Multiprogramming
	Process Suspension
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Support Needed for Virtual Memory
	Paging
	Slide 28
	Slide 29
	Slide 30
	Two-Level Scheme for 32-bit Address
	Slide 32
	Inverted Page Table
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Translation Lookaside Buffer
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Page Size
	Slide 50
	Slide 51
	Example Page Sizes
	Segmentation
	Segment Tables
	Segment Table Entries
	Slide 56
	sementation alone is obsolete
	Combined Paging and Segmentation
	Combined Segmentation and Paging
	Slide 60
	Slide 61
	Slide 62
	Principle of Locality
	locality picture
	Replacement Policy
	Slide 66
	Slide 67
	Basic Replacement Algorithms
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Comparison of Placement Algorithms
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103

