
Clip: a Visual Language for Explicit Schema
Mappings

Alessandro Raffio∗, Daniele Braga∗, Stefano Ceri∗, Paolo Papotti†, Mauricio A. Hernández‡

∗Dipartimento di Elettronica e Informazione, Politecnico di Milano

Piazza Leonardo da Vinci 32, Milano, Italy
raffio,braga,ceri at elet.polimi.it

†Dipartimento di Informatica e Automazione, Universitá di Roma Tre

Via della Vasca Navale 79, Roma, Italy
papotti at dia.uniroma3.it

‡IBM Almaden Research Center

San Jose, CA, US
mauricio at almaden.ibm.com

Abstract— Many data integration solutions in the market today
include tools for schema mapping, to help users visually relate
elements of different schemas. Schema elements are connected
with lines, which are interpreted as mappings, i.e. high-level
logical expressions capturing the relationship between source and
target data-sets; these are compiled into queries and programs
that convert source-side data instances into target-side instances.
This paper describes Clip, an XML Schema mapping tool dis-
tinguished from existing tools in that mappings explicitly specify
structural transformations in addition to value couplings. Since
Clip maps hierarchical XML schemas, lines appear naturally
nested. We describe the transformation semantics associated with
our “lines” and how they combine to form mappings that are
more expressive than those generated by Clio, a well-known
mapping tool. Further, we extend Clio’s mapping generation
algorithms to generate Clip’s mappings.

I. INTRODUCTION

Schema mappings are created and maintained for two pur-

poses. In the most popular usage scenario, given a schema

mapping between a source and a target schema, mapping

tools automatically create a transformation script (a query

or program) which converts a source side instance into a

target side instance. In other words, mapping tools help data

integration engineers write long and complex programs to

transform data. Another usage of schema mappings is to

maintain relationships between schema elements, for later use

in impact analysis (change management) and data lineage.

However, we do not further consider this problem in the paper.

Schema mapping tools are characterized by GUIs that place

a source structure on one side of the screen and a target

structure on the other side. Users specify the correspondences

by drawing lines across the source and target structures. Lines

are typically annotated with features that carry some of the

transformation semantics (e.g., filtering predicates, functions,

etc.). Many such tools are available in the market today (e.g.,

Altova MapForce, Microsoft BizTalk, Stylus Studio, IBM

Rational Data Architect)1. Clio [1][2] is a schema mapping

1On the Web: www.altova.com/MapForce, www.microsoft.com/biztalk,
www.stylusstudio.com, www.ibm.com/software/data/integration/rda.

prototype developed jointly between IBM Almaden Research

Center and the University of Toronto; it automatically creates

mappings given two schemas and a set of value mappings

between their atomic elements. Clio builds an internal repre-

sentation capable of representing relational and XML schemas;

depending on the kind of source and target schemas, Clio can

render queries that convert source data into target data in a

number of languages (XQuery, XSLT, SQL/XML, SQL).

This paper introduces Clip, a new schema mapping lan-

guage developed at Politecnico di Milano. Users of Clip enter

mappings by drawing lines across schema elements and by

annotating some of the lines. Clip then produces the queries

that implement the mapping. The main difference introduced

by Clip relative to its predecessors, and most specifically to

Clio that greatly influenced Clip’s design, is the introduction of

structural mappings in addition to value mappings; this gives

users greater control over the produced transformations. Clip

mappings are less dependent on hidden automatisms, whose

assumptions may fail in capturing the intended semantics.

Clip was designed to work with XML Schemas. But, just

like Clio, Clip also works with relational schemas, as long as

they are converted in a canonical way into XML Schemas. In

general, Clip should work with any schema model that can be

visually represented as a nested containment of relations.

A. Motivating Example and Approach

XML Schemas are represented as trees; attributes2 and

text are represented by black and white circles respectively,

elements by squares, cardinalities by both icons and labels:3

single

elements
? tagname [0..1]

tagname

? tagname [0..1]? tagname [0..1]

tagnametagname tagname [0..*]

tagname [1..*]

?

tagname [1..*]tagname [1..*]

??

multiple

elements
value

nodes
@name: type@name: type

typetype

2The attribute name, next to the black circle, is preceded by an “@” sign
to resemble the XPath symbol for accessing attributes.

3Notice that the question marks and the zeroes in the minimum cardinality
indicate optionality, while shadowed icons and stars in the maximum cardi-
nality indicate multiplicity.

Referential integrity between attributes is represented by a

dashed line (as for @pid attributes of regEmps, which refer to

those of Projs).

Consider the following XML document instance describing

two departments (compacted due to space limits):

source---dept---dname = ICT

| |---Proj---@pid = 0001

| | ‘---pname = Appliances

| |---Proj---@pid = 0002

| | ‘---pname = Robotics

| |---regEmp---@pid = 0001

| | |---ename = John Smith

| | ‘---sal = 10000

| |---regEmp---@pid = 0001

| | |---ename = Andrew Clarence

| | ‘---sal = 12000

| |---regEmp---@pid = 0002

| | |---ename = Mark Tane

| | ‘---sal = 10500

| ‘---regEmp---@pid = 0002

| |---ename = Jim Bellish

| ‘---sal = 11000

‘---dept---dname = Marketing

|---Proj---@pid = 0001

| ‘---pname = Brand promotion

|---Proj---@pid = 0032

| ‘---pname = Appliances

|---regEmp---@pid = 0001

| |---ename = Richard Dawson

| ‘---sal = 30000

|---regEmp---@pid = 0032

| |---ename = Mark Tane

| ‘---sal = 10000

‘---regEmp---@pid = 0001

|---ename = Steven Aiking

‘---sal = 20000

Each department has a name, a list of projects (with an

identifier and a name), and a list of regular employees (with

a name, a salary, and a @pid attribute referring to the project

they work on). This instance is valid w.r.t the source XML

Schema on the left of Figure 1. We want to transform the

source instance into one of the target schema on the right of

Figure 1. The desired output is:

target---department---project---@name = Appliances

| |---project---@name = Robotics

| |---employee---@name = John Smith

| |---employee---@name = Andrew Clarence

| |---employee---@name = Mark Tane

| ‘---employee---@name = Jim Bellish

‘---department---project---@name = Brand promotion

|---project---@name = Appliances

|---employee---@name = Richard Dawson

|---employee---@name = Mark Tane

‘---employee---@name = Steven Aiking

None of the generation tools we are aware of can obtain

such (simple) result. Figure 1 is actually an attempt to express

our mapping in Clio. It only gets close to the target, as

it compiles to a transformation that outputs projects and

employees, but encloses each node in a different department

element, not preserving containment and sibling relationships:

target---department---project---@name = Appliances

|---department---project---@name = Robotics

...

‘---department---employee---@name = Steven Aiking

This happens because structural transformations are inferred

from value mappings instead of being under the user’s control.

The inference rule states, in this case, that a department be

generated for each mapped value; however, this is not the

employee [0..*]

@name: String

@name: String

target

department [1..*]

project [0..*]?

?

source

dept [1..*]

regEmp [0..*]

ename

value:String

value:int
sal

@pid: int

value:String

dname

Proj [0..*]

pname

value:String

@pid:int

??

??

Fig. 1. A simple yet problematic mapping

desired default behavior. This paper addresses how to express

this and more complex mappings, by controlling structural

transformations.

B. Related Work

The schema mapping generation problem received lots of

attention by the research community in the last years [1][3][4].

Schema mapping generation studies how to automatically

create schema mappings given as input two schemas and

a set of value mappings between their atomic elements. In

essence, mapping generation algorithms ascribe transformation

semantics to value mappings generating first order logical

formulas that are independent of the actual transformation

language and easier to study than executable scripts.

With respect to existing approaches, we allow users to

express more complex mappings by introducing a new GUI,

extended with set correspondences and aggregate functions.

Our contribution tries to bring an initial answer to the growing

demand for more complex schema mappings [5]. To generate

such mappings we introduce new generation algorithms that

generate second-order logical formulas, which allow to ex-

press grouping and aggregate by means of functions. Without

functions, our mapping language reduces to the language of

GLAV mappings [6], or source-to-target tgds (tgd stands for

tuple generating dependency) [7]; in the object-relational case,

in fact, it is a nested-relational extension of second order

tgds [8] and the two languages coincide in the relational

case. Nested second order tgds have been already presented

in schema evolution scenarios [9] and in the nested mapping

paradigm [2]. Strictly referring to the mapping language

expressiveness, the main difference with these approaches is

that they only consider Skolem functions, while we extend the

set of supported functions.

II. THE CLIP LANGUAGE

Clip builds on the visual representation of XML Schemas

introduced in Section I-A and uses two different kinds of lines

to connect source and target nodes:

Value mappings connect value nodes to establish correspon-

dences between atomic values (as in Clio). In general, value

mappings convert one or more source values into a target

Value mappings are thin arrows with open
ends connecting value nodes; optional
labels may specify an aggregate function.
Builders are thick arrows with close ends
connecting elements and possibly build
nodes.

Build nodes have at least 1 incoming and
at most 1 outgoing builder and a label
expresses filtering conditions in terms of
the variables on the builders.

A special build node is used for grouping.
The grouping attributes are reported along
with the “group-by” keyword.

CPTs are trees of build nodes and
context arcs.

$x.att1=$y.att2$x
$y

$x.att1=$y.att2$x
$y

group-by

{ attributes }
group-by

{ attributes }

<<aggregate>><<aggregate>>

Context
Propagation
Tree

Fig. 2. The Clip syntax in a nutshell

$r

$r.sal.value

> 11000

$r.ename.value

target

department [1..*]

employee [0..*]

value: int

works-in [0..1]?

@name: String

area [0..*]

value: int

??

??

source

dept [1..*]

regEmp [0..*]

ename

value: String

value: int
sal

@pid: int

value: String
dname

Proj [0..*]

pname

value: String

@pid: int

??

??

Fig. 3. A simple Clip mapping

value. Simple one-to-one value mappings represent the identity

function and copy a single source value as a target value. More

complicated transformations require the user to add a scalar

function that transform the one or more source values into

a target value. For example, value mappings can concatenate

multiple source values or perform an arithmetic operation on

source values. Object mappings (or builders) connect elements

and rule structural transformations. Intuitively, builders repre-

sent iterators on the source nodes they are drawn from: in

each iteration, a new element is constructed, of the kind of

the target node reached by the builder.

We introduce some further notations. Build nodes are an-

notated nodes placed between the schemas and connected to

schema nodes by builders; build nodes can also be connected

one to another by context arcs into tree structures, named con-

text propagation trees (CPTs). Build nodes have 1..n incoming

builders, 0..1 incoming context arcs, 0..1 outgoing builders and

0..n outgoing context arcs. Incoming builders may be tagged

with variables, representative of the nodes from which they

originate, if they need to be referenced in node labels. Last,

group nodes are build nodes marked by a “group-by” label and

a list of grouping attributes. Figure 2 summarizes the visual

syntax of Clip.

$r

$r.sal.value
> 11000

target

department [1..*]

employee [0..*]

project [0..*]

@name: String

@name: String

??

??

source

dept [1..*]

regEmp [0..*]

ename

value: String

value: int
sal

@pid: int

value: String
dname

Proj [0..*]

pname

value: String

@pid: int

??

??

Fig. 4. A mapping with context propagation

A. Clip Mapping examples

Simple mapping. Figure 3 shows a simple mapping, where an

employee is created for each regEmp whose salary ($r.sal.value)

is greater than 11000. For each such employee, the name

(ename) is copied to the name attribute (a value mapping

connects ename.value to @name). Note the condition expressed

using variable $r taken from the incoming builder. This

mapping is indeed expressible in standard Clio with the same

value mapping and a suitable filtering condition.

This mapping is underspecified with respect to the target

schema. For example, the target area element plays no role

in the mapping and is not generated. However, this is not a

problem because the area element is optional and, thus, does

not need to be generated. The mapping also does not specify

how many department elements should be generated. A notion

of universal solutions for data exchange was introduced by [7].

Universal solutions satisfy all data dependencies without any

extra assumptions. In the case of our mapping example, if only

the value mapping is given, then at least two valid solutions

exists: one that has one target department with one nested

employee element for each source regEmp, and another that

has only one target department and as many nested employee

elements as source regEmp elements. For our purposes, though,

we adopt a minimum-cardinality principle and build as few

elements as possible, compatible with the schema constraints.

When no builders are given, Clip generates the minimum

number of elements necessary for the result to comply with the

target schema. For our example, Clip produces the following

solution:

target---department---employee---@name = Andrew Clarence

|---employee---@name = Richard Dawson

‘---employee---@name = Steven Aiking

When builders are used, the proliferation of generated

elements is strictly controlled by the builders and the target

schema constraints.

Context propagation. The mapping in Figure 4 creates a

department for each dept and collects all the regEmps (with

salary greater than 11000) of the dept as employees of the

corresponding department. This is performed by drawing a first

builder from dept to department (through a build node) and

a second builder from regEmp to employee (through another

build node). The build nodes are connected by a context arc to

enforce a hierarchy of builders: regEmps are mapped according

to the inner builder within the context of a specific dept, fixed

by the outer builder (intuitively, by an “outer iteration”). The

result is as follows:

target---department---employee---@name = Andrew Clarence

‘---department---employee---@name = Richard Dawson

‘---employee---@name = Steven Aiking

Omitting the context arc causes all employees (with sal >

11000) to appear, repeated, within all departments, disregard-

ing the original containment relationships:

target---department---employee---@name = Andrew Clarence

| |---employee---@name = Richard Dawson

| ‘---employee---@name = Steven Aiking

‘---department---employee---@name = Andrew Clarence

|---employee---@name = Richard Dawson

‘---employee---@name = Steven Aiking

Context propagation tree. The mapping in Figure 5 is the first

example of what cannot be obtained by state-of-the-art tools.

This mapping solves the problem we discussed in Section I by

specifying a builder and propagating its context twice. Namely,

department elements are generated by the topmost builder,

while project and employee elements are generated considering

the current topmost mapping into department.
Cartesian product and join. When a build node is reached

from two or more source schema nodes, Clip computes the

Cartesian product of the source data selected by each builder.

Users can add a filtering condition on the label of the build

node. If this condition involves two different variables, Clip

computes a Join between the source data selected by the build

node.
The mapping in Figure 6 combines Projs and regEmps into

a flattened list of elements that represents the association of

employees to the project they work on (joined on @pid). The

topmost build node has no output builder (nothing has to

be built at dept granularity); however, a context arc restricts

the context of the Cartesian product of Projs and regEmps to

nodes within the same dept. The second build node filters

the Cartesian product pairs ($p.@pid = $r.@pid), so that the

computed operation is a join. This join condition can be

entered by the user or can be automatically suggested using

the existing referential integrity constraint. The result is:

target---project-emp---@pname = Appliances

| ‘---@ename = John Smith

|---project-emp---@pname = Appliances

| ‘---@ename = Andrew Clarence

|---project-emp---@pname = Robotics

| ‘---@ename = Jim Bellish

|---project-emp---@pname = Robotics

| ‘---@ename = Mark Tane

|---project-emp---@pname = Brand promotion

| ‘---@ename = Richard Dawson

|---project-emp---@pname = Appliances

| ‘---@ename = Mark Tane

‘---project-emp---@pname = Brand promotion

‘---@ename = Steven Aiking

To better illustrate the roles of these constructs, let us briefly

consider two variants of the mapping in Figure 6. If we omit

the join condition, then a full Cartesian product is computed

and each Proj is associated with all regEmps within their dept.

If we also omit the top-level build node, then Clip computes

source

dept [1..*]

regEmp [0..*]

ename

value: String

value: int
sal

@pid: int

value: String

dname

Proj [0..*]

pname

value: String

@pid: int

?

?

source

dept [1..*]

regEmp [0..*]

ename

value: String

value: int
sal

@pid: int

value: String

dname

Proj [0..*]

pname

value: String

@pid: int

??

??

target

department [1..*]

employee [0..*]

project [0..*]

@name: String

@name: String

?

?

target

department [1..*]

employee [0..*]

project [0..*]

@name: String

@name: String

??

??

Fig. 5. A more complex Clip mapping

$r

$p

target

project-emp [1..*]

@pname: String

@ename: String

target

project-emp [1..*]

@pname: String

@ename: String$p.@pid =

$r.@pid

source

dept [1..*]

regEmp [0..*]

ename

value: String

value: int
sal

@pid: int

value: String
dname

Proj [0..*]

pname

value: String

@pid: int

??

??

Fig. 6. A join constrained by a CPT

the overall Cartesian product of all regEmps and Projs in the

whole document.

Grouping. Group nodes allow users to group source data

based on a set of grouping attributes. While regular build nodes

produce simple sequences of elements, a group node creates

a set of sequences of elements, grouped along the grouping

attributes. The cardinality of the result (number of sequences)

is given by the number of distinct values of the grouping

attributes. The outgoing builder, if any, constructs one target

element for each distinct values of the grouping attributes.

The mapping in Figure 7 groups Projs by name. A project is

created for each distinct project name, i.e. for each group of

homonymous Projs. Each such group is passed as context to

Group-by
$p.pname.value$p

target

project [1..*]

@name: String

employee [0..*]

@name: String

??

source

dept [1..*]

regEmp [0..*]

ename

value: String

value: int
sal

@pid: int

value: String
dname

Proj [0..*]

pname

value: String

@pid: int

??

??

$p2

$r $p2.@pid =

$r.@pid

Fig. 7. A mapping with grouping and join

the inner builder, so that regEmps are chosen by comparing

their @pids attributes with those of the Projs in one group

only. Thus, the generated target will contain as many project

elements as there are distinct values of project names in the

source instance. Further, the list of employee elements under

project will contain the employees that work in that project

(independently of the department these employees report to).

This construction is necessary because projects are repeated

within departments. The result is as follows:

target---project---@name = Appliances

| |---employee---@name = John Smith

| |---employee---@name = Andrew Clarence

| ‘---employee---@name = Mark Tane

|---project---@name = Robotics

| |---employee---@name = Mark Tane

| ‘---employee---@name = Jim Bellish

‘---project---@name = Brand Promotion

|---employee---@name = Richard Dawson

‘---employee---@name = Steven Aiking

Note that values of pnames are legally mapped to the at-

tribute @name of a single project because pname is a grouping

attribute and is therefore univocally determined. Non-grouping

values have multiple and a-priori different values, and cannot

be mapped to the output elements, unless condensed into one

value by aggregate functions (as exemplified in the following).

Other examples. The mapping in Figure 8 still maps all

Proj elements with the same name into a single project. The

departments involved in each project appear nested under each

target project element. Note that the “innermost” build node

takes depts from a higher nesting level in the source with

respect to Projs, so as to invert the hierarchy. The result is

as follows:

target---project---@name = Appliances

| |---department---@name = ICT

| ‘---department---@name = Marketing

|---project---@name = Robotics

| ‘---department---@name = ICT

‘---project---@name = Brand promotion

‘---department---@name = Marketing

Last, the mapping in Figure 9 demonstrates aggregate

functions by computing for each dept the number of projects

and employees and the average salary. Notice that the value

mappings tagged 〈〈count〉〉 can start from multiple elements,

too, making an exception to the syntactic rule. The result is

as follows:

target---department---@name = ICT

| |---@numProj = 2

| |---@numEmps = 4

| ‘---@avg-sal = 10875

‘---department---@name = Marketing

|---@numProj = 2

|---@numEmps = 3

‘---@avg-sal = 20000

III. VALIDITY OF MAPPINGS

Not all combinations of value mappings and builders pro-

duce valid target instances (i.e. instances that conform to the

target schema). We say that a mapping is valid if, given any

instance of the source schema, the mapping produces a valid

instance of the target schema. In this section we discuss several

syntactic rules that Clip uses to detect valid mappings. We note

Group-by
$p.pname.value

target

project [1..*]

@name: String

department [0..*]

@name: String

pname

source

dept [1..*]

regEmp [0..*]

value:String
dname

Proj [0..*]

value:String

@pid: int

. . .

??

??

??

Fig. 8. Inverting the nesting hierarchy

target

department [1..*]

@name: String

@numProj: int

@numEmps: int

@avg-sal: int

<<count>>

<<count>>

<<avg>>

source

dept [1..*]

regEmp [0..*]

ename

value: String

value: int
sal

@pid: int

value: String

dname

Proj [0..*]

pname

value: String

@pid: int

??

??

Fig. 9. A mapping with aggregates

that valid mappings require safe builders; i.e., builders that

allow all source data to be somehow copied to the target side.

However, in certain cases, users might need to enter unsafe

builders into a mapping. Clip marks these mappings as invalid,

but does not restrict the user from entering them.

A. Valid Object Mappings

We say that a builder is safe if it goes from more con-

straining to less constraining schema elements, in terms of

the cardinality of those elements. For example, consider the

following two builders:

a) b)

In a), a single element is safely connected to a repeating

element. This mapping produces a target singleton set, a valid

target instance that “fits” into the target element cardinality.

In b), the result of a Cartesian product is connected to a non-

repeating element. Since the one of the input is a repeating

element, unless we explicitly aggregate the Cartesian product

results into a single value, no valid target instance can be

generated from this (unsafe) mapping. Safe builders guarantee

that every instance bound by the builder can be accommodated

in the target.

A CPT is valid if it is a composition of safe builders,

forming a tree which is topologically aligned with the structure

of the target schema, i.e. the hierarchy of the build nodes

reflects that of the nodes in the target schema reached by

the outgoing builders. The examples below illustrate legal and

illegal configurations.

a) Linear Valid mapping: the
CPT is aligned with both the
source and target schemas

b) Inverted Valid mapping:
the CPT is aligned with the
target, but not with the source
schema.

c) Inverted INVALID

mapping: the CPT is not
aligned with the target
schema.

B. Valid Value Mappings

Source data instances are converted into target data in-

stances using the value mappings connecting leaf nodes (at-

tributes or text values) of the schemas. This data conversion

occurs in the evaluation context prescribed by the CPT; i.e.,

each value mapping is driven by a set of build nodes. For

each value mapping, we can identify its driver by finding the

builder node that encompasses the value mappings source and

target elements.

More formally, let vi be a value mapping between a set of

source schema nodes source(vi) and a target schema node

target(vi). Given a schema node e, we define path(e) as the

unique set of schema nodes visited if we walk up the schema

hierarchy, starting at e and ending at the root node. Starting

from target(vi), we search upward in path(target(vi)) and

stop at the first target node ti that is the target side of a

builder. We call this builder Bi = 〈Si, ti〉, where Si is the

set of source schema nodes used by Bi, the driver of vi. In

other words, we find a builder 〈Si, ti〉 such that 6 ∃tk with

a builder 〈Sk, tk〉 in the CPT and path(ti) ⊂ path(tk). The

following diagram illustrates these relations using an example.

Here, Bi = 〈{A}, C〉 is the driver of vi.

att3

A

B

C

E

Datt1

att2 att4

att5

S i Bi

vi
target(vi)

ti

A value mapping vi is valid if (i) we can find a builder

Bi as described above, and (ii) for all source nodes sv ∈
source(vi), we can find a source node sb ∈ Si such that

path(sv) \ path(sb) does not contain any repeating source

elements. In other words the invalid value mapping uses at

least one source-side node that is inside a repeating element

that is not bounded by a builder and, thus, Clip does not know

how to iterate over that set. The following examples illustrate

these concepts:

a) Valid: the atomic attributes
involved are direct descendants of
the nodes involved in the builder.

att3

A

B

att1

att2

C

E

D

att4

att5

b) Valid: the atomic attribute att3 is a
direct descendant of B. Since att5
does not directly descend from D, an
E element will be produced, too.

att3

A

B

att1

att2

C

E

D

att4

att5

c) Valid: The builder uses B as its
input node. A is in the path to the
root from B, and A is also in the path
from att1.

att3

A

B

att1

att2

C

E

D

att4

att5

d) INVALID: the nearest ancestor
of att3 is B, which is not mapped
by any builder.

C

E

D

att4

att5att3

A

B

att1

att2

The consistency rules above do not apply for value map-

pings with aggregate functions. Aggregate functions produce

a single result out of a set of values with any cardinality. So,

the driver of an aggregate value mapping is always valid. If a

builder is defined above, it fixes the context of the mapping,

restricting the number of values considered by the aggregate

node at each iteration; if no builder is specified, the whole

document is the scope of aggregation.

IV. LANGUAGE SEMANTICS

This section introduces extensions for handling the new

Clip’s features (builders and aggregates) to the internal lan-

guages that we developed in previous works on schema

mapping generation [1][2].

A. Mapping language

We define the semantics of mappings by means of a query-

like notation; in the notation, expressions and terms are defined

by e ::= S | x | e.l and t ::= e | F [e]; where S is a schema

root, x is a variable, l is a label, e.l is a record projection, and

F is a function symbol. An explicit mapping is represented by

a (nested) tgd (tuple generated dependency) in the following

form:

M ::= ∀x1 ∈ g1, . . . , xn ∈ gn | C1 →
∃ y1 ∈ g′

1, . . . , yn ∈ g′

n
| (C2 ∧ M1 ∧ . . . ∧ Mn)

where M1, . . . , Mn are submappings of M . Each submapping

is itself a mapping; M is an ancestor of M1, . . . , Mn and

(recursively) of the submappings of M1, . . . , Mn. Each xi ∈ gi

(yi ∈ gi′) is a source (target) generator. In a source (target)

generator, the head of an expression gi must either be a source

(target) schema root, or a variable defined in a source (target)

generator of M (in which case it must be some xj with j < i),

or in a source (target) generator of an ancestor of M . A source

(target) expression is an expression over a variable defined

in a source (target) generator of M or one of its ancestors.

The expression C1 consists of a conjunction of comparisons

of type a1 oper a2, where a1 is a source expression, a2

is either a source expression or a constant and oper is an

operator for equality, inequality or membership (in this case,

a2 cannot be a constant). The expression C2 has three kinds of

formulas. First, it has target conditions: comparisons between

target expressions of atomic type and constants. Second, it

has source-to-target conditions: equalities between source and

target expressions of atomic type. Finally, it has equalities with

functions: equalities of the form e = F [e1, . . . , em] where

e is a target expression of set type, e1, . . . , em are source

expressions, and F is a function.

B. Semantics of builders and build nodes

We now discuss the tgds representing the mappings of

Section II.A. Section V will address the algorithmic generation

of these tgds.

Simple mapping. The mapping of Figure 3 translates to the

following simple tgd:

∀ d ∈ source.dept, r ∈ d.regEmp | r.sal.value > 11000 →
∃ d′ ∈ target.department, e′ ∈ d′.employee |

e′.@name = r.ename.value

Note that the above tgd does not capture the minimum-

cardinality semantics, which requires the construction of only

one target department for each source department. As already

mentioned, the universal solution would construct a depart-

ment for each employee; we, nevertheless, enforce minimum

cardinality in the generated XQuery, not in the tgd expressions.

We discuss our generation of XQuery scripts in Section VI.

Context propagation. The mapping depicted in Figure 4

contains a context arc that constrains the scope of the inner

mapping within the context of the outer one. This is expressed

in our nested tgds with a sub-mapping (in square brackets) as

follows:

∀ d ∈ source.dept → ∃ d′ ∈ target.department,
[∀ r ∈ d.regEmp | r.sal.value>11000→
∃ e′ ∈ d′.employee | e′.@name = r.ename.value]

The submapping is correlated to the outer mapping by refer-

ences to the variables d and d′.

Context propagation tree. The tgd corresponding to the

mapping in Figure 5 has two nested mappings, one for projects

and one for employees. Both submappings refer to the same

variables d and d′ which are bound by the outer mapping:

∀ d ∈ source.dept → ∃ d′ ∈ target.department,
[∀ p ∈ d.Proj → ∃ p′ ∈ d′.project |

p′.@pid = p.@pid, p′.@name = p.pname.value],
[∀ r ∈ d.regEmp | r.sal.value>11000→∃ e′ ∈ d′.employee |

e′.@name = r.ename.value]

Cartesian product and join. The tgd for Figure 6 is:

∀ d ∈ source.dept →
[∀ p ∈ d.Proj, r ∈ d.regEmp | p.@pid = r.@pid →
∃ p′∈ target.project-emp |

p′.@pname = p.pname.value,
p′.@ename = r.ename.value]

Notice that the outer mapping only restricts the context of

the inner one (no element is generated at the outer level);

also, two variables in the inner mapping span over the full set

of Proj and regEmp (under the current dept) to find pairs with

corresponding identifiers.

Grouping. To support grouping, we introduce a special

Skolem function into the mappings. This function is assigned

a target-side set variable, implying we will generate a group

of values for that target set for every different combination

of input parameters to the Skolem function. We represent

our Skolem functions as taking two parameters: the grouping

context and the grouping attributes. The grouping context

is a list of nodes that restrict the scope of the grouping

attributes (i.e. a list of target variables already bound in some

outer levels). The grouping attributes are the dimensions along

which groups are formed. The tgd for Figure 7 is:

∃ group-by
(∀ d ∈ source.dept, p ∈ d.Proj →
∃ p′∈ target.project |

p′ = group-by(⊥, [p.pname.value]),
p′.@name = p.pname.value,
[∀ p2∈ p, d2 ∈ source.dept, r ∈ d2.regEmp |

p2.@pid = r.@pid
∃ e′ ∈ p′.employee | e′.@name = r.ename.value])

The first argument of group-by is ⊥ , as Proj elements are

unrestrictedly chosen from the whole data set.

Inverting the hierarchy. The tgd for Figure 8 is:

∃ group-by
(∀ d ∈ source.dept, p ∈ d.Proj →
∃ p′∈ target.project |

p′ = group-by(⊥, p.pname.value),
p′.@name = p.pname.value,
[∀ d2 ∈ source.dept, p ∈ d2.P roj →
∃ d′ ∈ p′department | d′.@name = d2.ename.value])

Again, the first parameter of group-by is ⊥; indeed, in the

examples the grouping node is the root of the CPT. Note that

we need a second variable d2 and a condition (p ∈ d2.P roj)

in order to compute the inversion.

Aggregates. We introduce one function for each type of

aggregate and specify the attribute to aggregate as an ex-

pression rooted in the variable which restricts the context of

aggregation. The tgd for Figure 9 is:

∃ count, avg
(∀ d∈ source.dept → ∃ d′ ∈ target.department |

d′.@name = d.dname.value,
d′.@numProj = count(d.Proj),
d′.@numEmps = count(d.regEmp),
d′.@avg-sal = avg(d.regEmp.sal.value))

This example shows how we formalize aggregates indepen-

dently of grouping, so as to emphasize that they are indepen-

dent extensions. More specifically, a context of aggregation

has to be always specified because hierarchical data structures

naturally provide several “structural” aggregation levels, which

are “wired” within their nested topology. In Clip, the level of

aggregation can be fixed by grouping, but also by ordinary

builders. Referring to the example, not all the projects are

counted, but only those within a given department, as count

is attached to a value mapping whose driver originates from

dept.

V. MAPPING GENERATION

We now describe how to semi-automatically generate Clip

mappings by extending techniques used in Clio. Clio generates

tgds using only the schemas and value mappings (mappings

between atomic elements) as input. In effects, Clio deduces the

builders and the context propagation trees that encompasses

the given value mappings. However, as we have mentioned

before, Clio cannot automatically create some of the mappings

we manually enter in Clip. In this section we discuss how we

extended Clio’s mapping generation algorithm to cover Clip’s

mappings.

A. Mapping generation in Clio

Clio’s mapping generation algorithm was first described

in [1]. Given a source and a target schema, Clio identifies

source and target tableaux. A tableau is a set of schema

elements (or attributes) that are semantically related; elements

are related, for instance, when they are siblings under the

same repeating element (the columns of a table in a relational

schema), or when the containing repeating elements are related

via a parent-child relationship. Intra-schema constraints (e.g.,

key/foreign keys) are also used to define tableaux by chasing

existing tableaux over the constraints.

Consider for example the source schema in Figure 4. Clio

detects three tableaux in that schema: one for the dept set,

another for the dept with Proj set, and a larger one that involves

all sets in the schema and is computed by chasing over the

@pid foreign key. We represent each one of these tableaux

using this shorthand notation: {dept}, {dept-Proj}, and {dept-

Proj-regEmp, @pid=@pid}.

After the source and target tableaux are computed, Clio

creates a matrix source vs. target tableaux. Each entry in this

matrix relates a source with a target tableaux and is called

a mapping skeleton. For each value mapping entered by the

user, Clio matches the source and target end-points of the

value mappings against all the mapping skeletons and mark

as active those skeletons encompassing some value mappings.

Each active skeleton that is not implied or subsumed by others,

emits a logical mapping. For example, for the simple mapping

in Figure 4, there are 3 source tableaux (mentioned above) and

2 target tableaux ({department}, {department-project}). This cre-

ates 6 mapping skeletons. The entered value correspondence

will only match the {dept-Proj-regEmp, @pid=@pid} source

tableau and the {department} target tableau. From this skeleton,

Clio emits the following tgd expression:

∀ d ∈ source.dept, p ∈ d.Proj, r ∈ d.regEmp | p.@pid = r.@pid
→ ∃ d′ ∈ target.department, e′ ∈ d′.employee |

e′.@name = r.ename

Nested Mappings: A further refinement to this mapping

generation algorithm was presented in [2]. Logical mappings

generated by Clio are possibly related in that they share part

of the source and target expressions. In those cases, mappings

can be “nested” inside others, reducing the overall number of

mapping expressions.

B. Mapping generation in Clip

To illustrate the problem with Clio’s mapping generation

consider the mapping in Figure 10. Here Clio would compute

the 5 source tableaux and the 2 target tableaux shown in the

ROOT

A [0..*]
value: String

value: String

value: String

value: String

value: String

B [0..*]

C [0..*]

D [0..*]

E [0..*]

G [0..*]
@att2: String

@att3: String

ROOT

F [0..*]
@att1: String

A

AB

ABC

AD

ADE

FG

A(B x D)

F

Fig. 10. A generic mapping with its tableaux and dependency graph

dependency graph. Assume that only the value mappings from

B and D are given as input (i.e., the user did not enter the

value mapping from A). Clio activates two mapping skeletons:

AB → FG and AD → FG. But since the more general

skeleton A → F is not active, Clio’s current algorithm cannot

nest the two active mappings. Further, notice that what we

want is to compute a Cartesian product between B and D

using A as a context. To get Clio to produce something close

to this, we first need to add an ABD source tableau (shown as

A(B×D) in Figure 10). With this tableau in place, Clio emits

another mapping: ABD → FG. But the query generated by

this mapping pairs all B values with all D values regardless

of A.

Our extension to Clio’s nesting algorithm resolves these

limitations. Our extension works as follows. First, the nested

mappings are computed as usual. Then, we identify all “root”

nested mappings (active mappings that are not nested under

other mappings). In the case of our example, all mappings

are root nested mappings. We then walk up the hierarchy of

mapping skeletons, starting from the nested mapping roots,

looking for more general mappings that intersect our paths. In

the case of our example, this common mapping is A → F . We

mark this mapping as active (regardless of whether it contains

value mappings or not) and recompute the nested mappings

using the new root mappings.

Consider our first example in which the only active map-

pings are AB → FG and AD → FG. Our extended algorithm

detects A → F as a new root nested mapping and nests AB →
FG and AD → FG inside this new root mapping. Nesting

mappings has the effect of removing redundant source and

target variables, resulting in the following nested expression:

∀ a ∈ A →∃ f ∈ F
[∀ b ∈ a.B → ∃ g ∈ f.G | g.@att2 = b.value],
[∀ d ∈ a.D → ∃ g ∈ f.G | g.@att3 = d.value]

In the case of our second example, after the ABD source

skeleton is added, Clio outputs ABD → FG as an active

mapping. It turns out that ABD → FG is a sub-mapping of

A → F (it is not a sub-mapping of AB → FG or AD → FG

because the target side of the mappings is the same.) Our

extension will again detect that the more general A → F

can nest ABD → FG inside. The resulting nested mapping

captures the Cartesian product with respect to the A values

that we wanted:

∀ a ∈ A →∃ f ∈ F
[∀ b ∈ a.B, d ∈ a.D → ∃ g ∈ f.G | g.@att2 = b.value,

g.@att3 = d.value]

There are two important observations regarding the relation

of Clip mappings and Clio mappings. First, Clip’s build nodes

correspond to Clio’s mapping skeletons. For each build node,

we look at all its source side builders and match them against

the computed source tableaux. If a build node appears in a

context propagation tree, we collect all source-side builder arcs

and match all of them to a source tableau. If no source tableau

is found, we create a new tableau that will cover our source

builders and add it to Clio’s list. We do the same for the target

side of each builder. At the end of this process, we will have

identified a source and a target tableau that form the context

of our build node. By definition, this tableaux pair is the Clio

mapping skeleton that matches the build node.
The second observation is that the context propagation tree

tells us how to nest the mappings at each build node. In

other words, a CPT is a nested mapping. Clip users can

rely on our extended nested mapping generation algorithm to

automatically compute CPTs for the input value mappings or,

users can explicitly enter build nodes and context lines and

our algorithm will make sure that the mappings are nested

according to the given CPT.

VI. TRANSLATION OF MAPPINGS INTO XQUERY

The transformation of data instances from the source to the

target schema is done by a program generated from the tgds.

Since Clip is designed for XML Schema mappings, XQuery

is a natural candidate as our transformation language. The

algorithm that translates tgds into XQuery is an extension of

the code generation algorithms developed for Clio’s nested

mappings [2]. Here we sketch the general ideas behind the

algorithm and concentrate only on the novel and more inter-

esting generation of queries involving grouping and aggregate

functions.
The query generation algorithm takes as input a nested

mapping M as defined in Section IV-A and produces an

XQuery FLWOR expression F as output. Each sub-mapping

of M translates into one (nested) FLWOR expression of F . F

has the following structure: a for clause captures the iteration

implied by every universally quantified variable of M ; a where

clause captures the join and filtering predicates in C1; a

return clause constructs the XML items for the target schema

elements mentioned in the existentially quantified part of the

mapping; elements bound to some of the variables defined in

the for clauses are copied in the proper position according to

the value mappings expressed by the conditions in C2. The

sub-mappings of M recursively replicate this structure, so that

the scope of quantified variables in the tgds directly translates

to that of variables in the nested FLWOR expressions.
It is worth noting that the generated XQuery expressions

take into account our minimum-cardinality assumption, some-

thing not explicitly captured in the tgd expressions. We do this

by translating all those elements of the target schema which

are not existentially quantified into constant tags and placing

such tags in a specific position within the nested FLWOR

expressions. More specifically, such constant tags are placed to

wrap the FLWOR expression F generated in correspondence

with the specific submapping, instead of being placed inside

the return clause of F ; thus, only one element for the whole

clause is generated, instead of one for each iteration. In other

words, our translation principle is that all the for clauses in

the generated FLWOR expressions are pushed as down as

possible in the query structure, whenever their nesting level

is not enforced by explicit quantification.

Group-by

{ grouping-att1, …

grouping-attn }x

l

m

L

M

X

{ filtering conditions over l, …, x }

A

K

... k

a

...

XQuery Grouping expressions. Consider the above generic

grouping build node. The corresponding tgd is the following:

∃ group-by
(∀ l ∈ . . . L, . . . , x ∈ . . . X | {filtering conditions} →
∃ t ∈ . . . T | t = group-by([a, . . . , k][grouping-attrs]), . . .

Generating an XQuery expression from this kind of tgd

expression is a hard task, because the current XQuery stan-

dard does not include a grouping statement or clause. We

implement the grouping semantics using the existing clauses

and functions as follows. First, the for and where clauses are

generated in the same manner as with regular build nodes.

Then, for each grouping attribute, we create a let clause that

computes the distinct values of that attribute in the input data.

We then add a for clause that loops over every such distinct

value of the grouping attributes. Each iteration over these loops

defines the current unique value that is the key value of the

group. We then output the desired target elements using the

contents of the current group. Any submapping receives the

current group as its context. The above generic tgd translates

to the following XQuery template:

let $context :=

(for $m in .../M, ..., $x in .../X

where (: filtering conditions :)

return <element> {$m} ... {$x} </element>),

$dim_1 := distinct-values($context/.../@attr1),

... ,

$dim_n := distinct-values($context/.../@attrn)

return

for $d1_val in $dim_1, ..., $dn_val in $dim_n

let $group := (for $x in $context

where $x/.../@attr1 = $d1_val

and ...

and $x/.../@attrm = $dm_val

return $x)

return

(: target element, value mappings, submappings :)

Consider, for example, the mapping in Figure 7, where

projects are grouped together by their name. The tgd is:

∃ groupby
(∀ d ∈ source.dept, p ∈ d.Proj → ∃ p′∈ target.project |
p′ = groupby(⊥, p.pname.value),
p′.@name = p.pname.value)

This translates to the following XQuery that builds a

<project> element for each different project name:

<target> {

let $context :=

(for $p in source/dept/Proj

return <element> {$p} </element>),

$pname_vals := distinct-values(

$context/Proj/pname/text())

for $pname_val in $pname_vals

let $group := (for $p in $context/Proj

where $p/pname/text()=$pname_val

return $p)

return <project name = {$pname_val} />

} </target>

As for aggregates, the availability of native XQuery aggre-

gate functions facilitates the translation with respect to the case

of grouping. The tgd for the mapping in Figure 9 (limited to

the first two value mappings) is:

∃ count
(∀ d∈ source.dept → ∃ d′ ∈ target.department |

d′.@name = d.dname.value,
d′.@numProj = count(d.Proj))

This translates to the following XQuery statement:

<target> {

for $d in source/dept

return <department

name = {$d/dname/text()}

numProj = {count($d/Proj)} />

} </target>

Notice that the information about the aggregation context

carried by the count function in the tgd is used to determine the

starting point of the path expression argument of the XQuery

count function (namely, variable $d).

VII. EVALUATION OF CLIP AND CONCLUSION

Clip’s current implementation includes two components: a

GUI for mapping expression and a translator, which produces

tgds corresponding to the mapping. The translation of tgds

into XQuery is currently ongoing, but this task was already

performed by some of the authors in the context of Clio and of

its nested version, and it will not introduce significant technical

challenges. The GUI interface has been designed by reusing

our experience gained in XQBE [10] and Clio [1], by aiming

at the best balance between ease of use, expressive power, and

effectiveness.

The main “performance” metric for Clip is the number of

legal Clip mappings that can be generated for a given set of

value mappings. In particular, we can compare the “flexibility”

of the mapping interface of Clio and Clip. By flexibility we

mean how many different (meaningful) mappings the tool

allows us to visually construct. Again, the “meaningfulness”

of mappings depends a lot on the particular data integration

scenario and it is difficult to enumerate all such possible

TABLE I

FLEXIBILITY OF CLIP

Example Value mappings Extra meaningful
(Source) mappings with Clip

Figure 1 in [2] 7 4
Figure 3 in [2] 4 1
Figure 1 in [1] 3 1
Figure 1 (this paper) 2 4

mappings. Instead, Table I shows a lower-bound of how many

more different meaningful mappings we could draw using Clip

starting from the same value mappings. This exercise was done

using 3 published examples of Clio mappings plus one of the

mappings we used in this paper. The first column shows the

source of the mapping example, the second column shows how

many value mappings are involved in this example, and the

third column shows how many more different nested mappings

we could create when compared to nested mappings generated

by Clio.

In our future work, the GUI will be augmented by including

schema matching tools, i.e. tools suggesting related elements

and structures within two complex source and target XML

schemes, and by adding filters highlighting some of the

lines and of the source and target structures, providing a

clear rendering of the lines in the middle [11]; these view

mechanisms allow users to concentrate on a portion of the

schemas at a time. These additions will help users work with

large schemas, as otherwise they could be overwhelmed by

schema complexity and by the number of lines from source

to target.

ACKNOWLEDGEMENTS

Paolo Papotti was partially supported by an IBM Faculty Award

grant and Alessandro Raffio was partially supported within a joint

study agreement between IBM and Politecnico di Milano.s

REFERENCES

[1] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and R. Fagin,
“Translating Web Data,” in VLDB, 2002, pp. 598–609.

[2] A. Fuxman, M. A. Hernández, H. Ho, R. J. Miller, P. Papotti, and
L. Popa, “Nested Mappings: Schema Mapping Reloaded,” in VLDB,
2006, pp. 67–78.

[3] S. Melnik, P. A. Bernstein, A. Halevy, and E. Rahm, “Applying Model
Management to Executable Mappings,” in SIGMOD, 2005, pp. 167–178.

[4] A. Bonifati, E. Q. Chang, T. Ho, V. S. Lakshmanan, and R. Pottinger,
“HePToX: Marrying XML and Heterogeneity in Your P2P Databases,”
in VLDB, 2005, pp. 1267–1270.

[5] P. A. Bernstein and S. Melnik, “Model management 2.0: manipulating
richer mappings,” in SIGMOD, 2007, pp. 1–12.

[6] M. Lenzerini, “Data Integration: A Theoretical Perspective,” in PODS,
2002, pp. 233–246.

[7] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa, “Data Exchange:
Semantics and Query Answering,” in ICDT, 2003, pp. 207–224.

[8] R. Fagin, P. Kolaitis, L. Popa, and W.-C. Tan, “Composing Schema
Mappings: Second-Order Dependencies to the Rescue,” in PODS, 2004,
pp. 83–94.

[9] C. Yu and L. Popa, “Semantic Adaptation of Schema Mappings when
Schemas Evolve,” in VLDB, 2005, pp. 1006–1017.

[10] D. Braga, A. Campi, S. Ceri, and A. Raffio, “XQBE: a visual envi-
ronment for learning XML query languages,” in SIGMOD, 2005, pp.
903–905.

[11] G. G. Robertson, M. P. Czerwinski, and J. E. Churchill, “Visualization
of Mappings Between Schemas,” in SIGCHI, 2005.

