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PLASM (Programming LAnguage for Solid Modeling) is a prototype, high level, user
oriented, functional design language currently being developed at the University of Rome
"La Sapienza".  A PLASM "program" is the symbolic definition of a complex of
variational polyhedra depending on some unbound variable, and therefore allows for the
description of a whole set of geometric solutions to a design problem. In our view  the
language should be used, possibly with the assistance of a graphical user interface,  both
in the first steps of the design process as well in the detailed design.  In the paper the
guide-lines are shown of the preliminary definition of the syntax of the language. The
paper also contains the definition of some new and very powerful solid operators.

Introduction

PLASM is an experimental design language which allows to define and evaluate the
expressions of a special "calculus on polyhedra". It is a pure functional language, where
expressions contain operators which map some complexes of polyhedra into other
complexes of polyhedra . The language is inspired to the style introduced by the Backus's
languages FP (Backus 1978, Williams 1982) and FL (Backus et al. 1989) for
programming at function level.  PLASM allows to symbolically describe parametric
architectural shapes, but the language can also be used for other applications, e.g. to
describe the robot, the motion and the environment in the off-line programming of robots
(Bernardini et al. 1991).

As the objects and expressions are parametric, the language can generate complex
"variational" objects, as well perform the automatic mapping between design
representations at different detail levels. For example, PLASM can be used to define the
2D parametric layout of a building, as well to automatically generate a 3D solid model.
In particular, the language introduces some powerful new operators for product,  power,
offset, etc., of complexes of polyhedra. A key concept is the introduction of an extension
of the traversal operation (typical of PHIGS-like graphical systems), which allows to
fully describe structured solid objects without specifying all low level geometry details.
We note also that the PLASM operators are dimension independent, since they are defined
for polyhedra of generic dimension (and not only for 2D or 3D objects). The operators are
abstract, as their evaluation does not depend from the representation of arguments.

PLASM is planned to be used both by application programmers, which can define
new high level operators by writing language scripts,  and by designers, which can
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evaluate predefined functions in library packages or interactively instanciate language
constructs with the aid of a user-oriented graphical interface, which must allow for
bidirectional echoing between a language window and a graphical window.

In an imperative language a program is a sequence of instructions which implement a
mapping between input and output data.  To program design methods and algorithms in
an imperative language may be, in the general case, very hard to do, so that problem-
oriented languages are needed for design.  Various languages (Steele 1975; Borning 1981,
1986; Leler 1985, 1988) were developed to solve design problems in engineering areas
quite far from architecture (e.g. in the design of mechanisms or electrical networks), and
work by solving a set of simultaneous constraints.  In such languages a "program" is
simply a description of functionality and a sequence of constraints (expressed
algebraically).

PLASM's aim is to give support for the description of geometrical solutions to shape
design problems (in general by producing "solid" models) and to allow for automatic
transformation between design descriptions at different detail levels.  A "program" is in
this case a parametric shape description, given as a set of definitions (with or without
some unbound variable). When the program is applied to specific values of parameters,
then a geometric model of the designed shape is produced.  A natural choice was to adopt
an applicative style of programming, and obtain from the right side of each definition the
result of the evaluation of an expression of a special "calculus" over polyhedra.

The development of PLASM  is one of the research lines of the CAD group at DIS.
After having developed the polyhedral solid modeler MINERVA (Paoluzzi et al. 1989) we
are currently working to methods for the representation and manipulation of polyhedra of
generic dimension (Ferrucci et al. 1991).  Such an approach allows in fact to treat in an
unified manner several geometric problems (Bernardini et al.).

The paper is organized as follows.  First, some main approaches to the use of
computers in design are recalled and compared with the programming approach proposed
here; then some guide-lines about the language syntax and operational semantics are
given, showing the applicative style of the language and some low-level predefined
functions. A strong emphasis should be given to the fact that most of PLASM functions
are reducible to the evaluation of the     STRUCT     function, i.e. to the traversal of a
structure.  Some new high level operators on polyhedra are then introduced and some
simple examples are discussed, with the aim of giving some flavour about the expressive
power of the language.  In the conclusion section some critical issues and open problems
are outlined.  

Geometric modeling and building design

Current systems vs programming approach

The current systems used in architectural design can be classified into two broad
categories:
• 2D drafting systems: the main aid they give is the possibility of hierarchically
organizing the design into groups and levels.  Such systems are the most diffuse in the
professional ateliers because they
do not essentially change the classical practice of the architect's work;
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• 3D editing and rendering systems: are used to perform 3D projections, produce hidden
surface removed views and, more recently, realistic rendering of the design volumes and of
the external envelopes, as well to realize electronic walks-through.  3D systems are quite
weak from the modeling point of view, as they need a lot of data and of human work in
order to define the  model to be rendered. So they are used mainly in the final stage of the
design process, as any change to the model may become very expensive and hard to do.

The best current systems are highly interactive, and use data structures which are
transparent to the user.  In our approach we want conversely offer a programming
environment to the architect, allowing to symbolically define the design shape, as well to
trace any (geometrical) decision which influenced the generation of the shape.  The use of
a special purpose language makes the user free from emulating the drafting process;
furthermore, this may stimulate the architect creativity, as it allows for quickly exploring
several design solutions.  

The standard top-down approach

A building can be seen as a container of spaces, where the internal partitions determine
the configuration of inner spaces, while the external envelope determines the volume as a
whole. The designer needs hence to have contemporary control of both empty and full
subsets of spaces.

Figure 1.  Design development by top-down refinement with an extensive use of affine transformations.

In the first design stages it is common to choose a top-down approach and to work by
successive refinements.  For example, when the object as a whole is already defined as a
set of possibly interpenetrating volumes, and external constraints are satisfied, it is
possible to define the internal subdivisions by hierarchically partitioning the parent
volumes and by using an adimensional geometry approach (see Figure 1).   In this case,
the designer attention is dedicated to the shape as a whole: the need is evident for tools
able to manipulate the shape by affine transformations and set operations, without
explicitly requiring the complete specification of the geometry of the internal partitions.
March and Steadman in (March et al. 1971) have shown since the early seventies how the
affine transformations are often applied to the architectural design. Such approach can be
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easily modeled by allowing the design language to contain a structure definition
mechanism analogous to that given by the PHIGS graphics standard (PHIGS 1987).

Variational and rule-based approach

The use of rules in architecture is very ancient; the rules which control the ratios between
the parts of temples as a  function of the column diameter are an eloquent example
(Chitham 1985).   In the same way, in the modern architecture age, Le Corbusier used his
"Modulor" (Le Corbusier 1965) and based shape ratios on the golden section and
Fibonacci's series in order to obtain a harmonic control of proportions.

A parametric representation, also denoted as "primitive instancing" in (Requicha
1980), is defined as a procedure which generates a shape instance depending on the values
of a predefined set of parameters. Often it is necessary to modify a previously defined
object, where the change must affect (recursively) all the adjacent objects.  A solution to
this problem is given by variational geometry  (Gossard 1988), originating in the
mechanical design domain, by  assuming geometrical constraints between object parts.
The explicit definition of the shape, usual in current graphical systems, needs the
enumeration of the (either absolute or relative) position of objects  vertices. Conversely,
the variational approach is implicit, as it contains constraints and not (only) coordinates.
So, a variational definition makes the objects have some explicit degrees of freedom. This
representation is a very powerful design aid, as a parametric definition allows to easily
explore the consequences on the whole object that are induced by a change in a part.

"Design by constraint" is an important rule-based design methodology (Barford 1987)
where whole classes of design solutions are implicitly defined. The front view and the
structural grid of a building are two  examples of shapes where the final configuration can
be defined with dimensional rules. It is possible to introduce in a variational PLASM
definition many "rules of composition" both as conditional constructs
IF    :<cond,expr1,expr2> and as relational or logical or type constraints that the objects or
the parameters must satisfy, and which express positional or dimensional relationships
between the parts of a structured object.  

In the following we use the term "variational" object to denote an expression where
either affine transformations or component objects or both may depend on some
parameters, and where explicit constraints between parameters may be given and, in this
case, are satisfied by any object instance. As will be shown in the paper, the symbolic
representation contained in a PLASM script can be considered a variational machinery any
time it contains a set of unbound parameters (at left side of definitions).

The PLASM approach

PLASM (Programming LAnguage for Solid Modeling) is an experimental language for
the symbolic description of parametric polyhedral complexes. The language domain is
restricted to linear polyhedra, as curved objects can always be approximated by piecewise-
linear polyhedra. Several operators are specialized for the architectural design domain.
Using predefined operators the user can develop his own higher-level architectural
operators. For example, it is possible to implement several compositions of symmetry
and series, as well as operators which result, when applied to specific data and evaluated,
in specific parts of the building fabric (like the staircases or the structural grid).
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The geometry of a PLASM object is described by instancing predefined operators,
either contained in external libraries or user-defined. A complex object is defined by
building a new definition. This can be done in several ways, e.g.: (a) by specifying a 1D
complex (which is a graph containing vertices and edges); (b) by specifying a 2D
parametric complex (which is the plane partition induced by a 1D complex); (c) by
evaluating the boundary of the cells of the 3D complex generated by the extrusion of a
2D complex; and (d) by defining a structure containing operators, elementary objects and
affine transformations of substructures.

With PLASM it is possible: to work in a traditional way by developing plan and
section drawings (and then to automatically generate a 3D model of the building, by
using some specialized operators, as will be described in the paper); to directly assembly
3D solid components; to integrate the two techniques depending on the problem and on
the chosen design style.

In our view, PLASM may constitute the kernel of specialized macro-languages for
different areas of architectural design (housing, hospitals, architecture of interiors, etc.), as
well it might be used to produce personalized packages where recurrent choices and
stylemes of the designer are registered. We notice that such an approach is coherent with
the tendency to define special purpose languages in areas where application programs were
used before.  The reason is that such  languages make the user able to build specific
applications in a much more powerful and flexible way.  Examples of this trend are the
Postscript language for the description of high quality text pages,  TeX (Knuth 84)  and
LaTeX (Lamport 1986) for electronic typesetting, Mathematica (Wolfram 88) for
symbolic computation, Renderman (Pixar 89) for realistic rendering, and many others.

Summing up, we believe that the programming approach with PLASM language
may give a very flexible and powerful aid to the design development.  In particular, both
a bottom-up approach, based on component assembly, and a top-down approach, based on
model refinement, as well any kind of mixed strategies of design development could be
freely chosen by the designer.

Syntactical notes

A PLASM expression may contain operators, sequences, atoms and parenthesis (to make
explicit or modify the order of evaluation of the expression).  A PLASM script is a
sequence of definitions  separated by commas.  A definition may concern expressions or
operators.  Both contain a left and a right part separated by a symbol "=". The right part
of a definition always contains an expression.  A definition may also contain an optional
script, which has the definition as scope.

Atomic objects belong to simple types. Simple types are the Booleans BOOL, the
reals REAL, the integers INT, the affine transformations TRANSF and the polyhedra
POL. Sequences are ordered multisets of PLASM objects or expressions, enclosed within
pair of angle delimiters "<" and ">". Structures are applications of the STRUCT operator,
defined on ordered sequences of transformations and polyhedra:

STRUCT: (TRANSF » POL)* ’ POL.
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The types TRANSF and POL are partitioned in subtypes of objects with a given
dimension, denoted by a positive integer. I.e. transformations and polyhedra may be
0,1,2,3,... n-dimensional. The 0D cells of a polyhedron in ¬n are nD points, which are
represented as sequences of n reals. A nD affine transformation in TRANSFn is a
(n+1)(n+1) non singular matrix, internally represented (when the dimensions are given) as
a sequence of reals.

An operator is a mapping from the product set of parameter domains to the output
domain.  The language contains a special form for definition of operators, consisting of:
(a) the reserved word     Def   ; (b) the operator identifier; (c) an optional expression, usually a
sequence of integers, which gives a further specification to the operator, enclosed within
single or double braces; (d) the optional sequence of unbound parameters, enclosed within
parenthesis; (e) the reserved symbol "="; (f) a PLASM expression used to evaluate the
operator; (g) an optional script, enclosed between the reserved words      Where    and     End   ; (h)
the optional sequence of default values for parameters, between the reserved words     Default   
and     End    .  The single or double braces around the optional parameters specify the
reduction rule that must be used when the operator is applied with more than one optional
parameter.

Application rules and combining forms

An operator (a function) is normally invoked in prefix form by applying its identifier to
an actual parameter.  Application, denoted as expr1:expr2, apply the value of expr1 (a
function) to the value of expr2. Infix form is allowed for binary operators. Actual
parameters must usually coincide in order and type with formal parameters given in the
right side of the definition of the operator. Some parameters may be not given in the
actual parameter sequence (but giving the corresponding comma pairs).  In this case the
default values of such parameters are used in the evaluation process. Expressions or
names of expressions within the current scope can be used in the application.

When a binary  operator is applied to more than two arguments it is recursively
evaluated using the follow equivalence:

op:<x1,..., xm, xn> = op:<op:<x1,..., xm>, xn>

Unary  operators (defined as applicable to atoms), when applied to a sequence of
arguments, evaluate to the sequence of applications to the elements of the sequence:

op:<x1,..., xn> = <op:x1,..., op:xn>

According to FL, two special combining form are used (a) to apply a sequence of
functions to the same argument and (b) to apply a function to every element of a sequence
argument:

[op1, op2,..., opn]:x  =   <op1:x, op2:x,..., opn:x>
a:op:<x1,x2,...,xn> = <op:x1,op:x2,...,op:xn>

The a:op function (apply-to-all) evaluates to error when applied to an atom.
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Some operators have been defined by using an optional sequence of integers enclosed
within single or double "{" and "}" parenthesis, which usually specify the subset of
coordinates affected by the operator.  In this case the evaluation process can be regarded as
follows:

op{i1,...,in}  is equivalent to op{i1}:op{i2,...,in}

if op has ben defined with     Def    op{{i}};  else if op has been defined with     Def    op{i}, then
the following reduction rule apply:

op{i1,...,in}  is equivalent to [op{i1},op{i2},...,op{in}]

The first reduction rule applies, e.g., to the transformation functions     T    ,    R    ,    S    ,    H     or to the
centre function defined in the next sections; the second applies, e.g., to the functions
min, max, med. When the definition was     Def    op{i1,...,in}(y) = Body, the reduction
equivalencies expressed in Body are applied. Notice that in the application of a sequence
of optional parameters, only the single brace pair is used.  In order to make the PLASM
expressions easier to read, binary composition of functions is allowed. An infix symbol
"∞"  must be provided in this case:

op2 ∞ op1:x = op2:(op1:x)

Transformations

The elementary affine transformations, i.e. translation "T", scaling "S", rotation "R" and
shearing "H", could be seen as maps  (REAL)* • POLn ∆ POLn, where POLn denotes
the set of polyhedra of dimension n.  In PLASM they are instead considered as maps from
a space of real parameters to the space of squared invertible matrices.  E.g., the translation
in the direction xn, which depends on one real parameter,  is represented by a squared
matrix of unknown dimensions (which are fixed only at traversal time).  Such object is
syntactically expressed as     T    {n}:a, where the positive integer n denotes the n-th coordinate
and the real  a is the transformation parameter.  Transformations are applied to polyhedra
by using structures, described in the next section.  E.g., the translation     T    {n}:a is applied
to the polyhedron P by evaluating the expression     STRUCT    :<    T    {n}:a,P>. The effect of the
evaluation of such expression is that of summing the real number a to the n-th coordinate
of P vertices.  Predefined operations on transformations are the binary composition "∞",
the unary inverse and the standard identity    ID    :x = x (which applies to PLASM expression
of any type).  

Polyhedra

A  polyhedral complex  P is defined as a set of polyhedral cells such that: (a) if  p Œ P,
then any face of p is in P;  (b) if p, q ŒŒ P, then either their intersection is empty, or
coincides with  both the intersection of their boundaries and the union of a P subset. We
denote as Pi,n the set of polyhedral complexes of intrinsic dimension i embedded in ¬n.
Intrinsic dimension of a polyhedron is the dimension of the maximal simplices contained
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in it; the dimension of the embedding space coincides with the number of coordinates of
vertices. The type polyhedron "POL" is the set of all polyhedral complexes, together with
a set of operators and a set of constants.

Predefined operations on polyhedra are  (a) the regularized set operations (operators are
overloaded):  union "+",  intersection  "&",  difference  "-", defined in a dimension
independent way (Bernardini et al. 1991);   (b) the extrusion "EXTR" (Ferrucci et al. 91,
Bernardini et al. 1991), defined as

EXTR    : P m,n Æ  P m+1,n+1

where     EXTR    {d}:P  maps to the cartesian product P • [0,d], where [0,d] is an interval of
the real axes.  The expression with default specification     EXTR    :P instead evaluates to P •
[0,1];   (c) the specialized operators described in the next sections.  Predefined constants
are: the empty polyhedron     EMPTYP    ; the standard simplices    s   {n}, where    s   {n} is defined
as the convex combination of the  n+1 points

<0,0,...,0>, <1,0,...,0>,..., <0,0,...,1>.

In PLASM there is no external (symbolic) representation of polyhedra with special
language constructs. Each polyhedron in POL can be generated by evaluating some
language expression. Some predefined operators allow the input/output of polyhedra
from/to external text files using a suitable format specification, i.e. the "winged
representation" described in (Paoluzzi et al. 90; Ferrucci et al.#91). The internal
representation of polyhedra in PLASM  is planned to be decompositive, where each
polyhedral cell is represented as a set of quasi-disjoint convex sets. Other internal
representations are possible, e.g. simplicial decompositions either of the boundary
(Paoluzzi et al. 1989) or of the interior (Paoluzzi et al. 90) or boundary recursive
(Rossignac et al. 89).

Some predefined operators

Basic functions

Following FL, we have that:

f:x if p:x = true,
IF    :<p,f,g>:x =

g:x if p:x = false;

s1   ,    s2   ,...,    sn     select the first, second and n-th element of a sequence;      SEL     applied to a
sequence of integers evaluates to the sequence of corresponding selector functions:
SEL    :<   1   . .   n   > = <s1,s2, ...,sn>, where the primitive infix function .. is the integer interval
constructor

<i1,in> = <i1,i1+1,...,in-1,in>.
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NOP     is a function which has no effect, i.e. returns nothing, for any argument;     ID    :x = x,
for any x, is the standard identity function.     K     is the constant function, defined as     K    :x:y =
x for any y;      CARD     gives the integer cardinality of a sequence.      CONS     is the usual
sequence constructor,     TAIL     removes the first element of a sequence:

CONS    :<x,<x1,...,xn>> = <x,x1,...,xn>
TAIL    :<x1,...,xn> = <x2,...,xn>

MKSEQ     and      MKPOL     are sequence and polyhedra constructors, respectively. The first,
when applied to an atom of type POL (polyhedral complex), returns the sequence of its
higher order cells; the second, when applied to a sequence of quasi-disjoint polyhedra of
the same order, returns the corresponding complex as an atom.

Structure & traversal

Structure  is our denotation for the expression     STRUCT    :expr, where     STRUCT      is a
predefined function and  expr is a sequence of structures, transformations and polyhedra.
The evaluation of a     STRUCT      function is called traversal of a structure. The result of a
structure traversal is a polyhedral complex, possibly non connected or even empty. Each
polyhedral component of the sequence is called substructure.  The     STRUCT     operator
allows to define hierarchical objects. The domain of such operator is very close to the set
of PHIGS structures, with two main differences.  First, all the substructures must have
the same dimension;  e.g., to mix polylines with polygons is not allowed.  Second, an
implicit Boolean operation (progressive difference) is introduced between the
substructures.  In particular, the default evaluation of the polyhedron P =
STRUCT    :<x1,x2,...,xm,xn>, where x1,..,xn are polyhedral expressions,  is  

P =     STRUCT    :<x1,x2,...,xm,xn> =
=      MKPOL    :<x1,-:<x2,x1>,...,-:<xn,xm,...,x2,x1>>

where the minus function denotes a Boolean difference operation. When some
transformations Ti,Tj,...,Tk are contained in the sequence to which the     STRUCT    
function is applied, the following reduction rules apply:

STRUCT    :<Ti,xp,...,Tj,xq,...,Tk,xr,...,xs> =
=     STRUCT    :<Ti,xp,..,    STRUCT    :<Tj,xq,..,    STRUCT    :<Tk,xr,..,xs>>>

STRUCT    :<Tk,xr,...,xs> =
=     STRUCT:   <    STRUCT    :<Tk,xr>,...,    STRUCT    :<Tk,xs>>

Finally we have, with xr,xs POL and Tk in TRANSF:

STRUCT    :<Tk,xr> = xs;      STRUCT    :<Tk> =     NOP    ;      STRUCT    :<xr> = xr;

Notice that this evaluation mechanism has the same semantics than the traversal of
PHIGS structures or than other popular handling mechanisms of local coordinates in
similar graphics systems. Commands like pushmatrix or popmatrix in the Silicon
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Graphics GL library are e.g. implementable in PLASM simply by opening or closing a
STRUCT application.

Structures have a central role in the PLASM language.  In particular:
(a) Structures do not allow the interpenetration of solids.  Hence,  if used smartly,
they allow the user to define complex geometrical objects without explicitly defining the
low-level geometrical details, as it can be seen in the Figure 2, which contains the object
resulting from a     STRUCT     function evaluation, after the execution of implicit differences
between substructures. Notice that a different order in the sequencing of substructures may
result in a very different evaluated object (see Figures 2b, 2c). This characteristic can be
very useful to the designer;
(b) They give the language the same expressive power of PHIGS, as (i) the parts of an
objects can be defined in local modeling coordinates;  (ii) the object parts can be instanced
many times in different locations by simply inserting their name after proper
transformation matrices (the traversal can also be implemented as a Depth-First-Search,
by maintaining the matrices in a stack and computing a current transformation matrix,
which is applied to polyhedra during a structure traversal);
(c) both the previous properties result in a very natural and powerful way of
modelling the building objects, which are always strongly structured and with some
amount of shape iteration.

Some examples of use of structures are given in the following sections. Other
examples can be found in (Paoluzzi 1990).

(a) (b) (c)

Figure 2. An evaluated structure defined by four objects, each one containing two parallelopipeds. (a)
Structure definition as a sequence of isothetic (interpenetrating) parallelopipeds; (b) PLASM evaluated ex-
pression, assuming that each substructure is given in world coordinates     STRUCT    :<Beams,Roofs,
Enclosures,Partitions>; (c) PLASM evaluated expression     STRUCT    :<Beams,Partitions,Enclosures,Roofs>.

Sizing and positioning

In  this subsection some primitive and non primitive operators are discussed.  The latter
are of general usefulness, and therefore will be stored in PLASM permanent packages.
The applications
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MAX    {i1..in}:x,       MIN    {i1..in}:x,       MED    {i1..in}:x

evaluate to the sequence of the maximum, minimum or medium coordinates of the
argument x.  The default forms        MAX    :x,      MIN    :x and       MED    :x evaluate to the full
sequence of coordinates of the specified x  point.  The function SIZE, which returns the
sequence of measures along a specified subset of coordinates (remember the application
rules with optional integer parameters), is defined as

Def    SIZE{i} = -:[     MAX    {i},     MIN    {i}]

The function BOX is defined as follows, where the result is an object of type POL:

Def    BOX{i1..in} =     Struct   :[    T    {i1..in}:     MIN    {i1..in},*:a":SIZE{i1..in}]

where a"<x1,...,xn> = <"x1,"x2,...,"xn> generates a sequence of 1D polyhedra
corresponding to some edges of the containment box. The " constructor and the "*"
product function are described in the next sections. When BOX is applied to a polyhedral
expression, i.e. we have BOX{i1..in}:x, the minimal nD parallelopiped, oriented as the
reference frame, is returned which contains the projection of x in the subspace of
coordinates x1,...,xn. The application

CENTRE:x

apply a translation to the argument, in such a way that it results referred to an origin
located at the centroid of its containment box.  This function can be defined as:

Def    CENTRE{{i}} =     STRUCT    :[    T    {i}:-     MED    {i},    ID]   

The application of the binary operator ALIGN{<i,     MAX    ,     MIN    >}:<x1,x2> is equivalent to
the traversal of a structure constituted by the two argument expressions, with a
translation inbetween, which relocates x2 with respect to x1, according to the location
directive given in the optional argument sequence.  For the function to work properly, x1
and x2 must be embedded in the same space (same number n of coordinates),  and i must
range between 1 and n.  Each alignment directive must have the form <i,Pos1,Pos2>,
with Pos1,Pos2 Œ {     MIN    ,     MAX    ,     MED    }, and specify the relative location of Obj1,Obj2
along the i-th coordinate direction, according to the following definition:

Def    ALIGN {{<i,Pos1,Pos2>}} (Obj1:   isPol   ,Obj2:   isPol   ) =
STRUCT    :<Obj1,     T    {i}:(Pos1{i}:Obj1 - Pos2{i}:Obj2), Obj2>

The expressive power of the function ALIGN in architectural composition may be very
high,  especially when used within hierarchical expressions.  The Figure 3 shows the
result of application of this function in a simple building front, made with a wall and a
window.  Note that with a suitable use of such construct any kind of score can be
obtained. Notice also that the function works properly when applied to a sequence
argument with more than two elements.
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<1,MIN,MIN> <1,MIN,MED> <1,MIN,MAX>

<1,MED,MIN> <1,MED,MED> <1,MED,MAX>

<1,MAX,MIN> <1,MAX,MED> <1,MAX,MAX>

Figure 3. Front object for different values of the alignment directive along the x direction.  The most useful
are highlighted by enclosing them in a box.

Repeat patterns

Two repeat binary functions #:<n,x>, ##:<n,sequence> (or n#x and n##sequence) can be
used with the aim of replicating a PLASM expression or sequence an integer number of
times.  They can be particularly useful within a " operator instance (discussed in the
following) or within structures.  The repeat operators establish the following
equivalences:

<2 # <1,2>,3> = <<1,2>,<1,2>,3>
<4 # 1> = <1,1,1,1>

<2 ## <1,Fun:x>> = <1,Fun:x,1,Fun:x>

If Step is a polyhedron given in local coordinates, then a stair operator with a variable n
number of steps and a variable shape of step can be defined as follows:

Def    Stair (n:   isInt   , Step:   isPol   ) =
STRUCT    :<     STRUCT    :<    S    {3}:(3/4), Step>,
(n-1) ## STRUCT:<    T    {1,3}:<(3/4)a, (3/4)b>, Step> >
Where     a = SIZE{1}:Step,  b = SIZE{3}:Step, 1 ≤ n, n ≤ 20      End
Default     n = 10, Step =      MKBOX    {1..3}:<28,80,16>      End   

isInt    and    isPol    are two predefined predicates, used for type-checking of unbound objects.
MKBOX     (with 3 optional integer parameters) is used as the constructor of a 3D box
polyhedron.  Default values for n and Step are given in the definition, to be used when
the parameters are not instanced or evaluate to error or exception.  Default values are also
used to perform the graphical echo of function definition. The resulting polyhedral
complex is shown in Figure 4.
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x

y

z

Figure 4. The complex resulting from the evaluation of both the expressions  Stair:<10,Step> or Stair.

High level operators on polyhedra

Boundary

The boundary operator @  is a mapping:
@: P n,m  ∆ P n-1,m, 1 ≤ n ≤ m.

E.g., the boundary of a 3D polyhedron is a complex of 2D polyhedra whose support
space (union of cells) coincides with the set of points which do not belong neither to the
interior nor to the exterior of the polyhedron;  the boundary of a 2D polyhedron is a 1D

complex, i.e. a set of line segments (see Figure 5b). The boundary of a structure
STRUCT    :<x1,...,xn> may be obtained by evaluating the expression

@:    STRUCT    :<x1,...,xn>.

Skeletons

The r-skeleton  Kr of an n-complex P Œ P n,m (n ≤ m) is the maximal regular
subcomplex with implicit dimension r.  We call r-extractor  the mapping

@r: P n,m  ∆  P r,m,  0 ≤ r ≤ n
such that  @r:P  is the r-skeleton of the polyhedral complex P.  So, @0:P denotes the set
of P vertices, @1:P  the set of vertices and edges, while  @2:P is the set of vertices,
edges and faces.  In Figure 5 is shown the result of the expression  
-:[@,@1]:Plan which is equivalent to   @:Plan - @1:Plan. The function "-" denotes in
this context a Boolean difference between sets of points having intrinsic dimension 1D,
i.e. less than the dimension of the embedding space (2D).  Such objects cannot be
considered "solids".  A set operation between non-solid objects is computed as the union
of the results of the same operation between pairs of "solid" subcomplexes lying in the
same subspaces.

 (d)(c)(a) (b)

Figure 5. (a) The 2-complex Plan;   (b) the 1-complex   @:Plan; (c) the 1-complex  @1:Plan; (d) the complex
-:[@,@1]:Plan  (solid lines).
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Generation of 1D polyhedra

The operator  " is used to define, easily (using local coordinates) and compactly, 1D
polyhedra embedded in the 1D space.  Such polyhedra are then used as sets of linear
measures by other PLASM operators.  Such "dimensioning" operator  "  is defined as a
mapping:

": (¨¬ - {0})* Æ P 1,1.

A special form of the syntax allows to write "x instead that ":x.  Negative parameters
are used to introduce empty intervals in the evaluated complex. The semantics of such
operator is, once again, a reduction to a structure traversal :

Def    " =     STRUCT    :a:(   IF    :<   isPos   , 1##[    STRUCT    :[    S    {1},    K    :   s   {1}],    T    {1}],     T    {1}:->)

We remember that    s   {1} is the standard 1D simplex, i.e. the line interval [0,1],  so that  
STRUCT:[S{1},     K    :   s   {1}]:x, with x Œ REAL,  evaluates to the 1D polyhedron which
covers the interval [0,x] of the real line.  In Figure 6 two 1D polyhedra generated by
applying  " to two sequences of real expressions are shown.  Some more examples of
such operator are given later in the paper.

a 2a a/2 2a a

12 3 24 3 12 3(a)

(b)

3

Figure 6. 1D polyhedra generated by "quoting" sequences of real expressions:  (a)  "[   s2    ,3*   s1    ,   s2    ,
6*   s1    ,   s2    ,3*   s1    ,   s2    ]:<4,3>;    (b)   "[   ID     ,2*   ID     ,-   ID     /2,2*   ID     ,   ID     ]:a

Product of 1D polyhedra (grid generation)

The product  operator  produces, starting from a sequence of n polyhedral complexes in
POL0 ª POL1, a complex of intrinsic dimension r ≤ n, where r  is the sum of intrinsic
dimension of the arguments:

*:<x1,x2,...,xn> = x Œ POLr , x1,x2,...,xn Œ POL0 ª POL1

It is allowed to write the application of this operator in infix form, as the followinq
equation holds

*:<x1,x2,...,xm,xn> = <*:<x1,x2,...,xm> ** xn>

where ** denotes the power operation described in the next section (The true reason is
that the mathematical definitions of the two operations coincide). The cells of the output
complex of the expression X1 * X2 are generated by computing cartesian products
between any pair of cells of the argument complexes:

X1 * X2 = {x| x = x1 • x2,  x1 Œ X1, x2 Œ X2}
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e.g., the line segments of a 3D grid with cubic cells of side a can be generated as
GridEdges:a, where the definition of the function GridEdges follows (see Figure 7).

Def    GridEdges = @1:*[x,y,z]
Where    x = "[4 # ID], y = "[5 # ID], z = "[4 # ID]     End   

Similarly, the arrangement of polygons shown in the exploded view of Figure 7c is
obtained as

Def    GridFaces = @2:*[x,y,z]
Where    x = "[2 # 2*ID], y = "[3*ID], z = "[3 # ID]     End   

It can be useful to trace the evaluation process of the expression GridFaces:a

GridFaces : a =
= @2:*:[x,y,z]:a =
= @2:*:<x:a,y:a,z:a> =
= @2:*:<"[2 # 2*   ID    ]:a,"[3*   ID    ]:a,"[3 #    ID    ]:a> =
= @2:*:<"[2*   ID    ,2*   ID    ]:a,"[3*   ID    ]:a,"[   ID    ,   ID    ,   ID    ]:a> =
= @2:*:<"<2*   ID    :a,2*   ID    :a>,"<3*   ID    :a>, "<   ID    :a,   ID    :a,   ID    :a>> =
= @2:*:<"<2a,2a>,"<3a>, "<a,a,a>> =
= @2:*:<    STRUCT:   <    STRUCT    :<    S    {1}:2a,   s   {1}>,    T    {1}:2a,

STRUCT    :<    S    {1}:2a,   s   {1}>,    T    {1}:2a>,
STRUCT:   <    STRUCT    :<    S    {1}:3a,   s   {1}>,    T    {1}:3a>,
STRUCT:   <    STRUCT    :<    S    {1}:a,   s   {1}>,    T    {1}:a,

STRUCT    :<    S    {1}:a,   s   {1}>,    T    {1}:a,
STRUCT    :<    S    {1}:a,   s   {1}>,    T    {1}:a>> =

= @2:*:<    STRUCT:   <L2a,    T    {1}:2a,L2a,    T    {1}:2a>,
STRUCT    :<L3a,    T    {1}:3a>,
STRUCT    :<La,    T    {1}:a,La,    T    {1}:a,La,    T    {1}:a>> =

= @2:*:<    STRUCT    :<L2a,    STRUCT    :<    T    {1}:2a,L2a>>,
STRUCT:   <L3a>,
STRUCT    :<La,    STRUCT    :<    T    {1}:a,La,    STRUCT    :<    T    {1}:a,La>>>> =

= @2:*:<P11, P21, P31> = @2:P1233 = P1232

where:  L2a, L3a, La respectively represent (in local coordinates) the 1D segments of
length 2a,3a,a;  P11,P21,P31 are complexes of 1D polyhedra which contain 2,1 and 3
relocated instances of L2a,L3a,La, respectively;  P1233 is the 3D complex with solid
parallelopiped cells generated by the product of P11,P21,P31; and finally P1232 is the 2-
skeleton  of P1233 (see Figure 7c).

A combined use of the operators " and *  is shown in the following. The 2-complex
Plan contains four squares of side a, two squares of  smaller side b, and a rectangle with
sides b and 2a-2b = 2(a-b). The four bigger squares can be defined as "<a,-b,a>*"<a,a>.
The central part of the object is given, in world coordinates, as

"<-a,b>*"<-b/2,b,2(a-b),b>.

The whole parametric definition may be given, using local modeling coordinates, as:
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Def     Plan (a:   isReal   , b:   isReal   ) =
STRUCT    : <"<a,-b,a>*"<a,a>,     T    {1,2}:<a,b/2>, "<b> *"<b,2(a-b),b>>
Where    0 ≤ b, b ≤ a     End
Default    b = 24, a = 48 E   nd

(b)(a) (c)

Figure 7. (a) Perspective view of the edges  @1:*:<4 # "1> of the 4D standard hypercube, which can also be
described as @1:("1*"1*"1*"1); (b) axonometric view of the object GridEdges:1  defined in the text; (c)
exploded view of the arrangement of polygons in ¨3 obtained by evaluating the expression GridFaces:a

(a) (b)

a b
2(

a-
b)a

b
b/

2

a ab

Figure 8.  Two instances of the parametric complex Plan,  corresponding to different values of the parameter
a.

Power of polyhedra

The power of polyhedra is defined as a mapping from pairs <Basis,Exponent> of
polyhedra to polyhedra.  The exponent argument must have either dimension 0 or 1. The
power operator "**"  extrudes the polyhedron Basis Œ  P n,m into ¨m+1 if the
polyhedron Exponent is in P 1,1, otherways simply embeds Basis into ¨m+1.  In
particular, if Basis and Exponent are two polyhedral complexes with proper dimensions,
and b • e is the point set obtained as cartesian product of  two polyhedral cells, we can
write:  

**:  P n,m • P i,1 ∆  P n+i,m+1  i Œ {0,1},
Basis ** Exponent = {p|p = b • e,  b Œ Basis, e Œ Exponent}

In Figure 9 two examples of power application with basis Plan are given, showing
both a multiple embedding of the 2D object Plan in 3D (depending on the real cells of the
0D exponent) and the generation of a multiple instance of a solid (3D) version of Plan
(depending on the cells of the 1D exponent). A more complex and interesting example is
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shown in Figure 10, where the power operator is combined with the 2D skeleton
extractor function.

(a) (b)

Figure 9. (a) The polyhedron Plan ** (@0:"<h,h,h>). (b) The polyhedron Plan**"<w,-(h -w),w,-(h - w),w,-
(h - w),w>; the result is a solid complex whose connected components have width w and are located at
distance h-w.

Figure 10. A graphical representation of the 2-complex in ¬3 generated by evaluating the expression
@2:(Plan ** "<h,h,h>), where h is the distance between adjacent floors.  The function can be abstracted with
respect to h and to the number n of floors: @2:**:[     K     :Plan,":#:[   s1    ,   s2    ]]:<n,h>. A more useful abstraction is
@2:**:[   s3    ,":#:[   s1    ,   s2    ]]:<n,h,Plan>, and a new operator      Def    Block (x1:   isInt   ,x2:   isReal   ,x3:   isPol   ) = @2:**:[x3,
":#:[x1,x2]] can be defined, such that the model in the figure can be generated as Block:<3,h,Plan>.
Obviously, for different values of Plan or h a completely different 3-floor model may be obtained.

An extended form of the power operator, which applies parametric transformations to
the cells of the resulting complex, is defined in (Paoluzzi 1990). An example of
generation of a circular stair using two nested instances of the (extended) power operator
is also given there.
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Intersection of extrusions

The intersection of extrusions, denoted  with the symbol "&&", is an operator from
sequences, with length at least 2 and at most n, of polyhedral complexes in P n-1,n-1 to
the polyhedral complexes in P#n,n

&&: (P n-1,n-1)m Æ  P  n,n, 2 ≤ m ≤ n
The arguments of such operator will be usually called sections. The infix form is

allowed only when applied to two arguments, as the operator is not associative. The
effect of the evaluation of the && operator is a polyhedral complex whose cells are
obtained by intersecting, in all the possible ways, the cells of the straight infinite
extrusions of the arguments. Such extrusions are computed after having embedded the
arguments into coordinate hyperplanes of the embedding space of the result.

(a)

(b)

Figure 11. (a)   The arguments Section and Plan of a && operation;   (b)  exploded view of the 2D complex
generated by the expression  @2:&&{1,3}:<Section,Plan>.

(a)

(b)

Figure 12.  (a) The arguments Section1, Section2 and Plan of a && operation; (b)  exploded view of the 2D
complex generated by the expression   @2:&&:<Section1,Section2,Plan>.

e.g.,  the expression &&{3,1}:<plan,section>,  where plan,section Œ P 2,2, is evaluated
as follows: the plan argument is embedded in the plane x3 = 0 of the 3D space and
indefinitely extruded in the x3 direction, while the section argument is embedded in the
plane x1 = 0 and indefinitely extruded in the x1 direction. The 3D solid polyhedral
complex resulting from the operation is finally computed by intersecting the extruded
cells in all the possible ways.  The 2-skeleton of such complex, i.e. the set of 2D
boundary faces of the 3D cells (and the set of their edges and vertices), is graphically
represented in Figure 11.
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Lattice of objects

The "Lattice" binary operator, used for relocating a set of instances of the same object,
optionally  depending on the elements of a Boolean  array, is useful to define the
structural grid of a building or the set of windows in the building front.  The operator is
applied as:

LATTICE{BoolArray}:<x1, x2>
and can be written also in a special infix form:

x1 ${BoolArray} x2
where  the vertices of x1, x2 Œ POL  must have the same number of coordinates. The
semantics of this operator is that of generating a set of instances of the x2 argument, each
one having as relative origin one of the points (0-cells) in x1. The optional argument
BoolArray, nD array of Booleans with a one-to-one mapping with the x1 0-cells, controls
the existence of the x2 instances, depending on the truth value of the corresponding
BoolArray elements.  In more formal terms, we can write that a LATTICE function is
equivalent to the structure given in the following, where, as usual, the underlined words
represent functions or keywords predefined in the language.  

Def    LATTICE (BoolArray, x1:   isPol   , x2:   isPol   ) =
STRUCT    :   a   :(   IF    :<   s1   ,INSTANCE,    NOP    >):PAIRS
Where   INSTANCE =     STRUCT    :[    T    {1..    CARD    :   s2   }:   a   -:   s2   ,     K    :x2]

PAIRS =    a   :   a   :[1 ##     SEL    :<1..LAST>]:<BoolArray,     @0   :x1>
LAST =      MIN    :<    CARD    :BoolArray,    CARD    :     @0   :x1>     End   

Restricted offset

The "OFFSET" operator "++" generates a polyhedral complex in P n,n starting from a
polyhedral argument in P n-1,n, called basis  of the operator, and from a real number,
called width  of the operator:

++: P n-1,n • ¬ Æ  P n,n.
The OFFSET operator is used to increase the intrinsic dimension of the argument,

i.e. to make it solid. It is also possible to use an extended form

++: P n-1,n • ¬ • ¬ Æ P n,n.
 where the two real arguments are called right width and left width, with respect to the
internal orientation of the (highest order) cells of the basis polyhedron.

(a) (b) (c)

Figure 13. (a) The 2D polyhedral complex Plan; (b)  the 1D complex @1:Plan; (c) the polyhedron generated
by the expression   ++:@1:Plan.
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It is very easy to compute the OFFSET function when the base argument is the n-1
skeleton of a solid complex P Œ POLn.  It is possible to show that in this case the
function can be computed as a Boolean difference between the object +:     MKSE    Q:P, where
the expression represents the Boolean sum applied to the sequence of P cells, and
MKSE    Q:P, after having suitably enlarged/shrunk the objects, with a method described in
(Paoluzzi 1991).  This can be done in a very efficient way when the internal
representation of polyhedral cells is a boundary representation.  

Def    OFFSET (P:   isPol   {n},width:   isReal   ) = -:    CONS    <
MoveVert{width/2}:+:     MKSE    Q:P, MoveVert{-width/2}:     MKSE    Q:P >

Replacement

According to (Mitchell 1991), we notice that in design development by top-down
refinement it can be very useful to have a special function to quickly explore the
consequences of refinement decisions, without loosing neither the previous definitions,
nor the corresponding compiled objects. Such a function may be applied as follows:
REPLACE:<ScriptName, NewScriptName, OldExpr, NewExpr>

The effect of such a special function  (notice that it is not a standard PLASM
function) is that of generating a temporary instance of the definitions in ScriptName,
without the object in OldExpr  and with an instance of the evaluated NewExpr, mapped in
the same containment box of OldExpr.  REPLACE is hence an operator over PLASM
scripts; its semantics can be outlined as follows:

(a) select the script corresponding to ScriptName, and make a copy called
NewScriptName;

(b) replace in NewScriptName all instances of OldExpr with ScaledNewExpr;
(c) insert within a clause      Where        End    in NewScriptName the definition     Def   

ScaledNewExpr=     STRUCT    :<     MAP    :    BOX    :<NewExpr,OldExpr>, NewExpr>
(d) evaluate NewScript.

where MAP is a Predefined PLASM binary operator which takes as arguments two
cuboids with the same intrinsic dimension and gives as result the transformation matrix
which maps the first argument into the second. Remember that a unary function (like
BOX), when applied to a sequence of arguments, evaluates to the sequence of
applications.

Conclusions

In this paper the current status of development of the new design language PLASM has
been presented.  In particular the most significant decisions about syntax and semantics of
the language has been discussed.  Some important features of the language concern its
dimension independent approach to the modeling,  its general approach to variational
geometry, the introduction of some new and powerful domain-oriented solid operators, the
use of local coordinates for each object definition, and the reduction of most functions to
the traversal of a structure.
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The PLASM language is inspired to the very powerful applicative style introduced by
the Backus's languages FP and FL for programming at function level.  When the
language is used at low-level, it may appear a bit cryptic, but it is intended as the kernel
of specialized high-level macro-languages to be used in different areas of architectural
design (e.g. housing, hospitals, architecture of interiors, etc.).  A more verbose version of
the syntax might be useful for non-technical user.

We believe that a key point for the successful acceptance of the language will be a
well designed graphical user interface. Such interface should symbolically trace any
graphical action of the designer on the currently selected shape (picking, grouping,
cutting, pasting, dragging, etc), as well to provide graphical echo of expression evaluated
in the listener window. Furthermore, the language should be considered a component of a
very high level graphical environment, with solid modeling, rendering  and real time
visual simulation subsystems. Our aim is to provide standard interfaces toward such
subsystems, providing at the same time a complete independence of the language, so that
it will be possible to exploit the future hardware and software developments.

An huge computing power is required for using the language in practical cases, but
next generation graphics workstations (the G-machine with more than 50 Mflops for $
10,000 (Van Dam 1991)) are at the door, and parallel machines are already here.
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