Computer Systems Overview

Maurizio Pizzonia

slides adattate da

W. Stalling — Operating Systems: Internals
and Design Principles

http://williamstallings.com/OS/OS5e.html

Basic Elements

Processor

Main Memory

— volatile

— referred to as real memory or primary memory
/O modules

— secondary memory devices

— communications equipment

— terminals

System bus

— communication among processors, memory,
and I/O modules

Basic Elements

CPU
PC MAR
IR MBR
I/O AR
Exe\cfuiion
__unit__/ I/O BR

I/O Module

Buffers

Main Memory

System .
Bus

Instruction
Instruction
Instruction

P T

E- -

PCO =0OProgram counter

IRO =Onstruction register

MARO =O0Memory address register
MBRO =0Memory bulfer register

170 AREO Input/output address register
170 BREO Input/output bulfer vegister

-

A (Simplified) Large Pentium

Cache bus

Level 2

System

Local bus

=

=

PCI

Memory bus

|

Main
cache CPU bridge > memory
AN PCI bus
<] —
JL iL N/ L\
Graphics
—— el ISA IDE adaptor Available
bridge disk PCI slot
P [— EE
itor
Mouse|| Key-
board ISA bus
% 1111 >
I I | T
Sound . ;
Modem Printer Available
card ISA slot

Processor Registers

» User-visible reqisters

— Enable programmer to minimize main-
memory references by optimizing
register use

« Control and status registers

— Used by processor to control operating
of the processor

— Used by privileged operating-system
routines to control the execution of
programs

User-Visible Registers

» May be referenced by machine
language

« Available to all programs -
application programs and system
programs

* Types of registers
— Data
— Address

 Index
« Segment pointer
« Stack pointer

User-Visible Registers

« Address Registers

— Index

* Involves adding an index to a base value to
get an address

— Segment pointer

 When memory is divided into segments,
memory is referenced by a segment and an
offset

— Stack pointer
 Points to top of stack

Control and Status

Registers

* Program Counter (PC, IP)

— Contains the address of an instruction to be
fetched

* Instruction Register (IR)
— Contains the instruction most recently fetched

« Program Status Word (PSW)

— Condition codes
— Interrupt enable/disable
— Supervisor/user mode

Control and Status
Registers

« Condition Codes or Flags

— Bits set by the processor hardware as a
result of operations

— Examples
* Positive result
* Negative result
« Zero
* Overflow

Instruction Execution

* Two steps

— Processor reads instructions from
memory

 Fetches
— Processor executes each instruction

Fetch Stage Execute Stage

START X

Feich Nexd | Execute
Instruction Instruction HALL

Figure 1.2 Basic Instruction Cycle 10

Instruction Categories

Processor-memory

— Transfer data between processor and
memory

Processor-1/0

— Data transferred to or from a peripheral
device

Data processing

— Arithmetic or logic operation on data
Control

— Alter sequence of execution

11

Characteristics of a
vaothetical I\/Iachige

Opcode Address

(a) Instruction format

Magnitude

(b) Integer format

Program Counter (PC) = Address of instruction
Instruction Register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(c) Internal CPU registers
0001 = Load AC from Memory
0010 = Store AC to Memory
0101 = Add to AC from Memory

(d) Partial list of opcodes

Figure 1.3 Characteristics of a Hypothetical Machine

Example of Program Execution

Memory CPU Registers Memory CPU Regjsters
0l 2 40 3 0nlpc 00[1 9 40 3 01|pC
3015941‘1‘ ACI A0S 9 4 1 003 AC
3z{z2 9 4 1 8 4 QIR J302{2 8 4 1 54 0]IR
L} L}
[| |
MO0 D 0 3 M0lp 0D 3
41(0 00 2 9410 0 0 2
Step 1 Step 2
Memory CP'U Registers Memory CPU Registers
30011 9 4 0 30 L[PC 011 940 3 02/PC
a0lps 9 4 1 000 3(AC)301{5 9 4 1 1 005 AC
3022941%5941111 3n21941<‘5941
L} |
] []
M40l0 0 0 3 24010 D 0D 3 3:;2:5
4100 0 0 2 94110 0 0 2
Slep 3 Step 4
Memory CPU Registers Memory CPU Regjsters
00[1 9 40 3.0 2z|PC 00019 40 3 0 3|PC
015 94 1 0005ACH301|5 5 4 005 AC
32294 1—»2 8 4 1|IR|302|2 5 4 294 1|IR
L} L]
| |
Moo 00 3 4010 0 0 3
a41(0 00 2 94110 0 0O 5
Step 5 Step 6

Figure 1.4 Example of Program Execution
(contents of memory and registers in hexadecimal)

Addresses
4000

4100
4101

4500

4600
4601

4650
4651

4800

Procedure Calls

Main Memory

CALL Procl

CALL Proc2

CALL Proc2

RETURN

RETURN

(a) Calls and returns

Main
Program

Procedure
Procl

Procedure
Proc2

i

(b) Execution sequence

Figure 1.26 Nested Procedures

14

Addresses
4000

4100
4101

4500

4600
4601

4650
4651

4800

Main Memory

CALL Procl

CALL Proc2

CALL Proc2

RETURN

RETURN

The Call Stack

Main
Program

Procedure
Procl

Procedure
Proc2

4601
4101 4101 4101

(c) Initial (d) After
CALL Proc2 RETURN

(a) Initial stack (b) After
contents CALL Procl

4651
4101 4101

(e) After () After (g) After
CALL Proc2 RETURN RETURN

15

CPU Registers for the Stack

Stack
Limit

Stack
Pointer

Stack
Base

CPU
Registers

A\

Main
Memory

Free

In Use

(a) All of stack in memory

Block
Reserved
for Stack

Top
Stack
Element

Second
Stack
Element

Stack
Limit

Stack
Pointer

Stack
Base

(b) Two top elements in registers

CPU
Registers

Main
Memory

Free

In Use

Figure 1.25 Typical Stack Organization

Block
Reserved
for Stack

16

Interrupts

* Interrupt the normal sequencing of
the processor

« Most I/O devices are slower than the
processor

— Processor must pause to wait for
device

17

Classes of Interrupts

Table 1.1 Classes of Interrupts

Program Generated by some condition that occurs as a result of an instruction
execution, such as arithmetic overflow, division by zero, attempt to execute
an illegal machine instruction, and reference outside a user's allowed
mMemory space.

Timer Generated by a timer within the processor. This allows the operating svstem
to perform certain functions on a regular basis.

O Generated by an I'O controller, to signal normal completion of an operation
or to signal a variety of error conditions.

Hardware failure Generated by a failure, such as power failure or memory parity error.

18

Interrupt Handler

» Program to service a particular /O
device

» Generally part of the operating
system

19

Interrupts

« Suspends the normal sequence of
execution

User Program Interrupt Handler

:

i
Interrupt ——»
occurs here i+1 <

Figure 1.6 Transfer of Control via Interrupts 20

Interrupt Cycle

Fetch Stage Execute Stage Interrupt Stage
k Interrupts
Disabled
Check for
Fetch next Execute interrupt:
instruction instruction initiate interrupt

handler

|: HALT ’

Figure 1.7 Instruction Cycle with Interrupts

21

Interrupt Cycle

* Processor checks for interrupts

* If no interrupts fetch the next
instruction for the current program

» |f an interrupt is pending, suspend
execution of the current program,
and execute the interrupt-handler
routine

22

Simple

Interrupt
Processing

Hardware

——A A

Device controller or
other system hardware

issues an interrupt

Processor finishes
execution of current
instruction

Processor signals
acknowledgment
of interrupt

Processor pushes PSW
and PC onto control
stack

Processor loads new
PC value based on

interrupt

Software

—A A

Save remainder of
process state
information

Process interrupt

Restore process state
information

Restore old PSW
and PC

Figure 1.10 Simple Interrupt Processing

23

addresses
grow

M=size of registers

Changes in
Memory
and
Registers
for an
Interrupt

T
Control 4
Stack — ‘
T+M J
I N4+ 1 |
Program
Counter
Y | Start %
Interrupt General
Service Registers
¥ + L |Return Routine
Stack
Pointer
Processor
T+M
N -
N+1 Users
Program
Main
Memory

(a) Interrupt occurs after instruction
at location N

0
T
N+1
Control
Stack E——
T+M
[¥ar+i]
Program
Counter
¥ | Start
Interrupt General
Service Registers
¥ + L |Return Routine
Stack
Pointer
Processor
T
N 3
N+l User's
Program
Main
Memory

(b) Return from interrupt

Figure 1.11 Changes in Memory and Registers for an Interrupt

24

i n s s ..._:._._.._._.._._.__._.._._.P
" 3 ¥
L []]
" []
s - + =
..-.__....-1l..-..-.._. ------ +.ﬂ-.-. ..,.nu.._.-...-.........._..—.._:.. .-l-,.._
1 "y a
.-_-.._ T L3 L. " T L
e ____-._.... ;" e e
. n-._-.-.-.-. .y . P b, YO LS
& [e bt 1 . H T .y
h ! e L L i -....-...... L
-
LS [b b TR . # Ty R
4] g sah a Suag .-_..
L * .-l-.-r a.a.!.l-l u.- r....l
W LT]
_._r Wy b

25

Interrupts

n
L * & Fa
.
" % o
* 03
.-..r..:.:._.-:.:._.._.._.._...l .m.-. ¥ L .—_ﬂ._ﬂ L]
¥ n s
B 3 . E
__....._ -.-J..__.-. g s 1-- > " " .
s X h.-l-.-... __....-.. L - fay .__.-
% 1 i DO B Ly
LY ' ey, u_r..-a.._ ay ",
" = g TRy e -
L] . -l...l...__.__ & e, %
. | Lol Tl b AL
iiiiiiiiiiiiiii # Passssssssssssss sbsssssssssssde ssssssssssssasis Fesssssssas

(c) Interrupts; long IO wait

(b} Interrupts; short IAD wait

/O With and Without

ﬂm_m

&
L}
"

A Iw.-.- e] -.-.-,.._..:_..._

r
", ; ",

o

(&) No imterrupts

Timing Diagram Based on

User
l"mEz.m

et
N EEEeEEEstrtatrtey ..'f.l:.

-
a
¥

{a) No intermpts

Short I/0O Walit

Time

oo

Processor o
wait operation

o/ o

Processor /O
wait operation

® |@

(a) Without intermupts
(circled numbers refer
to numbers in Figure 1.5a}

o
operation

o
operation

ole/e|e|e|oje|e|e

(b} With interrupts
{circled numbers refer
to numbers in Figure 1 5b}

;
-E
;

; s
L AT e
RN e
e e
0 qansfet] QITmAan
WRITE o7 Ssans
k !:"“i: i
:‘-l:l ‘i‘l.
Pk, e Interrupt
PN ™... Handler
Ll 5 " AT
A
i i
WRITE s Y ®
E l‘"‘ -"" *“"t E[]D
Eﬂ-;'.-l . ;
= .'Jl

(b} Interrupts; short IO wait

26

Multiple Interrupts

« Disable interrupts while an interrupt is

being processed

terrupt

User Program Handler X

X

(a) Sequential interrupt processing

)

Interrupt
Handler ¥
[—
s

27

Multiple Interrupts

» Define priorities for interrupts

Interrupt
User Program Handler X

/

x

g

/Z/

(b) Nested interrupt processing

Interrupt
landler Y

IIIIIIIIIIIIIIJ

28

Memory Hierarchy

) » Faster access time,
e greater cost per bit
» Greater capacity
| R, — smaller cost per bit
— slower access speed
“ » Based on Locality
— temporal
— spatial

Figure 1.14 The Memory Hierarchy
29

Secondary Memory

a.k.a Auxiliary Memory, Mass
Storage ore External Memory

E.g. Disks, pen drives

Nonvolatile

Used to store program and data files
Slow

Cheap

30

Disk Cache

» A portion of main memory used as a

buffer to temporarily to hold data for
the disk

 Disk writes are clustered

« Some data written out may be
referenced again. The data are
retrieved rapidly from the software
cache instead of slowly from disk

31

Cache Memory

Contains a copy of a portion of main
memory

Processor first checks cache

If not found in cache, the block of
memory containing the needed
information is moved to the cache
and delivered to the processor

Associative

32

Cache Memory
Invisible to operating system

Increase the speed of memory

Processor speed is faster than
memory speed

On board or on chip

Block Transfer

Word Transfer (*/_‘
(\—k_fj

CPU Cache Main Memory

Figure 1.16 Cache and Main Memory

Cache Memory

Line Memory
Number Tag Block address
0 0
1 1
2 2 Block
. 3 (K words)
[]
«. e
C-1
Block Length
(K Words) °
(a) Cache *
L]
Block
]
Word
Length

(b) Main memory

Figure 1.17 Cache/Main-Memory Structure 34

Cache Memory

RA - read address

Receive address
RA from CPU

Access main
memory for block
containing RA

Allocate cache

Fetch RA word
and deliver slot for main

to CPU memory block

Load main
memory block
into cache slot

Deliver RA word
to CPU

Figure 1.18 Cache Read Operation

Programmed |/O

I/O module performs the
action, not the processor

Sets appropriate bits in the
|/O status register

No interrupts occur

Processor checks status
until operation is complete

—a.k.a "busy waiting”

Error
condition

Read word

from 1/O /0O — CPU
Module

Write word

into memary 'CPU — memory

Yes

Mext instruction

{a) Programmed 1/0O

36

Interrupt-Driven o o r:’”m

module [~ T else
I /O R;;l:{l]stams % - - = Interrupt
a
Processor is interrupted when oinie S glio — CFU
I/O module ready to exchange
Check Error
data staiﬁs -~ condition
Processor saves context of Ready]["
program executing and begins Read word
. . from /O /O — CPU
executing interrupt-handler Module
No needless waiting
Consumes a lot of processor (P, memery
time because every word read
or written passes through the

processor

Next instruction
{b) Interrupt-driven I/O

Direct Memory Access

/O to/from memory is

performed by a special -
purpose chip (DMA i ol Dosoneming
controller) M e
Moderated CPU slowdown Read satus .- - - Interrupt

— setup time . lova o cr

— shared bus

Next instruction

An interrupt is sent when the
transfer is complete

Processor continues with
other work

(¢} Direct memory access

38

