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Abstract

The intersection of extrusions is a useful tool to gen-
erate complex pll models starting from two or more
mi D (mi ~ p) cell complexes. This operation is particu-
larly useful in the context of architectural design, where
the 3D model of a building may be automatically gen-
erated starting from plan views and sections, both rep-
resented as 2D cell complexes [8]. In this paper a more
general product operator is introduced which allows for
the unification of operations like extrusion, standard
intersection, intersection of extrusions and Cartesian

product of cell-decomposed polyhedra, A naive imple-

mentation of such an operator is a hard t~k even in
3D, as it seems to require an extensive use of Booleans.
In this paper a dimension-independent and efficient so-
lution for this problem is given, using only some linear
algebra and the Cartesian product of graphs.

1 Introduction

In this paper a new solid operation on cell-decomposed
and dimension-independent polyhedra is introduced.
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The operation, that we call generalized product or sim-
ply prvduct of polyhedra, takes two polyhedral argu-
ments of possibly different dimensions and produces a
polyhedral result of dimension greater or equal to both
argument dimensions. The proposed operation is de-
rived from the Cartesian product of cell complexes, and
reduces to it as a special case. It is able to unify several
different operations which are often useful in solid mod-
eling applications, like extrusion, standard intersection
and intersection of extrusions. The various specialized
products mainly differ for the way of embedding the
arguments, of dimension m and n, respectively, in the
coordinate subspaces of the target space of dimension
p > max(m, n).

Dimension-independent solid modeling requires repre-
sentations and operations which uniformly apply to ob-
jects of dimension O,1,2,3, . . . . n. This more abstract
viewpoint [6] allows to solve in a uniform manner many
different geometric problems, like modeling of articu-
lated bodies, piecewise-linear approximation of curved
manifolds, graphics representation of multidimensional
data and motion encoding. Products of d-dimensional
polyhedra times l-dimensional polyhedra, as well as
the intersection of extrusions operation have been in-
troduced in PLASM, a functional design language [8]
strongly inspired from FL [1], where the homomorphism
between an algebra of polyhedra and an algebra of pro-
grams is being currently explored [7].

In PLASM and in several recent approaches to solid
modeling [2,9,5] the reference representation is a cell
decomposition. In this paper we show that to repre-
sent the cells as intersection of haltkpaces has several
advantages. In particular, it is first shown that with
this representation the extrusion operation, which is of
great importance in a dimension-independent approach,
is a linear operator over the space of linear functions
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Figure 1: The product operator used as an intersection of extrusions. The generating expression is @2(A ~@1102 l?),
where A and B are shown on the left and @20 is the extraction operator for the 2-skeleton.

(covectors) associated to the cell faces. Then it is show
that an affine transformation may be applied to this
representation by multiplying the face covectors for the
inverse transformation matrix. Lastly, the computation
of the geometry and the topology of the result of the
generalized product is discussed.

2 Within the Framework of a
Design Language

The product of cell-decomposed polyhedra is one of the
more important built-in operators within the functional
design language PLASM, which takes a dimension-
independent approach to geometry representation and
algorithms.

In this language every object is generated by a lan-
guage expression. The evaluation of the latter produces
a polyhedral model which is geometrically consistent
since the validity of geometry is syntactically guaran-
teed. Such an approach allows for a representation
which is weaker than usually, allowing for a broader
geometric domain encompassing wire-frames, surfaces,
solids (and higher dimensional objects), as well ss man-
ifolds and non-manifolds, considered as assemblies of
pseud~manifolds. Moreover, with a programming ap-
proach a complex design maybe hierarchically described
and developed with a mixed top-down jbottom-up ap-
proach. Using a language the design decisions can be
compactly stored on electronic media and quickly trans-
mitted on communication lines, aa well as easily recog-
nized and updated through the process of design devel-
opment and review. Last but not least, it provides a
powerful environment for variational geometry, where
shapes are completely parametrized,

PLASM can be considered an application shell over
FL [1], which is an advanced functional language based
on combining forms. FL uses a set of identities—
rewriting rules between expressions-for reasoning for-
mally about programs. Simpler equivalent programs
can be found at both design and compilation time, with
great advantages in style and efficiency of program de-
velopment. In this context the algebraic properties of
the polyhedral operators, e.g. the distributivity of skele-
ton extractors with respect to the product, can be use-
fully exploited by the FL optimizing compiler [10].

The model illustrated in Figure 1 wss produced by
the prototype PLASM interpreter. The dimension-
independent operators currently implemented in its ge~
metric nucleus [7] are the generalized product described
here, the extractor of the k-skeleton of a d-complex
(O< k ~ d – 1), fine transformations and boxing and
traversal of structures. They work over the domain of
non-solid and non-manifold but homogeneously dimen-
sional assemblies.

3 Definition and Examples

In this section, before giving a formal definition of the
new operation, we describe three elementary compu-
tation steps (extrusion, permutation and intersection);
their composition yields the desired product operator.
The notation Pd is used to denote the set of regular
polyhedra with dimension d embedded in Ad, the afline
space associated to %d.

Extrusion. The (non-finite) extrusion is defined as a
one-to-many mapping between affine spaces of different
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Figure 2: Extrusion of two polyhedra in @.

dimension:

EP-d:dd +dP:z W=xdP-d, (1)

i.e. we have, using coordinate representations

It is not difficult to give a coordinate representation,
i.e. a matrix representation, of the inverse extrusion
mapping, which is a projection:

(Ef’-d)-l= [ I O ] ,

where Z is a (d + 1) x (d + 1) identity matrix and O is
a (d + 1) x (p – d) zero matrix, but it is not possible to
give a similar representation of EP–d if we remain in
the afine spaces Ad and AP. A matrix representation
of the extrusion operator is instead extremely easy to
give if we move in their dual spaces, the spaces of the
linear functions Ad -+ % and AP ~ $?, as we show in
Section 4.

Permutation. Let us denote as ~ a permutation of
the first p integers, i.e. a bijective function on the finite
set {1, . . . . p}. The permutation mapping

~:dp+dp (2)

such that

2 = (20, 21,..., 2P) l-+ Irz = (20, 27(1) )..-,
wp))

is simply represented by the block matrix

[110H = O A ~p+l)X(P+l)’
(3)

where A = [ai,j] and ai,j is the element (m(i), ~) of the
p x p identity matrix.

Generalized product operator. The two mappings
previously defined can be combined, aa the range set of
the first coincides with the domain set of the second, so
that a composite mapping can be defined:

(=y-d = (~ ~ EP-d) (4)

We are finally able to define the desired product oper-
ator as a mapping from pairs of polyhedra and pairs of
permutations to polyhedra:

@’:Pmxvxr F’xr IP+p P (5)

where IV’ denotes the set of permutations of the first p
integers. More useful, aa discussed in the following, are
the partial functions

.@T, : Pm x p“ + pP (6)

such that

(P, Q) ~ (@’-m P) n (W’-nQ).

where EY’-m = 1110 EP–m and OP–” = 1120 Er’-n. So,
using the product symbol aa an infix operator, we can
write, by omitting the superscripts

P.,@.2Q ={z EAplz EeP, zEeQ}.

where 0 means a proper extrusion and coordinate per-
mutation in AP space, depending on the embedding
spaces of P and Q and on ml, zr2, respectively. Notice
that to drop the superscripts is allowed because the di-
mension p of the result is given by the (common) length
of permutations.

Further notation. As usual in solid modeling we are
mainly interested to the regularized version of the op-
erator, defined as the closure of the interior:

P ml@~, Q = clos(int(P ~,c&, Q)).
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Figure 3: Intersection of two extruded polyhedra. The result shown in the picture can be obtained as P IO@O12 Q
(a) and P IOXIOIO ‘J (b).

In the following we will drop the superscript * symbol
and the word “regularized”, but we will always refer to
the regularized operator.

In writing the permutations ml, 7r2, we will use the
convention of substituting the indices corresponding to
the added coordinates w’s with zeroes. E.g., when
the point of coordinates (ZO,Z1, 22, z3, WI, w2) maps to

(ZO, WI, Z2, ZI, z3, w2), the corresponding permutation
range (42135) is written as 02130. The first coordinate,
Z., never changes its position and is not taken into ac-
count in the permutations. The advantage of this nota-
tion is that it makes clear along which coordinates the
extrusion is performed.

Example 1 In Figure 2 two ezamples of eztrusion of
two polyhedm are depicted. In Figure 2a the resulting
polyhedra P! and Q’ am obtained as

p, = t31P = (1110 E1)P, with

E1 : (21,22) w {(21,22,23) = (Z1, Z2, W1), W1 ●%}

r10001

111 = 110100
0001’
0010

with ml = (132), written as 102. Analogously

Q’ = (31Q = (IIz o E1)Q, with

El : (Zl, zz) w {(zl, z2, z3) = (Z1, Z2)W1)IW1 ~ ~}

r10001

Hz = 110001
.0100’
0010

with m2= (312), written as 012. Notice that it is also

P= e1pnd3= P 10AOOOOo

Q’= OIQ n A3 = P OI@OOO O,

where o E PO is the O-dimensional polyhedron which
has homogeneous coordinate representation (zo), with
20 = 1 ~“ is a singleton that contains only o).

Similarly, in Figure 2b the polyhedron P’ is obtained as
above, whereas S is given by

S’ = f32S = (II o E2)S = S Ol@oOO O, with

E2 : (ZI) I+ {( ZI, Z2, Z3) = (ZI, WI, W2), WI, W2 E R}

[1
1000

l-I= 0010
0100’
0001

with z = (213), wm”ttenas 010. In Figure 9 the results
of the intersections of the eztruded polyhedm am shown.
❑

Specialized products The generalized product pre-
viously defined is able to unify several different opera-
tions which are often useful in modeling applications.
The various operations mainly differ for the way of em-
bedding the polyhedral arguments, of dimension m and
n, respectively, in the target space of dimension p:

1.

2.

3.

if p = m = n and both ml and X2 are the iden-
tity permutation we obtain the usual intersection
operation (see Figure 4a);

ifp>m=nandrl = X2 we obtain the generation
of an “indefinite cylinder”, i.e. the intersection of
the extrusions of P and Q (see Figure 4b);

if p = m + n and Tl(k) = O if and only if 7r2(k) #
O,1 < k < p, we obtain the Cartesian product of
polyhedra (see Figure 4c);
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4. if max(m, n) < p < m+n we obtain the intersection
of extrusions (see Figure 4d);

5. if p = max(m, n) and m # n one polyhedral argu-
ment is intersected with the extrusion of the other;

6. ifp > m+n the kind of the result may vary, depend-
ing on the permutations. In general the result of
the operation is an intersection of extruded solids.

4 Representation of Polyhedra

The used representation scheme is decompositive, where
the cells are convex sets resulting from the intersection
of halfspaces. A polyhedron is defined as the union of a
set of quasi-disjoint cells. This scheme allows to repre-
sent regular polyhedra, possibly non-convex and uncon-
nected. Each cell is represented as a set of simultane-
ous linear inequalities. The representation is completed
by the adjacency graph between pairs of cells. Two
d-cells are adjacent when they have a common (d – l)-
dimensional boundary face. The rationale for these de-
sign choices is given in the following, together with a
more formal description of the assumptions.

An afllne hyperplane az = O,where a = (a”, al,. . . . ad)
andz=(xo, zl, ..., z~), with Z. = 1, can be seen as
the subset of points z c Ad which is mapped to zero
from the linear function a : Ad 4 R, i.e. as the aa the
kernel of the mapping. The space of linear functions
a is a vector space of dimension d, which is caIled the
dual space of Ad, and denoted as Ad [3]. Instead of

defining a convex set as the convex combination of a
convexely independent set of points, we prefer to define
a convex cell as the set of simultaneous solutions of a
set of linear inequalities. Hence we represent a cell as
a set of covectors in dual space, which will be called
face covectors. As it is shown later in this section, this
allows to represent both extrusion mappings and affine
transformations aa linear operators on the dual space.

Cell of dimension d, or d-cell, is a convex set of Ad; such
a set is the intersection of the halfspaces defined by the
affine hyperplanes which support the cell faces. A cell
may therefore be represented aa an ordered set of face
covectors, called cell comairiz in the sequel.

For each covector a normalized coordinate representa-
tion f = (f 0, f 1,..., f‘) is given, which is intended
as a row vector where 1~1= 1. For any point z D

(ZO, Z1, . . . . ~d) internal to a cell, f z <0 holds for any
face covector ~ of the cell. Conversely, for points on the
cell boundary fz = Oholds for some f. A point belongs
to a face of codimension k (or of dimension d – k) if it

belongs to h z k boundary hyperplanes (k of which are
affinely independent). Given the comatrix C, a cell c as
a set of points is defined aa

A comatrix C is compatible when the associated cell c is
non-empty. A covector b is implicated by a compatible
comatrix C when both C and C augmented with row b
give the same cell. A comatrix is non-redundant when
none of its rows is implicated by the others.

Polyhedron of dimension d, or d-polyhedron, is the
union of a collection of quasi-disjoint d-cells. The in-
tersection of any pair of cells in a polyhedron is either
empty or is a face (i-dimensional, O ~ i < d– 1) for both
cells. Note that with such a definition a polyhedron is
regular, i.e. homogeneously d-dimensional, and may be
non-convex and unconnected.

A face-baaed decompositive representation of a polyhe-
dron P is a pair (F, Cr) where F is the face covector
database and C’F is the cell database. For each cell a
list of pairs (covector-pointer, sign) and a list of point-
ers to (d – 1)-adjacent cells are stored. The presence
of a sign is due to the opposite orientation for the face
covector of the two cells (d – 1)-adjacent along the face.
Each vertex may be implicitly represented by the list of
faces it belongs to. The solution of the linear system
written using the incident covectors will give an explicit
representation of the vertex, when necessary.

In the following a polyhedron P will be also represented
as a set of cells {ci }, each cell c being denoted as a pair
(C, AD.) where C is the unredundant cell comatrix, and
ADC is the ordered set of adjacent cells. Given two
cells c and b of a polyhedron P, with c = (C, ADC),
then ADC(i) = &means that the cell b is adjacent to c
along the face with covector given by the i-th row of the
matrix C. We will call this face the i-th face of c. We
also write ADc(i) = 1 to specify that there is no cell
adjacent to c along its i-th face, that is the i-th face of
c belongs to the boundary of the polyhedron P.

Dual extrusion mapping In the previous section we
have defined the extrusion as the mapping (l), which
we were unable to represent as a linear operator from
the domain to the range space (remind that this was
conversely possible for the inverse mapping). We give
such a linear operator for the dual extrusion mapping,
defined as a mapping between dual spaces:

EP-d :Ad ~AP : a~a x {O}p-d, (8)
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Figure 4: Some applications of the product operator,



ie., using coordinate representations

a=(aO, al, . . ..ad)w(aO. al, . . ..aP)=

= (aO, al,..., a~, O,, O), O).

The dual extrusion mapping is a linear function that
can be expressed as

Ep_~=[I o],

where 1 is a (d + 1) x (d + 1) identity matrix and Ois a
(d+ 1) x (p – d) zero matrix. Note that

(Ep_,) = (E’-’)-’.

Affine transformations Let us consider how the
hyperplane az = O is transformed according to an
affine transformation of the space Ad where the poly-
hedra live. As we use homogeneous coordinates, the
transformation haa a coordinate representation with a
(d+ 1) x (d+ 1) invertible real T matrix, so that we
write Z* = Tz. Hence z = T- lZ*, and by substitution
in the hyperplane equation we have aT ’12” = O, finally
giving a* = aT -1 for the transformed covector. Notice
that a“z” = aT-lTz = O.

An affine transformation T will be therefore applied to
a polyhedron P = (F, CF ) by right multiplication of
each cell comatrix for T-1, or better, by multiplication
of each covector in the face database for T-1. With the
unusual but useful convention of using matrix multipli-
cation to transform both polyhedra and sets of vectors
or covectors, we can write formally:

P* = TP = (FT-l, CF).

5 Product of Cell-Decomposed

Polyhedra

In this section we discuss how to compute the general-
ized product previously introduced for cell-decomposed
polyhedra. The following subsections discuss how to
compute the geometry and the topology of the result,
respective y.

5.1 Computation of Geometry

In Section 3 we have seen that the generalized product
of polyhedra can be computed as a sequence of three
steps: an extrusion into the target space, a permuta-
tion of coordinates and an intersection. Both extrusion

and permutation can be expressed as linear operators if
we use a convex decompmition with face-based repre-
sentation. The intersection of convex sets represented
aa intersection of halfspaces is simply the simultaneous
resolution of their constraints. Hence we can easily ex-
press the result of the operation in matrix form, starting
from the matrices associated to the cells of the operation
arguments.

Let be given the polyhedra P = {ph } e Q = {qk }, where

Ph = (Ph,d~p,) e 9k = (Qk,A~g.), where Ph,Qk me
the cell comatrices of the cells ph, g~, respectively.

The product operation between the polyhedra P e Q,

P .,%, Q,

gives a polyhedron

R={r~~l rhk ‘P/I .1%2 9k, (Ph,9k)EPXQ}

The cell comatrix Rhk of the cell rhk can be easily comp-
uted by extruding the argument comatrices in dual
space (i.e. by computing P~EP_~ and Q~Ep-. ) and b
applying the permutations 11~ and II: to the results,
where 111 and IIz are matrices aa defined in (3). The
intersection of the extruded cells is then obtained by
assembling the results in only one cell comatrix. Hence
we have

[1~h‘h’ = ok ‘

where

Notice that the same matrix el (02) must be applied
to all covectors of the polyhedron P (Q), respectively,
so that the covector database, seen as a set of covectors,
of the resulting polyhedron is simply

F(R) = F(P)O1 U F(Q) OZ. (9)

The geometry computation of the product P@Q just re-
quires C)(IF(P)I + IF(Q)I) matrix multiplications if im-
plemented using the elegant but a bit too expensive lin-
ear algebra approach given here. The actual implemen-
tation requires only that the covectors database F(R)
is written copying covectors from F(P) and F(Q), af-
ter insertion of zeroes and a permutation of elements, a
O((lF(P)l + [F(Q)l)p) task.
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(a)

Figure 5: Three different adjacency patterns.

A reduction step of the cell comatrix must be performed
for each non-empty or less than pdimensional cell of the
result. In other words, all the IPI x IQI comatricea Rhk
must be checked, to establish non-empt yness and full
dimensionality of the associated sets (7). Then, all cells
of dimension p must be checked for non-redundancy, i.e.
it is necessary to verify that no implicated covectors
exist in a comatrix. The covectors in (9) which are not
contained in some unredundant comatrix are discarded
from the F(R) database.

Example 2 In Figure dd the generalized product of two
single-cell polyhedm P and Q is displayed. In this case
the name of the cell and that of its comatriz coincide.
Let

‘= P=[-: ::1

and ml = (132) + 102, 7r2= (312) + 012. For sake of
simplicity face covectors are not normalized. Then we
have

F=P

Q=Q

1000
0100
0010

1000
0100

Loolo

(c)

1000
0100
0001
0010

1000
0010
0001
0100

II
–12401

36–401

R=–8~~;
– 12

36 0–41
–8002

•1

(p-1)-cd

5.2 Computation of Topology

Two equivalent approaches can be taken for calculating
the adjacency graph of a polyhedron resulting from the
application of the product operator. A first way is to
use a decision rule to recognize cell adjacency. For each
cell of the result, the rule yields the appropriate set of
edges for the associated graph node. Alternatively, the
Cartesian product graph of the adjacency graphs for
the operands is built, and then the subgraph describ-
ing the topology of lower-dimensional or empty cells,
which do not belong to the representation of the result,
is deleted and substituted by some suitable new arcs.
Lower-dimensional cells can not arise when the oper-
ator corresponds to a Cartesian product of polyhedra
(see case 3 at the end of Section 3).

An obvious but important observation at the purpose
of computing adjacencies for the resulting polyhedron
is that the adjacency graphs of the extruded polyhedra
are the same as for the operands. In fact, neither the
number of cells, nor the number of highest-dimensional
faces are affected by the extrusion operation. Moreover,
it is essy to see that the extrusion operator neither can
disjoint cells which were adjacent in the input polyhe-
dron, nor can make adjacent cells which were not.

Decision rule Consider the (regularized) intersection
of P = {pi} and Q = {qj }, P, Q E Pp, obtained by
application of the 8 operator. Let R = P n“ Q = {rij },
rhs = ph n* q, and r~l = pk n* qt be distinct non-empty
cells. We discuss a rule for individuating pairs of cells
which have (p – 1)-dimensional intersection, i.e. that
are (p – 1)-adjacent.

First, suppose s = t, and therefore h # k (see Figure 5a
and clause a of (10)). If ph is not adjacent to pk (i.e.

Ph # Avpk ) then ‘hs and rkt are not a@=nL because
dim(ph npk) < p– 1 implies dim(rh, n rk~) < p – 1, since
it is rh$ s Ph, rkt C Pk. Conversely, if PIke ADP~ and
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‘“gure 6: Adjacency reconstruction for (p — I )-dimensional degenerate cells. a) The operands P = {A,13} and

Q= {1,2,3}. b) The6cells obtained intersecting cells of Pand Q. c) Deletion ofempty anddegenerate cells, with
adjacencies reconstructed by application of the third clause in the rule.

their common (p – 1)-face is ~, rh, and rht are adjacent
if and only if dim(~ n q,) = p – 1. The case h = k,
s # t is treated analogously (see Figure 5b and clause
/? of rule 10).

Suppose now that ph, pk and q,, q, are distinct (see Fig-
ure 5Cand clause ~ of (10)). If ph $! ADpk or q~ @ Avq, ,
then rh, and rk~ are surely not adjacent. Hence, let ~
be the (p – I)-face shared by ph, ph and g be the one
shared by q,, qi. In this case rh~ and rkt are adjacent if
andonlyifdim(fflg) =p-1, i. e. dim(phflqt) =p–1
(and therefore dim(ph fl qs) = p - 1),

Formally, the rule for the generation of adjacencies is as
follows. Let r-h,, rk~be the cells obtained by intersecting

(Ph, q.) and (pk, qc), where ph,pk ● P and qm,f?tE Q.
Then (see Figure 5):

where

CY = (PhEd~p,)A(s=t)A
(dim(phnpk nq,) =p - 1)

~ = (h=k)A(qs EdD~, )A

(dim(q. nqt nph) = p - 1)

7= (ph ~ d~~,) A(% G ADq, )A
(dim(p~ nqt) = p- 1)

Cartesian graph product The adjacency graph of

R is a subgraph of the Cartesian product [4] of the adja-
cency graphs of the operands, with some new arcs. The

(c)

V
A A
‘.

4?%3

final graph is obtained by elimination of the nodes cor-
responding to empty or lower-dimensional cells from the
latter. Accordingly to the chosen representation, only
nodes corresponding to pdimensional cells and edges
representing (p – 1)-adjacencies must be retained, How-
ever, (p – I)-cells coinciding with the common face of
two adjacent p-cells need to be taken into account for
adjacency reconstruction. This kind of cells arises when
the adjacency pattern is as in Figure 5c. When elim-
inating such nodes, they can be considered as “bridge
nodes”, as it is necessary to appropriately maintain ad-
jacency between cells which were connected through the
degenerate cell. This is the reason for the third clause
in the rule above. Figure 6 illustrates such a situation,
where a new edge is introduced between nodes A 1 and
E13when nodes A3 and B1 are eliminated.

6 Conclusions

In this paper we discussed some properties of a face-
based cell-decomposit ive representation, and introduced
a new solid operator, which has been called “generalized
product” on dimension-independent polyhedra. In par-
ticular we have shown that the new operation is an ab-
stract setting which contains as special cases the (non-
finite and finite) extrusion, the regularized intersection,
the intersection of extrusions and the Cartesian prod-
uct of cell complexes. We have shown also that the
geometry of the result can be expressed in closed form
using standard linear algebra tools (dual spaces and ma-
trix calculus). The topology of the result may be easily
derived from the Cartesian product of the adjacency
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graphs of the operation arguments.

The techniques discussed here have possible extensions
to the (a) curved, (b) non-solid and (c) non-regular case.
In the first case a cell is described aa a set of implicit
non-linear inequalities; in the second one as a set of
equalities and inequalities; in the third one the set of
cells ia of mixed dimension ality. Another useful exten-
sion ia to consider how the product operator described
here can be used aa a n-ary operator. We alao believe
that it may be intereating to study the formal properties
of the operation (at least in special cases), and the kind
of algebraic structure it defines. E.g. it haa been discov-
ered [7] that in this setting the operation of extraction of
skeletons distributes over the Cartesian product. Such
kind of properties may be usefully exploited within an
optimizing compiler for a geometric language.
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