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Abstract. There is a large amount of data that is published on the Web
and several techniques have been developed to extract and integrate data
from Web sources. However, Web data are inherently imprecise and un-
certain and even if novel approaches to deal with the uncertain data have
been recently proposed, they assume that the data are provided with an
associated uncertain degree. This paper addresses the issue of charac-
terizing the uncertainty of data extracted from a number of inaccurate
sources. We developed a probabilistic model to compute a probability dis-
tribution for the extracted values, and the accuracy of the sources. Our
model considers the presence of sources that copy their contents from
other sources, and can deal with the misleading consensus produced by
copiers. Our model extends the models previously proposed in the litera-
ture by working on several attributes at a time to better leverage all the
available evidence. We also report the results of several experiments on
both synthetic and real-life data to show the effectiveness of the proposed
approach.

1 Introduction

As the Web is offering increasing amounts of data, important applications
can be developed by integrating data provided by a large number of data sources.
However, Web data are inherently imprecise, and different sources can pro-
vide conflicting information. Resolving conflicts and determining what values
are (likely to be) true is a crucial issue to provide trustable reconciled data.

Several proposals [12, 9] have been recently developed to discover the true
value from those provided by a large number of conflicting data sources. These
solutions extend a basic vote counting strategy in several ways: first, they recog-
nize that values provided by accurate sources, i.e. sources with low error rates,
should be weighted more than those provided by others; second, they consider
how to deal with the presence of sources that copy from other sources. As ob-
served in [1], this is a critical issue, since copiers can cause misleading consensus
on false values.

Recently, elegant and principled solutions for considering the role of source
dependence have been proposed [5], still they suffer some limitations: they all
are based on a model that considers only unrealistically simple data. Sources are



seen as providers that supply data about a collection of objects, i.e. instances of
a real world entity, such as a collection of stock quotes. However, it is assumed
that objects are described by just one attribute, e.g. the price of a stock quote.
On the contrary, data sources usually provide complex data, i.e. collections of
tuples with many attributes. For example, sources that publish stock quotes
always deliver values for price, volume, max and min values, and many other
attributes.

Existing solutions, focused on a single attribute only, turn out to be rather
restrictive, as different attributes, by their very nature, may exhibit drastically
different properties and evidence of dependence. This statement is validated by
the observation that state-of-the-art algorithms, when executed on real datasets
lead to different conclusions if applied on different attributes published by the
same web sources.

Source 1
volume min max

AAPL 699.9k 90 150

GOOG 1.1m 380 545

YHOO 125k 21 48

Source 2
volume min max

AAPL 699.9k 90 150

GOOG 1.1m 380 545

YHOO 125k 21 48

Source 3
volume min max

AAPL 699.9 90 150

GOOG 1100.0k 381 541

YHOO 125.0k 21 44

Source 4
volume min max

AAPL 699.9k 91 150

GOOG 1100.0k 381 541

YHOO 125.0k 21 44

True values
volume min max

AAPL 699.9k 90 150

GOOG 1100.0k 380 545

YHOO 125.0k 21 48

Fig. 1. Three sources reporting stock quotes values.

This behavior can be caused by two main reasons: lack of evidence (copiers
are missed) or misleading evidence (false copiers are detected). In Figure 1 we
make use of an example to illustrate the issues: four distinct sources report
financial data for the same three stocks. For each stock symbol are reported
three attributes: volume, minimum value and maximum value of the stock. The
fifth table shows the true values for the considered scenario: such information is
not provided in general, in this example we consider it as given to facilitate the
discussion.

Consider now the first attribute, the stock volume. It is easy to notice that
Source 1 and Source 2 are reporting the same false value for the volume of GOOG

(errors are in bold). Following the intuition from [5], according to which copiers
can be detected as the sources share false values, they should be considered as
copiers. Conversely, observe that Source 3 and Source 4 report only true values
for the volume and therefore there is not any significant evidence of dependence.
The scenario radically changes if we look to the other attributes. Source 3 and
Source 4 are reporting the same incorrect values for the max attribute, and
they also make a common error for the min attribute. Source 4 also reports



independently an incorrect value for the min value of AAPL. In this scenario
our approach concludes that Source 3 and Source 4 are certainly dependent,
while the dependency between Source 1 and Source 2 would be very low. Using
previous approaches and by looking only to the volume attribute, Source 1 and
Source 2 would been reported as copiers because they share the same formatting
rule for such data (i.e., false copiers detected), while Source 3 and Source 4 would
been considered independent sources (i.e., real copiers missed).

In this paper, we extend previous proposals to deal with sources provid-
ing complex data, without introducing any remarkable computation efforts. We
formally describe our algorithms and give a detailed comparison with previous
proposals. Finally, we show experimentally how the evidence accumulated from
several attributes can significantly improve the performance of the existing ap-
proaches.

Paper Outline The paper is organized as follows: Section 2 illustrates related
work. Section 3 describes our probabilistic model to characterize the uncertainty
of data in a scenario without copier sources. Section 4 illustrates our model for
analyzing the copying relationships on several attributes. Section 5 presents the
result of the experimental activity and concludes the paper.

2 Related Work

Many projects have been active in the study of imprecise databases and have
achieved a solid understanding of how to represent uncertain data (see [4] for
a survey on the topic). The development of effective data integration solu-
tions making use of probabilistic approaches has also been addressed by several
projects in the last years. In [7] the redundancy between sources is exploited to
gain knowledge, but with a different goal: given a set of text documents they
assess the quality of the extraction process. Other works propose probabilis-
tic techniques to integrate data from overlapping sources [8], or other forms of
dependencies between sources [10].

On the contrary, until recently there has been little focus on how to populate
such databases with sound probabilistic data. Even if this problem is strongly
application-specific, there is a lack of solutions also in the popular fields of data
extraction and integration. Cafarella et al. have described a system to populate
a probabilistic database with data extracted from the Web [3], but they do
not consider the problems of combining different probability distributions and
evaluating the reliability of the sources.

TruthFinder [12] was the first project to address the issue of discovering true
values in the presence of multiple sources providing conflicting information. It
is based on an iterative algorithm that exploits the mutual dependency be-
tween source accuracy and consensus among sources. Similarly [11] and more
recently [9] other approaches presented fix-point algorithms to estimate the true
values of data reported by a set of sources, together with the accuracy of the
sources. These approaches do not consider source dependencies and they all deal
with simple data.



Some of the intuitions behind TruthFinder were formalized by Dong et al. [5]
in a probabilistic Bayesian framework, which also takes into account the effects
related to the presence of copiers among the sources. Our probabilistic model is
based on such Bayesian framework and extends it to the case with sources that
provide complex data. A further development by the same authors also consider
the variations of truth values over time [6]. This latter investigation applies for
time evolving data and can lead to identify outdated sources.

3 Probabilistic Models for Uncertain Web data

In our setting, a source that provides the values of a set of properties for a
collection of objects is modeled as a witness that reports an observation. For
example, on the Web there are several sources that report the values of price,
volume, dividend for the NASDAQ stock quotes. We say that these sources are
witnesses of all the cited properties for the NASDAQ stock quotes.

Different witnesses can report inconsistent observations; that is, they can
provide inconsistent values for one or more properties of the same object. We
aim at computing: (i) the probability that the observed properties of an object
assume certain values, given a set of observations that refer to that object from
a collection of witnesses; (ii) the accuracy of a witness with respect to each
observed property, that is, the probability that a witness provides the correct
values of each observed property for a set of objects. With respect to the running
example, we aim at computing the probability distributions for volume, min and
max values of each observed stock quote, given the observations of the four
witnesses illustrated in Figure 1. Also, for each witness, we aim at computing
its accuracies in providing a correct value for volume, min and max property.

We illustrate two models of increasing complexity. In the first model we
assume that each witness provides its observations independently from all the
other witnesses (independent witnesses assumption). Then, in Section 4, based
on the framework developed in [5], we remove this assumption and consider also
the presence of witnesses that provide values by copying from other witnesses.
The first model is developed considering only one property at a time, as we
assume that a witness can exhibit different accuracies for different properties.
More properties at a time are taken into account in the second model, which
considers also the copying dependencies. As we discussed in the example of
Figure 1, considering more properties in this step can greatly affect the results
of the other steps, and our experimental results confirmed this intuition, as we
report in Section 5.

For each property, we use a discrete random variable X to model the pos-
sible values it assumes for the observed object. P(X = x) denotes the prior
probability distribution of X on the x1, . . . , xn+1 possible values, of which one
is true and the other n are false. For the sake of simplicity, we consider a uni-
form distribution, and then P(X = x) = 1

n+1 ,∀x. Also, let ẋ denote the event
X = x, i.e. the event “x is the correct value for X”. The individual observation
of a witness is denoted o; also, v(o) is used to indicate the reported value. The



accuracy of a witness w, denoted A, corresponds to the conditional probability
that the witness reports x, given ẋ; that is: A = P (o|ẋ), with v(o) = x.

In the following we assume that the values provided by a witness for an object
are independent on the values provided for the other objects (Independent values
assumption). Also, we assume that the value provided by a witness for a property
of an object is independent of the values provided on the other properties of the
same object (Independent properties assumption).

Given an object, the larger is the number of witnesses that agree for the
same value, the higher is the probability that the values is correct. However, the
agreement of the witnesses’ observations contributes in increasing the probability
that a value is correct in a measure that depends also on the accuracy of the
involved witnesses. The accuracy of a witness is evaluated by comparing its
observations with the observations of other witnesses for a set of objects. A
witness that frequently agrees with other witnesses is likely to be accurate.

Based on these ideas of mutual dependence between the analysis of the con-
sensus among witnesses and the analysis of the witnesses accuracy, we have
developed an algorithm [2] that computes the distribution probabilities for the
properties of every observed object and the accuracies of the witnesses. Our al-
gorithm takes as input the observations of some witnesses on multiple properties
of a set of objects, and is composed of two main steps:

1. Consensus Analysis: based on the agreement of the witnesses among their
observations on individual objects and on the current accuracy of witnesses,
compute the probability distribution for the properties of every object (Sec-
tion 3.1);

2. Accuracy Analysis: based on the current probability distributions of the ob-
served object properties, evaluate the accuracy of the witnesses (Section 3.2).

The iterations are repeated until the accuracies of the witnesses do not signifi-
cantly change anymore.

3.1 Probability Distribution of the Values

The following development refers to the computation of the probability distribu-
tion for the values of one property of an object, given the observations of several
witnesses, and the accuracies of the witnesses with respect to that property.
The same process can be applied for every object and property observed by the
witnesses.

Given a set of witnesses w1, . . . , wk, with accuracy A1, . . . , Ak that report a

set of observations o1, . . . , ok our goal is to calculate: P
(
ẋ
∣∣∣ k
∩
i=1

oi

)
i.e., we aim

at computing the probability distribution of the values an object may assume,
given the values reported by k witnesses.



First, we can express the desired probability using the Bayes’ Theorem:

P
(
ẋ
∣∣∣ k
∩
i=1

oi

)
=
P
(
ẋ
)
P
(

k
∩
i=1

oi

∣∣∣ẋ)
P
(

k
∩
i=1

oi

) (1)

The events ẋi forms a partition of the event space. Thus, according to the Law
of Total Probability:

P
(

k
∩
i=1

oi

)
=
n+1∑
j=1

P
(
ẋj

)
P
(

k
∩
i=1

oi

∣∣∣ẋj) (2)

Assuming that the observations of all the witnesses are independent,1 for any
event ẋ we can write:

P
(

k
∩
i=1

oi

∣∣∣ẋ) =
k∏
i=1

P
(
oi

∣∣∣ẋ)
Therefore:

P
(
ẋ
∣∣∣ k
∩
i=1

oi

)
=

P
(
ẋ
) k∏
i=1

P
(
oi

∣∣∣ẋ)
n+1∑
j=1

P
(
ẋj

) k∏
i=1

P
(
oi

∣∣∣ẋj) (3)

P (ẋ) is the prior probability that X assumes the value x, then equals to 1
n+1 ;

P (o|ẋ) represents the probability distribution that a witness reports a value
v(o). Observe that if v(o) = x (i.e. the witness reports the correct value) the
term coincides with the accuracy A of the witness. Otherwise, i.e. if v(o) 6= x,
P (o|ẋ), it corresponds to the probability that the witness reports the incorrect
value v(o). In this case, we assume that v(o) has been selected randomly from
the n incorrect values of X.

Since P (o|ẋ) is a probability distribution:∑
v(o) 6=x

P (o|ẋ) = 1−A.

Assuming that every incorrect value is selected according to the uniform prior
probability distribution, we can conclude:

P (oi|ẋ) =

{
Ai , v(oi) = x
1−Ai

n , v(oi) 6= x
(4)

Combining (3) and (4), we obtain the final expression to compute P
(
ẋ
∣∣∣ k
∩
i=1

oi

)
.

1 This assumption is a simplification of the domain that we will remove later by
extending our model to deal with witnesses that may copy.



3.2 Witnesses Accuracy

We now illustrate the evaluation of the accuracy of the witnesses with respect to
one property, given their observations for that property on a set of objects, and
the probability distributions associated with the values of each object computed
as discussed in the previous section.

Our approach is based on the intuition that the accuracy of a witness can be
evaluated by considering how its observations for a number of objects agree with
those of other witnesses. Indeed, assuming that a number of sources indepen-
dently report observations about the same property (e.g. trade value) of a shared
set of objects (e.g. the NASDAQ stock quotes), these observations unlikely agree
by chance. Therefore, the higher are the probabilities of the values reported by
a witness, the higher is the accuracy of the witness.

We previously defined the accuracy Ai of a witness wi as the probability that
wi reports the correct value. Now, given the set of m objects for which the source
wi reports its observations o1, ..., om, and the corresponding probability distribu-
tions P1(ẋ), ..., Pm(ẋ), computed from the observations of many witnesses with
the formula described above, we estimate the accuracy of wi as the average of
the probabilities associated with the values reported by wi:

Ai =
1
m

m∑
j=1

Pj

(
X = vj(oi)

)
(5)

where vj(oi) is the value of the observation reported by wi for the object j.
Our algorithm [2] initializes the accuracy of the witnesses to a constant value,

then it starts the iteration that computes the probability distribution for the
value of every object (by using equation (4)) and the accuracy of sources (equa-
tion (5)).

4 Witnesses Dependencies over Many Properties

We now introduce an extension of the approach developed in [5] for the analysis
of dependence among witnesses that removes the independent witnesses assump-
tion. The kind of dependence that we study is due to the presence of copiers:
they create “artificial” consensus which might lead to misleading conclusions.

As we consider witnesses that provide several properties for each object, we
model the provided values by means of tuples. We assume that a copier either
copies a whole tuple from another witness or it does not copy any properties at
all (no-record-linkage assumption). In other words, we assume that a copier is
not able to compose one of its tuple by taking values (of distinct properties) from
different sources. Otherwise, note that a record-linkage step would be needed to
perform its operation, and it would be more appropriate to consider it as an
integration task than a copying operation.

As in [5], we assume that the dependency between a pair of witnesses is
independent of the dependency between any other pair of witnesses, the copiers
may provide a copied tuple with a-priori probability 0 ≤ c ≤ 1, and they may



provide some tuples independently from other witnesses with a-priori probability
1− c (independent copying assumption).

Under these assumptions, the evidence of copying could greatly improve by
considering several properties, since it is much less likely that multiple values
provided by two witnesses for the same object coincide by chance.

4.1 Ignoring Copiers’ Opinions

We exploit the approach presented in [5] to deal with the presence of copiers.
The equation (3), which was based on the independence assumption does not

hold anymore, and equations (1) and (2) have to be rewritten as follows:

P
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=
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∣∣∣ẋ)P(ẋ)
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P
(
ẋj
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P
(

k
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oi

∣∣∣ẋj) (6)

and then, let Wo(x) the set of witnesses providing x on object O and Wo the set
of witnesses providing a value on O

P
(

k
∩
i=1

oi

∣∣∣ẋ) =
∏

w∈Wo(x)

Aw
∏

w∈W0−Wo(x)

1−Aw
n

=
∏

w∈Wo(x)

n ·Aw
1−Aw

∏
w∈Wo

1−Aw
n

(7)
Among all the possible values x1, . . . , xn+1, assuming as before a uniform a-priori
probability 1

n+1 for each value, we have:

P
(

k
∩
i=1

oi

)
=
n+1∑
j=1

P
(

k
∩
i=1

oi

∣∣∣ẋj)P (ẋj) =
1

n+ 1

n+1∑
j=1

∏
w∈Wo(xj)

n ·Aw
1−Aw

∏
w∈Wo

1−Aw
n

The probability that a particolar value is true given the observations, can be
obtained by applying the Bayes’ Theorem:

P
(
ẋ
∣∣∣ k
∩
i=1

oi

)
=
P
(

k
∩
i=1

oi

∣∣∣ẋ) 1
n+1

P (
k
∩
i=1

oi)
=

∏
w∈Wo(x)

n·Aw

1−Aw

n+1∑
j=1

∏
w∈Wo(xj)

n·Aw

1−Aw

The denominator is a normalization factor, it is independent of Wo(x) and it
will be denoted ω to simplify the notation. As [5] shows, for the following de-
velopments, it is convenient to introduce the confidence of x, denoted by C(x),
which is basically the probability expressed according to a logarithmic scale:

C(x) = lnP (x) + lnω =
∑

w∈Wo(x)

ln
n ·Aw
1−Aw



If we define the accuracy score of a witness w as:

A′w = ln
n ·Aw
1−Aw

it arises that we can express the confidence of a value x as the sum of the
accuracy scores of the witnesses that provide that value:

C(x) =
∑

w∈Wo(x)

A′w

Now it is possible to take into account the presence of copiers by computing
the confidence as weighted sum of the accuracy scores:

C(x) =
∑

w∈Wo(x)

A′wIw

where the weight Iw, is a number between 0 and 1 that we call the probabil-
ity of independent opinion of the witness w and essentially it represents which
“portion” of the opinion of w is expressed independently of the other witnesses.
Therefore, for a perfect copier Iw equals to 0, whereas for a perfectly independent
witness Iw equals to 1.

Iw can be expressed as the probability that a value provided by w is not
copied by any other witness:

Iw =
∏
w′ 6=w

(1− cP (w → w′))

where P (w → w′) is the probability that w is a copier of w′, and c is the a-priori
probability that a copier actually copies the value provided.

Next, we will discuss how to compute a reasonable value of P (w → w′) for a
pair of witnesses.

4.2 Witnesses Dependence

In [5] it is illustrated a technique to compute the probability P (w1 → w2) that
w1 is copier of w2, and the probability P (w1⊥w2) that w1 is independent of w2

starting from the observations of the values provided by the two witnesses for
one given property.

Intuitively, the dependence between two witness w1 and w2 can be detected
by analyzing for which objects they provide the same values, and the overall
consensus on those values. Indeed, whenever two witnesses provide the same
value for an object and the provided value is false, this is an evidence that the
two witnesses are copying each other. Much less evidence arises when the two
share a common true value for that object: those values could be shared just
because both witnesses are accurate, as well as independent.

We consider three probabilities, P (w1⊥w2), P (w1 → w2), P (w2 → w1),
corresponding to a partition of the space of events of the dependencies between



two witnesses w1 and w2: either they are dependent or they are independent; if
they are dependent, either w1 copies from w2 or w2 copies from w1.

P
“
w1⊥w2

˛̨
Φ

”
=

P
“
Φ

˛̨
w1⊥w2

”
P

`
w1⊥w2

´
P

“
Φ

˛̨
w1⊥w2

”
P

`
w1⊥w2

´
+ P

“
Φ

˛̨
w1 → w2

”
P

`
w1 → w2

´
+ P

“
Φ

˛̨
w2 → w1

”
P

`
w2 → w1

´
Here Φ corresponds to

k
∩
i=1

oi, i.e. the observations of the values provided

by the k witnesses, and namely, oi corresponds to the observation of the tuples
provided by the witness wi on the object o.

The a-priori knowledge of witnesses dependencies can be modeled by consid-
ering a parameter 0 < α < 1, and then setting the a-priori probability P

(
w1⊥w2

)
to α; P

(
w1 → w2

)
and P

(
w2 → w1

)
are both set to 1− α

2 .2

The probabilities P
(
Φ
∣∣w1⊥w2

)
, P
(
Φ
∣∣w1 → w2

)
, P
(
Φ
∣∣w2 → w1

)
can be

computed with the help of the independent values assumption: the values inde-
pendently provided by a witness on different objects are independent of each
other.

For the sake of simplicity, here we detail how to compute, given the assump-
tions above, and considering our generative model of witnesses, P

(
Φ
∣∣w1⊥w2

)
the probability that two independent witnesses w1 and w2 provide a certain
observation Φ in the case of two properties denoted A and B for which they
respectively exhibit error rates3of εA1 , εB1 , εA2 , εB2 . A similar development would
be possible in the case of witnesses providing more than two properties.

Given the set of objects O for which both w1 and w2 provide values for
properties A and B, it is convenient to partition O in these subsets: Ott ∪Otf ∪
Oft∪Off ∪Od ⊆ O. For objects in Ott∪Otf ∪Oft∪Off , w1 and w2 provide the
same values of properties A and B, whereas for objects in Od the two witnesses
provide different values for at least one property. In the case of objects in Ott,
the witnesses agree on the true value for both properties; for objects in Otf they
agree on the true value of A and on the same false value of B; similarly for Oft
they agree on the same false value of A and on the true value of B; finally, in
the case of Off they agree on the same false values for both properties.

We first consider the case of both witnesses independently providing the same
values of A and B and these values are either both true or both false. According
to the independent properties assumption, wi provides the pair of true values
for A and B with probability (1 − εAi )(1 − εBi ), and a particular pair of false
values with probability εAi

nA

εBi
nB

, with nA (respectively nB) being the number of
possible false values for the property A (resp. B). Given that the witnesses are
independent, and there are nA · nB possible pairs of false values on which the

2 A similar discussion for P
“
w1 → w2

˛̨
Φ

”
, and P

“
w2 → w1

˛̨
Φ

”
is omitted for space

reasons.
3 The error rate ε of a witness with respect to a property is the complement at 1 of

its accuracy A with respect to the same property: ε = 1−A.



two witnesses may agree, we can write:

P (o ∈ Ott|w1⊥w2) = (1− εA1 )(1− εA2 )(1− εB1 )(1− εB2 ) = Ptt

P (o ∈ Off |w1⊥w2) = εA1 ε
A
2

nA

εB1 ε
B
2

nB
= Pff

A witness wi independently provides a true value of A and a particular false
values for B with probability (1− εAi ) ε

B
i

nB
(similarly for P (o ∈ Oft|w1⊥w2)):

P (o ∈ Otf |w1⊥w2) = (1− εA1 )(1− εA2 ) ε
B
1 ε

B
2

nB
= Ptf

P (o ∈ Oft|w1⊥w2) = (1− εB1 )(1− εB2 ) ε
A
1 ε

A
2

nA
= Pft

All the remaining cases are in Od:

P (o ∈ Od|w1⊥w2) = 1− Ptt − Ptf − Pft − Pff = Pd

The independent values assumption allow us to obtains P
(
Φ
∣∣w1⊥w2

)
by

multipling the probabilities and appropriately considering the cardinalities of
the corresponding subsets of O:

P
(
Φ
∣∣w1⊥w2

)
= P

|Ott|
tt · P |Otf |

tf · P |Oft|
ft · P |Off |

ff · P |Od|
d .

Now we detail how to compute P
(
Φ
∣∣w1 → w2

)
, but we omit P

(
Φ
∣∣w2 → w1

)
since it can be obtained similarly. Recall that according to our model of copier
witnesses, a copier with a-priori probability 1−c provides a tuple independently.
In this case, we can reuse the probabilities Ptt, Pff , Ptf , Pft, Pd obtained above
for independent witnesses with weight 1− c. However, with a-priori probability
c, a copier witness w1 provides a tuple copied from the witness w2 and hence
generated according to the same probability distribution function of w2. For
instance, w2 would generate a pair of true values with probability (1−εA2 )(1−εB2 ).
Concluding:

P (o ∈ Ott|w1 → w2) = (1− εA2 )(1− εB2 )c+ Ptt(1− c)
P (o ∈ Off |w1 → w2) = εA2 ε

B
2 c+ Pff (1− c)

P (o ∈ Otf |w1 → w2) = (1− εA2 )εB2 c+ Ptf (1− c)
P (o ∈ Oft|w1 → w2) = (1− εB2 )εA2 c+ Pft(1− c)

For the remaining cases, we have to consider that since the witnesses are provid-
ing different values for the same object, it cannot be the case that one is copying
the other.

P (o ∈ Od|w1 → w2) = (1− Ptt − Ptf − Pft − Pff )(1− c)

Again, the independent values assumption allow us to obtain P
(
Φ
∣∣w1 → w2

)
by multipling these probabilities raised to the cardinality of the corresponding
subset of O.



5 Experiments

We now describe the settings and the data we used for the experimental evalua-
tion of the proposed approach. We conducted two sets of experiments. The first
set of experiments were done with generated synthetic data, while the second
set were performed with real world data extracted from the Web.

For the following experiments we set α=0.2 and c=0.8.

5.1 Synthetic scenarios

The goal of the experiments with synthetic data was to analyze how the algo-
rithms perform with sources of different quality.

#authorities #independents #copiers A

EXP1 0 8 10 0.1 - 0.9

EXP2 1 7 10 0.1 - 0.9

Fig. 2. Configurations for the synthetic scenarios.

We conducted two sets of experiments EXP1 and EXP2 to study the perfor-
mances of the approach with different configurations as summarized in Figure 2.
In the two sets there are three possible types of sources: authorities, which pro-
vide true values for every object and every attribute; independents, which make
mistakes according to the source accuracy A; copiers, which copy according to
a copying rate r from the independents, and make mistakes according to the
source accuracy A when they report values independently. The experiments aim
at studying the influence of the varying source accuracies and the presence of an
authority source.

In all the experiments we generated sources with N = 100 objects, each
described by a tuple with 5 attributes with values for all the objects; the copiers
copy from an independent source with a frequency r = 0.8. In all the scenarios
each copier copies from three independents, with the following probabilities: 0.3,
0.3, 0.4.

In order to evaluate the influence of complex data, for each of these configu-
rations we varied the number of attributes given as input to the algorithm with
three combinations: 1, 3, and 5 attributes. We remark that our implementation
coincides with the current state of the art when only one attribute is consid-
ered [5]. To highlight the effectiveness of our algorithm, we also compared our
solution with a naive approach, in which the probability distribution is computed
with a simple voting strategy, ignoring the accuracy of the sources.

To evaluate the performance of the algorithms we report the Precision (P),
i.e. the fraction of objects on which we select the true values, considering as
candidate true values the ones with the highest probability.



Fig. 3. Synthetic experiments: MultiAtt(5) outperforms alterative configurations in all
scenarios.

Results The results of our experiments on the synthetic scenarios are illustrated
in Figure 3. For each set of experiments we randomly generated the datasets and
applied the algorithms 100 times. We report a graphic with the average Precision
for the naive execution and for the three different executions of our approach.
We used in fact executions of MultiAtt(1) with only one attribute given as input,
executions of MultiAtt(3) with three attributes, and executions of MultiAtt(5)
with five.

From the two sets it is apparent that the executions with multiple attributes
always outperform the naive execution and the one considering only one at-
tribute. In the first set EXP1, MultiAtt(3) and MultiAtt(5) present some bene-
fits compared to previous solutions, but are not able to obtain excellent precision
in presence of high error rates. This is not surprising: even if MultiAtt(3) and
MultiAtt(5) are able to identify perfectly what sources are copiers, there are 8
independent sources reporting true values with a very low frequency and there-
fore evidence to compute the true values for most of the objects is missing. The
scenario radically changes in EXP2, where an authority exists and MultiAtt(5)
is able to return all the correct values even for the worst case, while MultiAtt(3)
and MultiAtt(1) start significantly mixing dependencies at 0.8 and 0.5 error
rates, respectively.

It is worth remarking that our algorithm does not introduce regressions with
respect to previous solutions. In fact, we have been able to run all the synthetic
examples in [5] obtaining the same results with all the configurations of MultiAtt.
This can be explained by observing that in those examples the number of copiers
is minor than the number of independent sources and MultiAtt(1) suffices for
computing correctly all the dependencies. In the following, we will show that
real data are significantly affected by the presence of copiers, but there are
cases where considering only one attribute does not suffice to find the correct
dependencies between sources.



5.2 Real-World Web data

We used collections of data extracted from web sites about NASDAQ stock
quotes. All the extraction rules were checked manually, and the pages were down-
loaded on November 19th 2009.4

Attribute #sites %null #symbols #objects

last price 39 0.3 544 250
open price 34 16.09 568 250

52 week high 34 16.59 531 250
52 week low 34 16.59 487 250

volume 39 1.98 1259 250

Fig. 4. Settings for the real-world experiments.

The settings for the real-world experiments are reported in Figure 4, which
shows the list of attributes we studied. Among hundreds of available stock quotes
we have chosen the subset that maximizes the inconsistency between sources.

It is worth observing that in this domain an authority exists: it is the offi-
cial NASDAQ website (http://www.nasdaq.com). We ran our algorithm over the
available data and we evaluated the results considering the data published by
that source as the truth. The experiments were executed on a FreeBSD machine
with Intel Core Duo 2.16GHz CPU and 2GB memory.

To test the effectiveness of our approach we executed the algorithm consider-
ing one attribute at a time, considering all the 10 possible configurations of three
attributes, and, finally, considering five attributes at the same time. In Figure 5.a
are reported the average of the precisions obtained over the five attributes by
these configurations. The worst precision (0.39) is obtained considering only one
attribute at a time: this is due to the lack of clear majorities in the setting
and the consequent difficulty in the discovery of the dependencies. We obtained
interesting results considering the configurations of three attributes. In fact, it
turned out that some configurations perform significantly better than others.
This is not surprising, since the quality of the data exposed by an attribute
can be more or less useful in the computation of the dependencies: for example,
an attribute does not provide information to identify copiers if all the sources
provide the correct values or all the sources provide different values. However,
it is encouraging to notice that considering all the five attributes we obtained a
good precision (0.84). This shows that even if there exist attributes that do not
contribute positively (or provide misleading information), their impact can be
absorbed if they are considered together with the good ones.

Figure 5.b reports the average precision scores for the three configurations
compared with their execution times (the average in the cases with one and three
4 Since financial data change during the trading sessions, we downloaded the pages

while the markets were closed.



(a) (b)

Fig. 5. Real-world summary experiments.

attributes). It can be observed that the execution times increase linearly with
the number of attributes involved in the computation, with a maximum of 16
minutes for the configuration with five attributes.
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