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A Programming Language
for Architectural Symbolic Modeling

Alberto Paoluzzi* Claudio Sansoni**

Abstract

In this paper a software project supporting architectural design is outlined.
Such a project aims to develop the new design language PLASM (a Programming
Language for Architectural Symbolic Modeling), which is planned to be a very
high-level, user-oriented language, belonging to the class of constraint languages.
The language PLASM will support a small set of abstract data types which are
significant in various outstanding problems of architectural design, and will offer
both procedural features and non-procedural constraints satisfaction. It will allow
the designer to make use of a large set of computing tools in any phase of
architectural design, in order to explore a wider set of design solutions.
Customizable evaluation functions will be available in the language. The execution
of a PLASM program may result either in generating or in updating a semantic
network over a set of data objects solving the geometric problem under
consideration. The proposed language will support both abstract data types
significant in the design domain, and tools performing automatized data generation
and transformations between different data types. The modification of any object
in such a system, both performed by editing a daemon program and/or by
interactively modifying a data object. with result in the immediate propagation of
changes into the problem network, by activating a message passing mechanism.
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1  Introduction

The complexity of design problems is the main reason for introducing CAD techniques in the
architectural design. Unfortunately, in spite of the progress in computing technology and of
its widespread diffusion, the results of the computer application in architecture are largely
disappointing. It is in fact widely recognized that CAAD techniques have had just a minimal
impact upon the project quality, and therefore a minimal effect upon the building industry and
the built environment. Our current design systems are, in most cases, just drafting tools,
whose innovative aspects result from other design disciplines, like electronic and mechanical
design, which primarily necessitate to efficiently organize the design work. For this reason,
the best assisted design tools allow for structuring the design using layers and/or levels,
simulating in this way an electronic circuitry or a mechanical assembly. Unfortunately, the
actual problems arising in architectural designing are very different, although in producing a
detailed design it can be sometime useful to use layers and levels. As a matter of fact, an
architectural design is mainly developed through stepwise refinements, using a top-down
strategy; at the contrary, electronic and mechanical design often require a bottom-up
approach.

In spite of the large computer diffusion, many of the interesting ideas proposed in the
seventies [Negroponte 1975, Mitchell 1979, Eastman 1975] had only a small influence on the
professional practice, so that only a few systems can be considered able to-improve the
architectural design. URBAN 5 [Negroponte 1972], developed by Negroponte at MIT
between '70 and '75, can be considered the first CAD system oriented to architecture. Using
URBAN 5 a designer could have an interactive dialog with the machine, and was able to
experiment schematic design solutions by directly building a spatial model with 3D boxes.
Pioneer examples of integrated CAAD for the actual utilization are the ARK-2 [Lee 1973]
system developed by Perry Dean Partners Inc., and the OXSYS system [Richens 1974]
developed by the Applied Research of Cambridge, in cooperation with Oxford Regional
Health Authority, for the use with the Oxford Building System. In the academy, the
ABACUS group at Strathclyde University experimented advanced procedures in order to
evaluate alternative design solutions. Particularly interesting is the software GOAL [Sussock
1982] ('General Outline Appraisal of Layout') whose aim is to offer the designer evaluation
tools which can be applied to the first design development phases. Other notable integrated
systems are the Bijl's SSHA [Bijl 1974], for the housing design by using component based
building systems, developed for the Scottish Special Housing Association by the Edinburgh
University, and CEDAR (Computer-aided Environmental Design Analysis and Realisation)
[Chalmers 1972], based on the building system SEAC, developed by a research group of the
UK Department of Environment for the Post Office Telephone Engineering Centre.

The PLASM project, funded within the Finalized Research Program "Edilizia" (Building
Technologies) of Italian National Research Council (CNR), aims to realize a 'Design
Language' to be used also in the first, more creative, steps of the design process. Thee
PLASM main goal is therefore to propose symbolic representation tools, suitable for
architectural design, to be used in the context of a four generation language for the increase of
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the designer productivity. Such a language will be oriented to the geometry description and
will use a declarative approach. It will allow for generation and control of a whole set of
geometry solutions, through the formalization of design constraint and objectives. The aim of
this paper is to report about preliminary choices and preparatory work in the language
development.

2   Object-Oriented and Constraint Based Languages

The design work is an iterative process whose solution space is delimited by a set of
constraints and objectives [Simon 1969, Lawson 1980]. The designer proceeds euristically by
reducing the freedom degrees of the design hypothesis, until the possible variations are
reduced to zero. This means that the design is defined incrementally, by iteratively adding
new constraints, and by continuously verifying the partial results against the objectives. In the
following of this section we shortly recall the main aspects of object-oriented programming
languages and of languages based on constraint satisfaction. We believe that the new design
language PLASM should belong to both these language classes.

In procedural programming languages it is usually necessary to distinguish between
procedures and data, which are treated in a separate way. In object-oriented programming data
and procedures are instead combined into units called objects. In such languages an object is
defined as a container of some data type and of the procedures which are necessary to operate
over such data. With such approach it is no longer necessary to communicate to the outside
world the details of the implementation of the operations. It is furthermore promoted the
modularity of the computing environment, which appears particularly useful when the
complexity of the system increases. Object-oriented programming languages can be
considered derived by the abstract data type concept, derived in the context of the theoretical
computer science [Aho et al., 1983]. An abstract data type is defined as a pair (A, O(A))
constituted by a data set A and by a set of operators O(A) over such data. In object-oriented
languages is often done a distinction between data classes and instances. A data class defines
a particular type of object; a data instance is a particular copy of an object in a specified class.
Usually the class contains the behaviour, i.e. the procedures which apply to all the objects
into the class; an instance contains the data values concerning a particular exemplary of the
considered object. Classes can often be considered as subclasses of other classes
(superclasses) of which they hereditate the behaviour. Normally each class is created at the
beginning of a program, whereas the instances are created during a work session.

In traditional programming languages, the programming follows an imperative style,
where the programmer must describe, step by step, the behaviour of the program in any
possible situation. With such approach the design and description of an algorithm tend to
cover and to hide the problem resolution strategy. Besides, the programming effort is often so
high that a non-specialist user is discouragiate to write his own program. At the contrary, in
programming languages based on constraint satisfaction  the programming is
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declarative: the programmer has to specify a set of relations between a set of objects, and is
the system job [1] to find one or more solutions which satisfy such set of relations. In such a
way the user is not requested to specify an algorithm solving the problem, but just to describe
the problem itself. The possibility of solving many different problems (in a given domain) is
an essential characteristic of constraint languages. Leler [Leler, 1988] summarizes in the
following way the main aspects of constraint based programming: a constraint expresses a
desired relationship between two or more objects; a constraint based language is a language
used to describe both objects and constraints; a constraint based program is a program written
in a constraint based language. It is utilized to describe a particular set of objects and a
particular set of constraints; a constraint satisfaction system finds solutions for constraint
based programs, by using problem solving methods, often oriented towards a particular
problem solving domain. In the next section we will describe some particular classes of
geometric objects, that we believe useful in describing the geometric behaviour of an
architectural design.

3   PLASM Objects

Forrest wrote in a fundamental paper [Forrest, 1974] : '... we have had considerable success
with a relatively simple command interpreter which has been used to implement a wide variety
of problem oriented design and command languages. However such languages do not seem
to have the same glamorous appeal as algorithmic languages and their design and
implementation has been rather neglected. Once more, working in this area would be of great
practical value.'

Fifteen years later, design languages in the sense of Forrest have found little diffusion.
Nevertheless, a symbolic description is able to describe the whole process of shape
generation, and not only the final result. In the PLASM project we aim to develop a design
language in the sense of Forrest, able to specify symbolic design representations, as well as to
represent design parts, and processes and operations used in shape generation, at various
detail levels. Consequently, the language must allow both for the incremental design
development and for automatic recomputing of all data, as consequence of any editing of part
or constraint description. In order to do this, the PLASM language must permit the definition
of abstract data types significant for architectural designing, and must provide both procedural
control structures and non procedural mechanisms of constraint satisfaction. The objective of
a work session will be that of generating a whole set of geometrical solutions for a design
problem. In particular, the designer, by using appropriate shape descriptors and operators,
must be able to generate and to explore a range of solutions in order to accomplish choices
based on comparative evaluation of alternatives. Furthermore, the designer must be free of
utilizing previously obtained partial solutions, and of defining new ones by editing the
symbolic descriptions already available.

We like to refer as a precursor of our approach the famous SKETCHPAD system by

____________________
[1] By using some suitable problem solving technique.
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Ivan Sutherland [Sutherland 1963], which first introduced a number of important concepts in
the area of interactive graphics and design modeling. Another outstanding reference is
THINGLAB [Borning 1979] by Alan Borning, developed with Smalltalk at Xerox Labs, for
modeling simulation experiments in the domain of geometry and physics. Other direct
references are KRL by Bobrow e Winograd, used as knowledge representation language, and
CONSTRAINTS [Stallman and Sussman1977; Steele and Sussman 1980] 'a language for
expressing almost-hierarchical descriptions', mainly used in the domain of electrical network
analysis. The more significant reference for the PLASM project will probably be the general
purpose specification language BERTRAND [Leler 1988], which permit the user to specify
problem -specific objects and constraints, and performs constraint satisfaction by using data
typing and generalized rewriting rules.

3.1   Relation Graphs

The high-level structural organization of an architectural design can be defined without
reference to any specific decision about shape. For example, both the activities to be
performed inside the planned building and the required spaces can be described by using
relation graphs [Jones, 1970] (fig.2). Such kind of representation does not determine the
shape of the project, but nevertheless strongly constraints its structure. In particular, by using
graphs it is possible to readily specify various binary relationships among spaces, concerning
the required adjacency, accessibility, etc. All kind of binary relationship can be requested
without assuming any specific decision about shape.

Among relational operations having a major interest in the design process we recall: (a)
adding (deleting) a node (arc). (b) expansion (contraction) of a node (subgraph) into a
subgraph (node). The first operation is used to create or eliminate an activity or space, with
the consequence of reorganizing the whole set of requested relationships; the second operation
concerns the possibility of representing hierarchically the most complex relationships in a
project. It is well known, for instance, that a dwelling can be considered, at a proper
abstraction level, as a unique graph node, and at another abstraction level as a subgraph
having as nodes its constituting spaces [see, e.g., Carrara and Paoluzzi, 1981].

In architectural CAD we are mainly interested with operations over weighted undirected
graphs, in order to evaluate clusters, flows and distances. Some graph operations and
functions having design interest are the following: (a) section [2] having minimal (maximal)
flow; (b) minimal distance between a node and all the remaining nodes; (c) chain of minimal
length between any pair of assigned nodes.

____________________
2 Minimal subset of arcs which disconnects the graph.
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3.2   Topological Graphs

When the binary relationships between the design components are expressed with the aim of
defining some shape organization, they can be modeled by using topological graphs (fig.3).
In order to define a topological graph it is firstly necessary to introduce the concept of planar
graph. A graph is said planar when it can be draw on the-plane without crossing of edges
(arcs) outside of vertices (nodes). A planar graph can be represented in many equivalent
ways on the plane. Two drawings are equivalent is they can be bicontinously transformed
each into the other. In other words two planar graph representations are equivalent if they
differ just for the vertex coordinates and for the shape of edges, but they split the plane in the
same set of connected regions, which are called faces. An equivalence class of planar
representations of a given graph is said topological graph.

A graph can be assumed as a model of the shape topology only if it is planar. In the
opposite case it is not possible to embed the graph in the plane. The planarity test [Hopcroft,
Tarjan 1973] assumes the greatest importance in the context of design by constraint. Another
important graph operation is that which associates a topological graph together with its
geometrical dual [Harary 1969]. Such operation allows to associate an adjacency graph with
its dual plan graph and vice-versa [Steadman 1983]. The more important operation
concerning duality is that which associates a planar graph with the set of the maximal planar
graphs containing the given graph as a subgraph. The constructive combinatorial algorithm
has been given by Cocomello and Paoluzzi in [Cocomello, Paoluzzi, 1981]. Unfortunately,
such set of maximal planar graphs is "p-space hard", and therefore can be actually constructed
only for graphs of cardinality n     <     10. For each maximal planar planar graph the
corresponding dual plan is unique and can be constructed in a very direct way. If an
adjacency graph represent a set of requested adjacencies for a set of spaces, anyone of the
plan graphs associated with a maximal planar graph (containing the adjacency graph)
represent one different feasible topology for a plan which satisfies all the requested
adjacencies. Also the inverse transformation is very interesting: the common (dual) subgraph
shared by many plan graphs represents the relational constraints which are simultaneously
satisfied by all the considered plans.

3.3   Polygonal Structures

If the topology and the geometry of design are defined completely and explicitly, we call the
corresponding object polygonal graph, whose faces are polygons. In this case we call arcs the
polylines shared by two adjacent faces, and nodes the crossing of at least three arcs. The more
important unary operation applicable to a polygonal- graph is the affine transformation, used
to apply a sequence of geometric transformations (translation, scaling, mirroring and rotation)
to a polygonal graph. A set of polygonal graph can be joint to constitute a polygonal structure,
where polygons are connected by affine transformations, using the hierarchical modeling
technique well known in graphics [see PHIGS, 1985]. Affine transformations over polygonal
structures are very useful because they work over "voids" with-
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out affecting their "boundaries", which are not yet specified in this kind of representation
(fig.4). The main property of such a representation is evident: a polygon structure can freely
manipulate the spaces, without to deform the internal partitions or the external envelopes,
because they are defined only in a virtual way. Over the polygonal representation (graphs and
structures) can be defined the following binary composition operations: (a) join; (b) union; (c)
intersection; (d) difference; (e) disjoint sum. Other useful (external) operations, which
transform 2D polygonal structures into 3D structures are the following: (f) rotational
sweeping; (g) extrusion; (h) interpolation; (i) xor-sweeping; (l) or-sweeping.

Let us notice that any traditional design technique makes large use of 2D orthographic
projections. The set of orthographic projections and of complementary geometric information
needed to specify completely a 3D object is called a 2.5D representation. 2.5D reprs are
frequently used in architectural design, because buildings are described by sections, which are
constant "almost everywhere". This characteristic makes 2.5D representation, closely
associated with sweeping operation, particularly useful for CAAD, because it allows to
generate an informationally complete solid model starting from a finite set of 2D sections. In
particular, a 3D polygonal structure can be readily obtained by sweeping a 2D polygonal
structure, where each cycle is associated with some suitable "heigth" information. In fact each
cycle can individually generate a 3D solid cylinder, subsequently united or glued together to
obtain the complete 3D model.

We have said that a polygonal structure, both 2D and 3D, is a set of geometrical elements
without width. Such schematic descriptions of a building object can be utilized, together with
a schematic description of building "walls", to generate a solid (in the following called
"polyhedral") description of the building. Such schematic description of the geometry of
building fabric will be called in the following wall representation (fig.6). A wall repr. contains
both a set of simple rules to associate widths to the space boundary elements, and priorities to
be applied in case of conflicts in the occupance of space. A wall representation is therefore
defined as a data structure containing: (a) a taxonomy of functional subsystems (vertical
enclosures, internal partitions, horizontal enclosures, etc); (b) some geometrical and/or
topological rules which associate functional subsystems to the geometrical elements of a
polygon structure; (c) some sweep rules necessary to associate widths to the geometrical
elements; (d) some combinatorial rules which partitionate the building subsystems in building
components [Mandolesi, 1982]; (c) a subsystem ordering, to be applied in solving space
conflicts in automatic generation of detailed building solid model. For example, if two solid
"walls" are in conflict, i.e. if they occupy the same space portion, one of them should be
substituted by its difference with the other solid.

3.4   Variational Representation

Sometimes it is necessary to modify previous design decision, where such changes have to
extend to all the connected design entities. An useful approach is constituted by parametric
representations, especially diffused in mechanical design. A parametric representation, called
'primitive instancing' by A. Requicha [Requicha, 1980], is a procedure which is
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able to generate a complex shape depending on the instantiation of some shape parameters.
When the relationships between parameters are well formalized and can be expressed as a set
of simultaneous equations, being any solution computable by solving the system of
equations, they are referred to as variational geometry [Light and Gossard, 1983; Gossard et
alt., 1988].

With the aim of introducing a valiational approach in PLASM, we give some definitions.
A geometric relation  is an identity which associates, by means of relational operators (<,    <    , =
>    , >), two algebraic expressions between the vertex coordinates of a polygonal structure.
Such algebraic expressions can be associated to symbolic identifiers; e.g., for the polygon
shown in figure 7 we can write both the following system of algebraic equations

side1 = X2 - X1 (1)
side2 = Z3 - X4 (2)
side3 = X5 - X6 (3)
side1 = side2 + side3 (4)

and the unique equation in six variables obtained by substitution:

(X2 - X1) = (X3 - Z4) + (X5 - X6). (5)

In conclusion, a variational representation is a set of simultaneous shape constraints,
where both the topology and some shape invariants are fixed. This approach has been
described mainly by [Light and Gossard, 1983] in the context of mechanical CAD. [Paoluzzi,
1987] and [Cattani and Paoluzzi, 1988] have shown how to express integral constraints
(volume, centroid, moments) concerning parametric polyhedra: they can be written as
polynomial equations in the shape parameters. By using the variational approach the design
dimensioning is obtained as the solution of a set of simultaneous equations where each
constraint is a polynomid equation, non linear in the general case. By solving such a system,
usually linked to the topology of a shape configuration, it is possible to obtain the set of
feasible geometries for the considered design problem. Such an approach is well known to
the architects, as far as from the antiquity (Figure 8) [Chitham 1987]. The set of rules
establishing dimensional relationships among the parts of the ancient Greek temple are an
eloquent example. In the contemporary age Le Corbusier's Modulor [Le Corbusier 1965]
demonstrated that by imposing particular ratios between part dimensions it is possible to
obtain an harmonic control of shape. Lansdown [Lansdown, 1987] in a recent paper has
proved how the parametric approach is stimulant for the architectural design.

Optimization techniques are another useful tools to explore dimensional variations of
shape. When a set of dimensioning constraints has been established, it is in fact possible to
explore feasible solutions with the aim of one or more objective functions. The more common
and easily applicable technique of mathematical optimization is the so-called Linear
Programming. In actual cases may be very difficult to express geometric dimensioning as a
linear programming problem: often, e.g., geometrical constraints concern surfaces or
volumes, or geometric properties like orthogonality, which cannot be linearly  expressed.
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Anyway, in the past decade, various applications of optimization techniques in plan
dimensioning have been proposed. Mitchell, Steadman and Liggett [Mitchell et al., 1976]
proposed linear programming to set optimal dimensions of a mobil-home. Gero and Radford
[Radford and Gero, 1988] demonstrated the use of non-linear programming for the same
problem. More recently Balachandran and Gero [Balachandran and Gero l987] showed the
solution of an example with three conflicting objectives. Another line of thought, considering
a geometric plan as the solution of a LP program minimizing the number of angles in a
orthogonal polygon arrangement, originated by the work of [Carrara, Gori-Giorgi and
Paoluzzi, 19771 and was fully exploited by R. Tamassia [Tamassia, 1988] for the automatic
drawing of CASE schemata.

3.5   Polyhedral Structures

Polyhedral models can be used as natural and complete representations of architectural
objects. In fact a set of polyhedra allows for contemporary and completely modeling the
geometry of both full and void spaces in a building. In PLASM language a polyhedral
structure will be defined as a container of polyhedral data structures and of references to
external polyhedra, in a way similar to that defined in PHIGS for graphical structures. Each
individual polyhedron will be represented by using the winged-triangle data structure defined
in the solid modeler Minerva developed in recent years at the University of Rome "La
Sapienza" [Paoluzzi and Masia, 1989]. Such a representation allows to represent a boolean
algebra over linear polyhedra, where each model may be also unconnected and may have any
topological degree. A winged-triangle representation is furthermore stored in a quantity of
computer memory less than that used by other types of boundary representations [Baumgart,
1972; Braid, 1980; Woo, 1985]. The more important operations over polyhedra are the
regularized set operations (intersection, union, difference) [Paoluzzi, Ramella and Santarelli,
1989] and the integration of monomials over polyhedral domains [Cattani and Paoluzzi,
1989].
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Figure 2. Relation graph.

Figure 3. Topological graph
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Figure 4. Affine transformations over polygonal graphs

Figure 5. 3D structures generation by sweeping of 2D structures.
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Figure 6. Wall representation

Figure 7. Variational representation
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Figure 8. Some prospect rules (Borromini)

Figure 9. Set Operations over polyhedra (Minerva modeler)
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