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Abstract

This paper is devoted to the discussion of some of the
design issues which concern the representation scheme
underlying the geometrical nucleus of the PLASMdesign
language. A central choice in the representation of ge-
ometry within the language was to store the minimum
possible amount of topology. E.g., the boundary of a
polyhedron in 3?3, which is a set of 3D polygons, is
stored without adjacencies. Thus, each such bound-
ary polygon is considered as an elementary polyhedron
within its affine hull, and represented as a solid 2D de-
composition in convex cells. This representation allows
to easily perform some operations that are not usually
available in a geometric modeler, as well as to represent
both manifolds and non-manifolds in a uniform manner.
In particular, each geometrical object is represented

as a multilevel hierarchical structure (Hierarchical Poly-
hedral Complex, HPC) that collects a set of elemen-
tary polyhedra, afFmely mapped from their local coor-
dinate systems and grouped as a whole. Two represen-
tation are provided for the same geometry: a weak and
a complete representation. In a weak representation the
set of elementary polyhedra collected in a hierarchical
structure constitutes a covering of the required pointset.
Conversely, in a complete representation the elemen-
tary polyhedra are assumed to be pairwise disjoint. The
validity check of weak geometrical data (polyhedral se-
quences) can therefore be performed at a syntactical
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level, whether the test over complete geometrical data
(polyhedral complexes) is much harder. A conversion
function is given that allows to transform a weak poly-
hedral sequence into a complete polyhedral complex, by
removing the intersections between polyhedra. For each
operator (defined both on sequences and complexes),
the conversion function establishes a homomorfism be-
tween the spaces of weak and complete representations.
Each operator can so be implemented within the do-
main that seems more appropriate, performing possible
conversions only when really necessary.

1 Introduction

The main novelty that the representation discussed in
this paper exhibits with respect to standard current
solid modeling technology is the decision of storing as
little topology as possible. We noted in fact that the
(very simple) adjacency data structures used in our pre-
vious prototype modelers [7, 3] are quite unused when
a solid model is rendered by some graphics server, and
even when the model is used to compute the integral
properties [2] of the object. Hence, following the old,
good CSG approach [12], we decided to associate to
any model an acyclic Multigraph which stores the hi-
erarchical object structure, i.e. both the operations and
the sub-components which generate any object compo-
nent. We believe that such an information is much more
interesting for the designer than the availability of the
complete adjacency relations in some non-manifold sub-
set of the boundary. In a few words, with respect to
the representation of topology, geometry and structure,
the representation scheme proposed here can be seen
exactly half-way between solid modeling and contem-
porary standard graphics. This representation scheme
is being extensively used within the geometry engine of
the functional design language PLASM[8, 6].
Another choice, again inspired from CSG, consists in
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the use of implicit linear inequalities for the represen-
tation of convex cells. The authors believe this choice
has strong implications on the efficiency and coverage of
the proposed scheme. Several basic operations, e.g. the
extrusion of cells and the product of complexes (see [1])
become natural and efficient. A similar influence is ex-
pected on the usual Booleans, a point which is subject
of on-going research. Last but not least, this approach
can be also extended to curved cells described as the
intersection of implicit nonlinear inequalities.

Some ideaa that we discuss in the present context
present similarity with those proposed by Rossignac
and Requicha in [14], where the Constructive Non-
Reguim-ized Geometry representation, a broad general-
ization of CSG schemata [12], is introduced and funda-
mental algorithms for a very large class of solid and
non-solid objects are discussed (see also Talda [15]
and [10]). This class includes decompositions of ob-
jects with dishomogeneous material properties, incom-
plete boundaries and mixed dimensionality. The CNRG
scheme retains the CSG merits, and in particular the
mapping of the model to a generating expression and
the independence from both the specific set of primitive
shapes used and their representation. Primitive shapes
are here replaced by polyhedra of any dimension, de-
fined in their minimal fine hull, and possibly mapped
in a higher dimensional embedding space. Motivations
for a dimension-independent approach to solid model-
ing are widely discussed in [13] and [5]. Motivations for
a fictional approach to geometric programming and
modeling are given in [6]. A short review of the liter-
ature on design languages can be found in [8]. Some
design choices peculiar to the representation described
in the following are based on the solid modeling expe-
rience gained at “La Sapienza” in the development of
the 3D polyhedral modeler Minerva [7, 2] and the mul-
tidimensional modeler Sim.ple~ [5], currently extended
with the HPC representation and used as the geometry
engine of the PLASMlanguage.

The paper is structured as follows. In Section 2, some
entities (convex cells, d-complexes, d-polyhedra, embed-
ding, afline mappings and polyhedral complexes) are
defined which allow sets of polyhedra to be represented
and manipulated as a whole. In Section 3 the com-
plete and weak representations schemata are introduced
and discussed, along with their interrelationship. Sec-
tion 4 illustrates some ideas on the implementation of
operators versus their algebraic properties. Our belief
is that they may provide the system designer with im-
portant guidelines for his implementational choices. Fi-
nally, some extensions of the proposed scheme are in-
troduced in the conclusion Section, concerning inhomo-
geneous dimensionality, partially open and curved cells.
The solution outlined for the first two points is already
being experimented in PLASM.

2 Background

In this Section are given the mathematical concepts
needed to describe the domain of the HPC represen-
tation scheme, i.e. the set of abstract mathematical
objects which will be represented into the scheme.

2.1 Hulls, Cells and Mappings

We recall here some basic mathematical concepts.
Among the others, definitions axe given for the afhe
and convex hull of a set of points, and the notions of
convex cell, of its faces and of d-complex. Also, the
embedding and tine transformations are discussed, as
well as their coordinate representation.

Afflne and Convex Hull The ambient space con-
sidered in the following is the d-dimensional Euclidean
space Ed represented by the vector space Rd. Given a
finite set of points V c Ed and a corresponding set of
reals, the following “hulls” of V are defined:

Definition 1 Let a fh”te set of points V =
{?JI,V2,... ,vk} C Ed and real numbers A1, A2,. . . ,Ah
be given. Then:

a). The affine hull of V is the set of points

tiV={Z=~A~V~lViEV,~Ai=l}.
i i

b). The convex hull of V is the set of points

Points x G af7 V, y E conv V in Ed are said to be
affinely and convexely dependent on the points in V,
respectively. A set of points is called affinely (convexely)
independent if none of its points belongs to the tine
(convex) hull of the others. The dimension of a hull
of V is the maximum number (decreased by one) of its
affinely independent points. If V is a set of independent
points, then dimaffV = IVI – 1.

Cells, Complexes and Polyhedra A linear, con-
vex, compact and full-dimensional subset of Ed is called
convex cell. A convex cell can be defined in two equiva-
lent ways, either as convex combination of points or as
intersection of af%ne halfspaces:

Definition 2 A convex cell c of dimension d, or d-celJ,
in Ed is equivzdently defined as:

a). The convex hull of h > d+ 1 convexely independent
points V, the verticm of the cell, d+ 1 of which are
a.i?inely independent.
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b). The bounded subset of Ed whose elements satisfy a
system of 1> d + 1 nonsingukr ad nonredundant
inequalities.

We recall that, given a system of linear inequali-
ties, an inequality aa,o + ~j f3;,jXj < 0 is singular if
it can be substituted by the corresponding equation
al,O+ ~J ai,j Xj = Owith no change in the sohltion set of
the system. An inequality ai,o + ~j ai,jxj ~ O is redun-
dant if it can be eliminated with no change in the solu-
tion set of the system. An inequality a:,o + ~j ai,j~j <0
is called valid with respect to a convex cell c, if c c

{~1 ai,o + ~j ai,j~j S 0}.
The two descriptions of a convex cell c given in Defini-

tion 2 are easily seen to be equivalent. They both define
a convex set, in the first case as a convex hull of ver-
tices, in the second as the finite intersection of convex
sets. Moreover, the defined set has the same dimen-
sion of the embedding space, in the first case because it
contains d + 1 affinely independent points, in the sec-
ond because the defining inequalities are nonsingular.
Strictly speaking, the additional constraints requiring
convex independence of the vertices and nonredundancy
of the defining inequalities are not necessary to correctly
define the cell. Rather, they have been introduced with
the purpose of imposing a “minimal” description of the
cell, where no redundant elements appear.

Definition 3 Let ao -t ~j ajxj <0 be a valid inequal-
ity with respect to the celJ c. The set ~ = {z ●

CI ao ~j aj~j = O} is a k-face of c if dimafj = k.

A maximum order face of the cell c is called facet.
The set of all k-faces of c, of any order k, is denoted
by F(c). A collection of convex cells is a d-complex if it
satisfies some restrictions:

Definition 4 A d-complex K in Ed is a finite collection
of d-cells such that for each pair of distinct cells ci, cj ~
K, either Ci ~ Cj = 0, or Ci n C j c F’(ci) n F(cj)-

According to the definition above, a d-complex is a set
of convex cells in Ed which are either disjoint or intersect
along their k-faces. Notice that a d-complex consists
only of full-dimensional cells, and therefore differs from
the notion of cell complex of algebraic topology, where
a complex contains also lower-dimensional entities. The
computation of lower dimensional cells of a d-complex
can be accomplished, when explicitly required, through
the k-skeleton extraction operator [9].
The support space of a d-complex is the set union of

the pointsets corresponding to its cells. The definition
of polyhedron follows:

Hence, a d-polyhedron may be nonmanifold, noncon-
vex and/or unconnected, but is required to be homoge-
neously d-dimensional. The interior of the polyhedron

P is denoted by }. The boundary dP of a polyhedron
P is the set of points of Ed which belong neither to
the interior nor to the exterior of P. In this context,
a polyhedron is always associated to a d-complex, and
therefore to a set of disjoint convex cells which meet
only along their faces. For each facet of a convex cell
the equation of the corresponding fine hull, the facet
hyperplane, is obtained by restricting one of the defin-
ing inequalities. This facet may either be a subset of the
polyhedron boundary, or separate two adjacent cells. In
the latter case it belongs to the polyhedron interior.

~~ facet of a cell c is givenThe representation of the t
by the row vector (a;,o, ai,l, . . . . al,d), called facet cov-
eci!or, whose elements are the coefficients of the facet
inequality:

ai,o + ai,lzl + . . . + ai,dzd < 0.

Notice that facets of a cell are associated to vectors
in Rd+l, while vertices are associated to vectors in Rd.
This asymmetry can be eliminated by using the repre-
sentation of points in Ed by means of homogeneous co-
ordinates [11]. Hence, we assume to represent vertices
as column vectors and facet covectors as row vectors.
Then, for a cell c with vertex vectors {VI, vz, . . . . v~ } and
facet covectors {fl, ~2,. . . . jl }, the following inequalities
are satisfied:

f@j ~ O, i=l ,...,1, j=l,..., h. (1)

This condition clearly shows the symmetry between
facets and vertices in the definition of a cell. Choos-
ing some arbitrary point x as the independent variable
in (1) instead of the vj ‘s, the inequalities reduce to the
system of 1 inequalities defining the cell pointset (see
Definition 2b). From the latter, all internal and bound-
ary points of the cell can be obtained. The set of vertices
is given by the feasible solutions which are obtained by
restricting to equations d rows of the system, such that
the corresponding face covectors fi are linearly indepen-
dent, in all possible ways.
Analogously, an arbitrary covector w can be chosen

as the independent variable instead of the fi ‘s. Thereby
the system (1) is reduced to h inequalities which de-
fine, in the dual space, the convex set of all covectors
representing valid inequalities for c. The facet hyper-
planes of the cell coincide with the set of feasible cov-
ectors w which satisfy the restriction to equations of d
ineqmdities such that the corresponding ~j’s are linearly
independent (affinely independent in non-homogeneous
coordinates).

Definition 5 A d-polyhedron P c Ed is the support Embedding and Afflne Mapping Polyhedra and

space of some d-complex K. d-cells have been defined as sets which have the same
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dimension as their ambient space. To provide the capa-
bility of representing lower-dimensional sets embedded
in a higher dimensional space in arbitrary afline sub-
spaces, the embedding and fine mapping are defined
as follows:

Definition 6 Embedding mapping is a linear trans-
formation Ed + En, d < n, such that
(x,,..., ~d)-(~l, . . ..~&().O). ,O).

Definition 7 Affine mapping is a linear invertible
transformation which maps points x c En to points
y ~ En such that the homogeneous coordinates of ~ are
a linear combination of the homogeneous coordinates of
x.

The embedding and tine mapping of a convex cell
are easily computed. The embedding transformation
is equivalently computed either (a) by pre-multiplying
vertex vectors v by a rectangular matrix containing a
block corresponding to the (d+ 1) x (d+ 1) identity
matrix 1 and a (n – d) x (d+ 1) null matrix O, or (b) by
post-multiplying face covectors for the transpose of the
same matrix:

[1Io “
f[IO].

The affine mapping is computed either by pre-
multiplying vertex vectors by a matrix T or by post-
multiplying face covectors by T’, where both T and T’
are square invertible (n+ 1) x (n+ 1) matrices. In fact,
it can be seen that T’ is the inverse of T. At this pur-
pose, let assume that ~~ and v; are the images of fi
and vj, respectively, under the affine mapping, and ob-
serve that the inequalities (1) must still hold after the
mapping. We obtain:

f~v~ = fiT’Tvj= fivi,

and therefore:

T’T=l+T’=T–~

The application of a linear transformation T to a d-
polyhedron P, denoted by T(P), is defined as the appli-
cation of T to each d-cell of the complex underlying P.
The transformation T may correspond to an embedding,
an affine mapping, or to their composition.

2.2 Hierarchical Polyhedral Complex
(HPC)

Polyhedral instances and complexes allow to construct
hierarchical sets of polyhedra, and are inductively de-
fined as follows. The basic definition is the one of O-
order polyhedral instzmce. Then, the j-order polyhedral
complex (for j z 1) is defined by means of polyhedral

instances of order less than j. Finally, the definition of
k-order polyhedral instance is given using k-order poly-
hedral complexes.

Definition 8 Polyhedral instances
complexes are detined as follows:

a).

b).

c).

A

A O-order polyhedral instance is
of En defined by the application

and polyhedral

the set of points
of an embedding

transformation and an &e map to a polyhedro~
P.

A j-order polyhedral complex, for j ~ 1, is a tim”te
non-empty collection of poJyhedraJ instances of or-
der Jess than j, where at least one (j – 1)-order
instance appears and such that they intersect only
along their boundaries.

A k-order polyhedral instance is the set of points
of En defined by the application of an embedding
transformation and an dine map to a k-order poly-
hedral complex.

polyhedral instance of some order k, for k ~ O, is
denoted by I. A polyhedral complex of some order j,
for j ~ 1, is denoted by C.
The concepts defined above introduce a multilevel hi-

erarchical structure whkh can be visualized as an ori-
ented acyclic Multigraph (see Figure 1). To avoid du-
plication of information, each complex or polyhedron
can be referred any number of times within different
instances. According to Definition 8, a polyhedral in-
stance is not necessarily a full-dimensional set within
its embedding space. When this is the case, the interior
of a polyhedral instance 1 is, strictly speaking, empty.
However, we regard in this case the relative interior and
relative boundary as the interior and boundary of 1,
respectively:

Notice that at the level of the hierarchical polyhedral
complex no topological information is stored, which im-
plies e.g. that topologically different objects may corre-
spond to the same structure. Nonetheless, such objects
can be easily distinguished by considering the associated
geometrical information, which is carried by the afhe
and embedding transformations.

3 Complete and Weak Represen-
tation

The set of abstmct mathematical models considered in
the scheme is denoted by M = P U Z U C U T, where
P = {P}, Z = {1}, C = {C} and ‘T = {T} denote
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Figure 1: A polyhedraI complex (plan of a house), with its multilevel hierarchical structure visualized as an oriented
acyclic Multigraph.

the sets of all polyhedra, polyhedral instances, polyhe-
dral complexes and afine maps. The representation of
a polyhedron, instance, complex and affine map is de-
noted by (P) E 7?, (1) e 7?, (C) & 72 and (T) E %3,
where %?is the set of all valid representations.

3.1 Decompositions with Convex Cells

The representation (P) of a polyhedron P is here pre-
sented, together with a short discussion of the main
aspects that characterize and motivate its actual def-
inition as a decomposition with convex cells, including
some issues that concern the robustness.
The representation of a polyhedron immediately fol-

lows horn its definition as support space of a d-complex.
Therefore it is composed by a set of convex cells, each
represented by its vertices and facets. The internal
topological structure of a polyhedron is given by the ad-
jacency information associated to each cell facet. Each
cell facet is in fact coupled to the identifier of the adja-
cent cell in the d-complex, where null adjacency symbols
are related to the facets belonging to the polyhedron
boundary.
The whole cell description is given symbolically,

whether a set of numeric data are separately stored in
the polyhedron representation. If such numeric data are
the coordinates of the cell vertices, we have a vertex-
based representation. If the numeric data stored are
the covectors of the cell facets, we have a facet-based
representation. The two kinds of representation differ
consequently for the symbolic description of the convex
cells. In the first case each vertex is coupled with a vec-
tor identifier, whether each facet is implicitly described

by the set of vertices incident to the cell. Symmetrically,
in the facet-based representation, the facets are coupled
to symbolic references to covectors in the polyhedron,
whether each vertex in a cell is implicitly represented
by the set of all incident facets.
The wide use of symbolic data in the polyhedron rep-

resentation allow to set up its geometrical and topologi-
cal structure when firstly defined. When the polyhedron
is successively manipulated, some inconsistency may oc-
cur between numeric and symbolic data. In this case
the latter are regarded as more reliable, as more sta-
ble than numeric information. Consider, e.g., an affine
transformation like a simple rotation applied to the ver-
tices of a square embedded in ,?33. The transformed ver-
tices may return perturbed such that they are no more
exactly coplanar. Hence they define a (thin) tetrahe-
dron instead of an embedded square (see Figure 2a). In
the HPC representation this is not a problem since any
square is locally defined as a full dimensional object in
E*, possibly embedded in E3. Therefore, it cannot be
assumed as intrinsically 3-dimensional.
Similarly, the four vertices of a squared facet of a

cube may occur not to be exactly coplanar, such that
the cube facets increase their number by one (see Fig-
ure 2b). The set of adjacent cells changes and, even
worse, two adjacent cells may intersect each other, so
violating the definition of d-complex (see Figure 2c).
The symbolic data in the HPC representation allow to
solve such problems, since the four vertices are consid-
ered coplanar if (and only if) their identifiers are all
members oft he implicit description of some facet.
Using a facet-based representation we can deal with

similar problems. For example the top vertex of a
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Figure 2: Four possible geometrical inconsistency problems, following from little modification of numerical values in
a polyhedron representation.

square-based pyramid is numerically computed as the
unique solution of a system of four equations (the equa-
tions of facet hyperplanes incident on the vertex). This
system may become incompatible for little modifications
of one facet covector: the four facet covectors so define
two (close) vertices instead of one (see Figure 2d). The
symbolic data in the HPC representation allow to de-
tect such an error, since the implicit description of the
vertex forces the four facets to intersect each other in a
single point.
We can say that the the constraint of using only full

dimensional polyhedra, symbolically described as much
as possible, allow to arrange a robust representation.
Numeric computations are considered less reliable than
symbolic ones, hence they are avoided as much as pos-
sible. This also increases the efficiency of some algo-
rithms on polyhedra, which take advantage from the
reach symbolic description of the cells. E.g., the mem-
bership check of a vertex to some cell facet, in a facet-
based representation, is simply performed by a set in-
clusion test of the facet symbol in the vertex implicit
description. In a vertex-based representation the same
check is a set inclusion test of the vertex identifier in
the facet implicit description.

3.2 Complete Representation

The function r : 72 + M maps valid representations
to the corresponding abstract models. An element from
the domain 7? is mapped to an element of the range
M as follows, where parentheses are used for ordered
sequences and curly brackets for non-ordered sets. Ac-
cording to Requicha’s terminology [12], the inverse func-
tion r– 1 : M + 7? is a representation scheme from the
set of abstract mathematical models M to the set of
representations 72.

(P) * r(P) = P;
(T) N r(l”) = T;
(1) = ((T), (P)) * r((T), (P)) = T(P) = 1;
(1) = ((T), (C)) H r((T), (C’)) = T(C) = 1;
(c) = ((l),,..., (I)m) * r((l)l,... ,(~)~) =

~;!l)l,...,r(l)~}=
,...,lm}= c.

The various geometric entities which are involved in
the definition of the r-l function are depicted in Fig-
ure 3 along with the corresponding placement within
a hierarchy of representational domains. At the first
level of the representation convex cells are stored as
sets of vertices and face covectors. Next, polyhedra are
maintained as collections of cells along with sets of ver-
tices (facets). More abstract elements, i.e. polyhedral
instances and complexes, are represented only by (pos-
sibly multiple) references to elementary components.
Hence, a complex can be modeled as a directed acyclic

Multigraph with a single source node (the root com-
plex). Every internal node is associated to a compo-
nent complex, and arcs departing from the relative node
correspond to the polyhedral instances of the complex.
Terminal nodes are associated to elementary polyhedra
(see Figure 1). Notice how different instances can refer
to the same polyhedron (complex), to which different
affine maps are applied, thereby avoiding unnecessary
duplication of information, a technique commonly found
in standard graphics systems [4].
The progressive enlargement of the domains of ab-

stract mathematical models corresponds to a similar
increase of the representational power. Starting from
the set of full-dimensional convex d-cells and going
through polyhedra and instances, the HPC scheme cap-

tures polyhedral complexes which may correspond to
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Figure 3: The correspondence between different classes of models captured by the r– 1 scheme and the relative
domains. Numbers next to the arrows indicate the cardinality of relationships.

nonsolid, nonconvex, unconnected and nonmanifold ob-
jects.

At the present time, dimensionally inhomogeneous
objects fall outside of the domain of the HPC scheme.
This restriction is not inherent to the technique that
we propose, which can be readily extended to describe
nonregular pointsets, but was rather motivated by the
wish to quickly obtain a working software prototype,
avoiding for the moment the issues connected to the
implementation of non-regularized Booleans. We plan
to devote further study to this point and remove the
limitation within the future research effort, which will
lead to the capability of describing more general object
topology, according to the guidelines of [14].

3,3 Weak Representation

The “weak” representation scheme wr - 1 is introduced
in this Section. This scheme is based on an extension
of the concept of polyhedral complex. At this purpose,
we define the polyhedral sequence, which is derived by
weakening the definition of polyhedral complex. Every
polyhedral sequence can be associated to a valid com-
plex according to the r–l scheme by application of the
progressive difference operator defined in the following.
The weak representation scheme is both computation-
ally more efficient (the evaluation of progressive differ-
ences is deferred a.s long as possible) and a more accurate
mirroring of the semantics of the designing process.

3.3.1 Extended Polyhedral Instances and Se-
quences

We move to the larger domain which is needed to pro-
vide further flexibility to the object description by defin-
ing the extended polyhedral instances and the polyhedral
sequences. In their definition the same reference mech-
anism is used that already appeared in the definition of
instances and complexes.

Definition 9 An extended polyhedral instance ~ is the
set of points of En defined by the application of an
embedding transformation and an affhe map either to
a polyhedron P, or to a polyhedral complex C, or to a
polyhedral sequence S (see next definition) in Ed, with
d<n.

Dei3nition 10 A polyhedral sequence S is an ordered
set of m extended polyhedral instances (~1, ~2, . . . . ~~ ),
all embedded in the same space En.

A polyhedral sequence is therefore similar to a com-
plex, the main difference being that the first is an or-
dered set of extended polyhedral instances, and not a
non-ordered set of polyhedral instances subject to a con-
straint of pairwise disjointness. Extending the notation,
S denotes a sequence, S the set of polyhedral sequences,
~ an extended polyhedral instance, ~ the set of extended
polyhedral instances, and finally M” = M U ~ U S the
extended set of all (extended) abstract mathematical
models.
The representation of a sequence is denoted ~y (S),

the representation of an extended instance by (I), and
7?* is the set of all extended representations, including
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Figure 4: Two polyhedral sequences may differ only for the ordering of the composing polyhedral instances. The
evaluation of progressive difference on different sequences may generate different polyhedral complexes.

polyhedral sequences and extended instances. To dis-
tinguish between 7? and ‘7?*, we use the terms valid or
complete representations for the first and extended or
weak representations for the second. The mapping be-
tween the set of extended representations and the set of
extended models is given by the function

r* :7?* + M*,

which is obtained by extending r to the set of weak
representations. Hence, we define r* = r in 7?, whether
r“((~)) = i and r*((S)) = S.

3.3.2 Progressive Difference

Let “-” denote the regularized difference operator, de-
fined as the closure of the interior of the set difference of
the arguments [16]. The progressive difference function
D is defined aa follows, where M* = M U ~ U S

D: M*+M

is defined as follows:

mEM H Dm=m
f = T(S) + DT(S) = T(DS)
S=(il ,’...,im) I+ D(~l,.’ .;, irn)={~l, ~m}=Cm}=C

fori=2,..., m.
From the evaluation

11 = D~l ,
Ii = D(.fi –Ii-l – . . . z~l),

rules given above, we see that the
function D is the identity & M. The evaluation of D
on the extended instance ~, mapping T of the sequence
S, returns the (non extended) instance 1, application of
the same mapping T to the complex C = DS.
When evaluated on a polyhedral sequence, D removes

the intersections between the component instances. A
polyhedrrd sequence is an ordered set, so that the or-
dering translates into a precedence rule while executing

differences. Accordhg to such a rule, points which be-
long to more than one instance are considered aa be-
longing to the one with the lowest index. Hence, every
instance is subtracted from all instances which appear
later in the sequence, according to the denotation of
“progressive difference”. An example of the application
of the D function is shown in Figure 4 (see also [8]). No-
tice that the application of a progressive difference to
two polyhedral sequences which differ only in the order
of their instances may produce two different polyhedral
complexes,
Shifting our attention from the set of models to the

set of representations, analogously we define the D* func-
tion:

D*:~* +7?.

Its evaluation requires the algorithmic computation of
the progressive difference on the representations of the
arguments. Hence, it is by definition:

D(r”(z)) s r(D*(z)), Z< R*.

The D* function acts therefore on the representations
in the same way in which D acts on models. The pro-
gressive difference is a key operator in the HPC scheme,
because it allows for the description of geometries by
using sequences instead of complexes.

3.3.3 Weak Representation Scheme

The “weak representation scheme” is introduced here,
where elements of %3*can be used to directly describe
polyhedral complexes. We define:

wr:’R*+M,

where
wr=Dor*=ro D*,
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and where o denotes functional composition. The wr - 1
representation scheme deserves the designation weak be-
cause it allows for the representation of polyhedral com-
plexes with elements of 72*. Thus, the wr–l scheme can
be used in place of r-l, because the two mappings share
the same domain M. Summarizing, the domain and
range of the r, r“, wr, D and D* functions, which define
the r-l, r“-l and Wr–l representation schemata, are:

When using wr- 1 in place of r-1, the set of avail-
able representations is enlarged from ‘R to 72*, thereby
introducing a strong relaxation to the geometric con-
straints of the scheme. Every time that a valid repre-
sentations according to the r-1 scheme must be derived,
it is required the evaluation of the D* function on the
corresponding weak representation. Hence, we say that
a valid representation is obtained by evaluating a weak
representation.
The introduction of the weak representation scheme

enriches the set of representations corresponding to the
same abstract model. Such extension is due to the use of
progressive differences, which can be traced back in turn
to a CSG-like method. In particular, such an approach
has been undertaken within a framework based on a
decompositive approach.

4 Morphisms and Operators

Every operator, denoted generically as A, is assumed to
be defined on the space of models to ensure that its
semantics does not depend on the particular represen-
tation scheme which is used. Assuming a binary *, we
have:

*;MxM+M.

For every x operator defined on the models, a corre-
sponding o* algorithm must be defined which specifies
its action on the representations. The correctness of
such algorithm is guaranteed by the condition:

wr(z o, y) = wr(x) * wr(y), Z,y Gn*,

Therefore, the wr function must be an homomor-
phism from (R*, o*) to (M, *). The wr homomorphism
can be visualized as in the following commutative dia-
gram (wr x wr is the product function between product
spaces):

o*
7?* x 7?” . ‘R*

wr X wr wr

T * ?
MxM . M

The specification of the o, algorithm may differ ac-
cording to the choice of its domain and range. Remem-
bering that 72 C 72* and that D*(7?*) = K?, we may
define four classes of algorithms, whose elements o:, 0:,
o; and o: are characterized by the following signatures:

0; : 12 X7?+R*
0: : 7? XI?+R
0: : 7?* X’R* +12*
0: : ‘R* XR* +72

It is not necessary to implement the same operator
in four different algorithmic flavors, The relationships
existing between the four algorithm classes allow to im-
plement only one version, and use it, when necessary,
in place of the others. Hence, the choice of the alg~
rithm which is effectively implemented is not imposed
by the representation scheme but left to the system de-
signer, who should be guided by both algorithmic and
implementational considerations.
We recall that 7? c 7?”, i.e. that every valid repre-

sentation is also a weak representation. It follows that
“vahd” input data can be fed to algorithms originally
designed and coded for “weak” input data. Similarly,
an algorithm which returns a valid representation as
output can substitute another one which is supposed to
generate weak output data. In general, the use of o: in
place of o:, 0: and o: is always formally correct. From
a practical viewpoint, the extensive use of this property
may be undesirable because of efficiency lack, due to
the fact that geometric properties of valid representa-
tions may be not exploited within algorithms designed
for weak data.
The use of the D* function to convert a weak represen-

tation to a valid one, symmetrically allows to substitute
the operator o: with an expression involving in turn
only one of the other three. The following functional
equations describe such transformations:

0: = D*oo:o (D* X D*)

0: = 0:0 (D” X D*)

0: = D’oo;

Summarizing, it is possible both to use o: in place of
0:, 0: and 0:, as well to operate the inverse substitu-
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(a) m) (c) (d)

Figure 5: The product of complexes in (a) generates a polyhedral complex (b) with non-uniform intrinsic d~mension.
In (c) and (d) the (exploded) 2-skeleton and the l-skeleton are shown, respectively.

tion. Thus, anyone among the four possible versions of
o* may be implemented to virtually guarantee the avail-
ability of all four. The possibility of choosing the more
convenient implementation of any operator among the
possible four provides a further degree of freedom in the
design and implementation of a system based on weak
representations.
An efficient implementation of class 4 is particularly

convenient because it allows the substitution of the
other three and eliminates the need of computing the
D* function. Nonetheless, implementations of class 3
are preferable in general, because their cascade applica-
tion is possible (they have the same domain and range)
while exploiting the advantages of the weak represen-
tation. The use of available algorithms developed in
the framework of decompositive schemata leads to class
2 implementations, in which a valid representation is
used for the operands aa well as for the result.
The choice of the algorithm is also bound to the

geometric meaning of the operator which is being de-
fined, e.g. it is advisable to avoid implementations which
are basically equivalent to a cascade application of the
progressive difference and of the specific operation re-
quested, since these steps should be maintained sepa-
rate.
The same considerations apply to unary operators,

with the possibility to define four different algorithmic
versions for each operator defined on models, which dif-
fer for the input and output data representation. Each
of the four implementations can potentially substitute
the others, possibly using the D* function to perform
the needed data conversion.

5 Conclusions and Further Ex-
tensions

The characteristics of the HPC scheme presented in this
paper are deliberately limited to the features that have
been widely tested and for which a stable formaliza-
tion hu been established. Further enlargements to the
scheme are currently experimented or planned. Three
are the extensions we consider necessary to achieve the

broader representational domain: (1) nonuniform in-
trinsic dimensionality of models, (2) redefinition of the
convex cell as a partially open set, (3) use of curved
facets. As stated in Section 3.2 the point (1) is encom-
passed by the current definition of the scheme, and sup-
ported in the implementation by the product of polyhe-
dra and k-skeleton extraction operators (see Figure 5),
described in details in [9]. Anyway, standard Booleans
need more research and experimentation. Currently, we
are able to compute only the intersection of polyhedral
complexes.
About extension (2), we are testing a simple but effec-
tive method. A tag is associated to each face of a cell,
which specifies if it is open or not, i.e. if its inequalty
must be considered a strict inequality. In Figure 6 a
building model is shown obtained as the 2-skeleton of a
set of simple blocks; the balconys differ from the inter-
nal spaces aa they are defined aa blocks which are open
(strict inequality) on their top facet.
Extension (3) is necessary to represent curved objects,
which are not currently supported. Anyway it is al-
ways possible to have good approximations, since any
curved object can be approximated by using piecewise
linear maps on simplicial decompositions (see Figure 7).
Thk approach seems to be sufficient in most real cases
and retains the advantages of simple and efficient lin-
ear mathematics. Anyway it is not enough in general
and we plan to explore extensions for non-linear facet
support.
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