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ABSTRACT

An early research in solid modeling led by Herbert Voelcker at the University of Rochester
and later at Cornell suggested that every solid representation scheme corresponds to an alge-
bra, where the elements of the algebra are solid representations constructed and edited using
operations in the algebra. For example, every CSG representation describes an element in a
finite Boolean algebra of closed regular sets, whereas every boundary representation describes
an element of a vector space of 2-chains in an algebraic topological chain complex. In this
paper, we elucidate the precise relationships (functors) between all algebras used for CSG and
boundary representations of solids. Based on these properties, we show that many solid mod-
eling operations, including boundary evaluation, reduce to straightforward algebraic operations
or application of identified functors that are efficiently implemented using point membership
tests and sparse matrix operations. To fully exploit the efficacy of the new algebraic approach
to solid modeling, all algorithms are fully implemented in Julia, the modern language of choice
for numerical and scientific computing.

1. Introduction
Foundations of modern solid modeling systems have been laid in the 1970’s by the Production Automation Project

directed by Herb Voelcker at University of Rochester (Voelcker and Requicha, 1977, 1993). From the early beginnings
it was widely accepted that two complementary mathematical models of solidity are important: the Boolean algebra
of r-sets (closed regular and semi-analytic sets) that are closed under regularized set operations, and the algebraic
topological model of topological (cellular) polyhedra that governs properties of most discretizations and boundary
representations (b-reps). In particular, the latter are formally computer representations of orientable bounding 2-cycles
in the linear space of 2-chains defined over a valid cell complex (Requicha, 1977; Paoluzzi et al., 2020).

1.1. Motivation
The algebraic operations and the properties of these algebraic systems are central to validity and completeness

of their respective models and representations. Fortunately, the two models are mathematically compatible: a key
result states that a homogeneously 2D topological polyhedron Y in E3 is a 2-cycle and is semi-analytic iff there exists
a unique r-set X such that )X = Y (Requicha, 1977). This implies that these two representations can be always
converted into each other — exactly, within numerical precision—which in turn shaped the architecture of all modern
CAD systems (Shapiro, 2002).

Despite its obvious importance, this theoretical connection between the point set and topological cellular models
is only existential, but not constructive, because it does not suggest how the correspondence between the two types
of models can be created and maintained in practice. This results in a widely recognized robustness problem, which
manifests itself in unanticipated algorithmic failures due to inconsistent logical decisions in presence of numerical
errors (Hoffmann et al., 1988; Hoffmann, 1989).1 There are at least two types of such logical inconsistencies. (a)
Boundary representations in most commercial systems are implemented using specialized data structures that often
impose additional mathematical limitations and assumptions, thus undermining the fundamental premise of solid mod-
eling. For example, the widely used algebra of manifold data structures is closed under so-called Euler operators but
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1Robustness should not be confused with accuracy, exactness, or “correctness” of numerical computations, particularly because many geometric
operations, such as intersection, are not continuous under small perturbations and hence are not formally computable (Edalat and Lieutier, 1999).
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is not capable of representing many valid CSG representations of non-manifold solids. (b) Most boundary evaluation
algorithms are designed for and are limited by such specialized data structures. Typically, following the boundary
evaluation procedures in Voelcker and Requicha, tentative faces and edges are generated by intersecting boundaries of
input primitives and are classified against the target CSG expression, followed by merging and simplification of their
union (Shapiro, 2002). Correctness and performance of such algorithms depend on the input primitives in the CSG
representation, on the form and type of the CSG representation itself, as well as on the specific data structures and
algorithms. In fact, recently, the approach has been extended to primitives bounded by polygonal meshes, including
meshes that may be invalid and self-intersecting (Zhou et al., 2016). The correctness of all such algorithms depends
implicitly on the assumed algebraic properties above, which are not explicitly enforced or represented. As a result,
many of the algorithms are limited to particular assumptions about the data structures (manifoldness, connectivity,
etc.) and depend on heuristic numerical computation steps that undermine robustness and scalability of the boundary
evaluation algorithms.

In contrast, this paper shows that, by formulating boundary evaluation in terms of algebraic operations and functors
between the relevant algebras, all logical operations are cleanly separated from numerical computations and remain
consistent by construction at all times.

1.2. Previous work
There have been several attempts to make the connection between CSG representations and cellular models more

explicit and algorithmic, either in the context of representation conversions (Shapiro, 1991, 1997; Requicha and
Rossignac, 1992) or representation unification and generalization (Armstrong et al., 1999; Rossignac and O’Connor,
1989; DiCarlo et al., 2014a). Rossignac and O’Connor proposed SGC (Selective Geometric Complex) data structure
to construct and represent most types of combinatorial representations (Rossignac and O’Connor, 1989). Rossignac
and Requicha proposed CNRG (Constructive Non-regularized Geometry) representation, a counterpart generalization
of CSG modeled as collection of regions (Rossignac and Requicha, 1991). An ambitious attempt to unify point set and
combinatorial representations, as well as many algorithms, through common semantics formulated in terms of canoni-
cal cellular decompositions is described in (Armstrong et al., 1999), but the effort fell short of providing a path towards
practical implementation of such semantics. More generally, in contrast to the approach described in this paper, none
of these earlier approaches takes advantage of or explicitly enforces the algebraic properties of the underlying cellular
representations.

A common denominator of all such approaches is their reliance on decomposition of space into sign-invariant
subsets {Xi}, where sign-invariance means that every point in each Xi has identical classification (in, on, out) with
respect to a given fixed set of primitives. In his doctoral dissertation, supervised by Herb Voelcker, Shapiro observed
the isomorphism between decompositions of space and finite algebras of sets that are represented uniquely and canon-
ically by the union of atoms in the decomposition (Shapiro, 1991). He also established a hierarchy of such algebras
corresponding to different representations schemes and described a number of previously unsolved representation
conversions using the correspondence between algebras and decompositions (Shapiro, 1991). In particular, the sign-
invariant sets serve as atoms of the finite Boolean algebra of all sets representable by these primitives and standard set
operations (Halmos, 1963), and each set can be represented by a union of such atoms in a canonical disjunctive form.
When decomposition is an arrangement of n primitives, the atoms are relatively open disjoint sets of all dimensions
in the corresponding partition of space, and the Boolean algebra contains all sets describable by Boolean expressions
using these primitives. On the other hand, if the boundary of every sign-invariant set is also the union of other sign-
invariant sets in the partition, the Boolean algebra becomes a closure algebra, and the atoms become cells in the cell
complex decomposition of space that subsumes all possible cellular representations of the closed sets in the algebra,
including their boundary representations. The closed regular sets in this algebra form a smaller Boolean algebra in its
own right, closed under the regularized set operations. The atoms of this algebra are defined by regularized intersec-
tions of primitives and their complements that form a quasi-disjoint decomposition of space. Any CSG representation
X using the given set of primitives can be represented also by a union of atoms, thus providing a unique canonical
representation for X.

The relationship between the space decompositions giving rise to the closure algebra (containing all possible cel-
lular structures and boundary representations) and the Boolean algebra of closed regular sets (containing all possible
CSG representations) brings us a step closer to establishing direct computational links between the two represen-
tations. This goal is finally achieved in this paper by expressing this relationship in a common mathematical lan-
guage (DiCarlo et al., 2014a) and computational representation: LAR (Linear Algebraic Representation). It represents
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the sign-invariant space decomposition corresponding to the closure algebra as a chain complex, using linear alge-
bra with sparse matrices. It also explicitly represents and enforces validity of all cellular representations, including
boundaries and homogeneous solids using 2- and 3-dimensional chains respectively. LAR encodes all geometric and
topological data in terms of sparse matrices and replaces incidence and boundary computations by linear transforma-
tions. In (Paoluzzi et al., 2020), the authors showed how LAR can be efficiently constructed for arbitrary arrangement
of cell complexes in E3, starting from enumeration of vertices (unevaluated LAR) of the cells of polyhedral primi-
tives, and algorithmically constructing the sparse (co)boundary matrices of the underlying chain complex (evaluated
LAR). We demonstrate in this paper that this approach allows to compute algebraically the boundary of every Boolean
combination of n primitives.

1.3. Paper outline
In this paper, we show that Linear Algebraic Representation (LAR) (DiCarlo et al., 2014b), initially constructed for

an arrangement of polyhedral solids, allows efficient, general, and robust boundary evaluation for any CSG expression
in a finite Boolean algebra generated by topological polyhedral solids. Furthermore, once the LAR representation
is constructed, this boundary evaluation does not place any assumptions or limitations on the topology of the repre-
sented solids, and does not require any specialized data structures or algorithms beyond simple point membership test
and sparse matrix multiplication. To fully exploit the efficacy of this new algebraic approach to solid modeling, all
algorithms are fully implemented in Julia, the modern language of choice for numerical and scientific computing.

In particular, this paper describes algebraic ideas and tools needed to carry out entirely the programmatic approach
to solid modeling discussed in this introduction. In particular, the background Section 2 summarizes basic concepts
about cell decompositions, chain complexes, polyhedral arrangements, and Boolean algebras, and finally summarizes
the best aspects of Julia scientific programming.

Section 3 contains the main contributions of the paper; it discusses the complete computational pipeline, including
the algorithmic steps needed to construct the LAR representation of polyhedral arrangements in E3, and to establish
isomorphism between the 3-chains in this arrangements and the Boolean algebra of closed regular sets, whose atoms
directly correspond to the columns of the matrix of boundary operator from 3-chains to 2-chains.

A summary of contributions of the approach is given in Section 4.1, including scope, methods, and new results.
A brief discussion of the presented ideas in the current panorama and of future prospect concludes the paper in Sec-
tion 4.2. Two Appendices A and B are dedicated, respectively, to supporting materials, including the preliminary
design of a DSL (Domain Specific Language) for CSG in Julia, and to explicitly showing some computations of sim-
ple solid modeling examples.

2. Background
In this section we provide a set of definitions for the basic concepts used in this paper. It contains no new mate-

rial and may be skipped at first reading, or used as reference for concepts and terminology deployed in later sections.
In particular, we will introduce complexes of cells and chains, the cellular decompositions of the ambient Euclidean
space, called arrangements, discuss algebraic properties of Constructive Solid Geometry (CSG) representations, and
introduce geometric programming using Julia. We restrict out attention to dimensions two and three, and to topo-
logical polyhedra, i.e. to curved triangulable polyhedra that are homeomorphic to piecewise-linear (PL) polyhedra.
Our implementation and most examples in the paper rely on PL-polyhedra, but the approach is applicable to general
topological polyhedra, under additional assumptions discussed in Section 4. In Appendix, we discuss additional small
and easy-to-understand scripts of Julia.

2.1. Cell and Chain complexes
A complex is a graded set S = {Si}i∈I i.e. a family of sets, indexed in this paper over I = {0, 1, 2, 3}. We use

two different but intertwined types of complexes, and specifically complexes of cells and complexes of chains. Their
definitions and some related concepts are given in this section. Greek letters are used for the cells of a space partition,
and roman letters for chains of cells, coded as either (un)signed integers or sparse arrays of (un)signed integers.

2.1.1. Cell complexes
d-Manifold A manifold is a topological space that resembles a flat space locally, i.e., near every point. Each point
of a d-dimensional manifold has a neighborhood that is homeomorphic to Ed , the Euclidean space of dimension d.
Hence, this geometric object is often referred to as d-manifold.
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Cell A p-cell � is a p-manifold with boundary (0 ≤ p ≤ d) which is piecewise-linear, connected, possibly non convex,
and not necessarily contractible. This definition refers to cellular complexes used in this paper and is different from
other ones because a cell is neither simplicial, nor convex, nor contractible. In our theory, cells may contain internal
holes; cells of CW-complexes (Hatcher, 2002) are, conversely, contractible to a point. We deal with Piecewise-Linear
(PL) cells of dimensions 0, 1, 2, and 3, respectively. It should be noted that 2- and 3-cells may contain holes, while
remaining connected. In other words, our cells are p-polyhedra, i.e. segments, polygons and polyhedrons embedded
in two- or three-dimensional space.

Cellular complex A cellular p-complex is a finite set of cells that have at most dimension p, together with all their
r-dimensional boundary faces (0 ≤ r ≤ p). A face is an element of the PL boundary of a cell, that satisfy the boundary
compatibility condition. Two p-cells �, � are said boundary-compatible when their point-set intersection contains the
same r-faces (0 ≤ r ≤ p) for both � and �. A cellular p-complex is said homogeneous when each r-cell (0 ≤ r ≤ p) is
face of a p-cell.

Skeleton The s-skeleton of a p-complex Λp (s ≤ p) is the set Λs ⊆ Λp of all r-cells (r ≤ s) of Λp. Every skeleton of
a regular complex is a regular subcomplex. The difference Λr − Λr−1 of two skeletons is the set Ur of r-cells.

Support space The support space |Λ| of a cellular complex is the point-set union of its cells.

Characteristic function Given a subsetS of a larger setA, the characteristic function�A(S), also called the indicator
function, is the function defined to be identically one on S, and zero elsewhere. (Rowland, 2005).

LARGeometric Representations The unevaluated LAR (DiCarlo et al., 2014b) introduced the use of sparse binary
arrays to represent and compute the algebraic topology of cellular complexes, i.e., linear spaces of (co)chains, and linear
(co)boundary operators.

The Linear Algebraic Representation (LAR) of a piecewise-linear (PL) p-complex Λp in the Euclidean space Ed

(p ≤ d) is given by (a) an embedding map � ∶ Λ0 → Ed , and by (b) the matrices Kr ∶= [�Λ0 (�)], with � ∈ Ur,
0 ≤ r ≤ p. The map �Λ0 (�) is the characteristic function applied to cell � (as vertex subset) resulting in a binary
sequence of length #Λ0.

This function characterizes every cell through the binary string denoting the subset of its “vertices”. In unevaluated
LAR each r-cell ur ∈ Ur (ordered set) is associated to a row of the sparse binary characteristic matrixKr. See DiCarlo
et al. (2014a). The evaluated LAR (Paoluzzi et al., 2020) is discussed in Section 2.4.

2.1.2. Chain complexes
A p-chain can be seen, with some abuse of language, as a collection of p-cells. In this sensewewriteUp = Λp−Λp−1

for the set of unit p-chains (1 ≤ p ≤ d), and Cp = P (Up) for the space of p-chains, where P is the power set.

Linear chain space The setC = ⊕Cp, direct sum of chain spaces, can be given the structure of a graded vector space
(see section 2.1.2 and Arnold, 2018, pp. 11–12) by defining sums of chains with the same dimension, and products
times scalars in a field, with the usual properties.

Chain bases As a linear space, each Cp contains a set of irreducible generators. The natural basis Up ⊂ Cp is the set
of independent (or elementary) chains up ∈ Cp, given by singleton elements. Consequently, every chain c ∈ Cp can
be written as a linear combination of this basis with field elements, and is uniquely generated. Once the basis is fixed,
i.e., Up is ordered, the unique unsigned coordinate representation of each {�k} =∶ uk ∈ Cp is a binary array with one
non-zero element in position k, and all other elements 0. The ordered sequence of scalars may be drawn either from
{0, 1} (unsigned representation) or from {0, 1,−1} (oriented representation). With abuse of language, we often call
p-cells the elements of Up.

Graded vector space A graded vector space is a vector space V expressed as a direct sum of spaces Vp indexed by
integers in [0, d] ∶= {p ∈ ℕ | 0 ≤ p ≤ d}:

V = ⊕d
p=0Vp. (1)

A linear map f ∶ V → W between graded vector spaces is a graded map of degree k if f (Vp) ⊂ Wp+k for each p.
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Chain complex A chain complex is a graded vector space V furnished with a graded linear map ) ∶ V → V of
degree −1 called boundary operator, which satisfies )2 = 0. In other words, a chain complex is a sequence of vector
spaces Cp and linear maps )p ∶ Cp → Cp−1, such that )p−1◦ )p = 0. The notation C∙ is used in this paper for the chain
complex over the binary field {0, 1}, and C↺

∙ for the oriented chain complex over the ternary field {0, 1,−1}, used to
get oriented boundaries.

Cochain complex A cochain complex is a graded vector space V furnished with a graded linear map � ∶ V → V
of degree +1 called coboundary operator, which satisfies �2 = 0. That is to say, a cochain complex is a sequence of
vector spaces Cp and linear maps �p ∶ Cp → Cp+1, such that �p+1◦ �p = 0. In the rest of this paper we identify chains
and cochains, so we use subscripts for both spaces (motivation in subsection A.1.1).

Operator matrices The matrices of boundary and coboundary operators (their transpose) are very sparse, with spar-
sity growing linearly with the number n of rows (sparse columns in Julia). Sparsity may be defined as one minus the
ratio between non-zeros and the number of matrix elements. It is fair to assume that the non-zeros per row in each Kp
matrix are bounded by a small constant independent on n, hence the number of non-zero elements grows linearly with
n. With common data structures (Cimrman, 2015) for sparse matrices, the storage cost O(n) is linear with the number
of cells, with O(1) small cost per cell that depends on the storage scheme.

2.2. Chains and Arrangements
The word arrangement is used in combinatorial geometry and computational geometry and topology as a synonym

of space partition. Construction of arrangements of lines, see Dimca (2017), segments, planes and other geometrical
objects is discussed in Fogel et al. (2007), with a description of CGAL software (Fabri et al., 2000), implementing
2D/3D arrangements with Nef polyhedra (Bieri, 1995) by Hachenberger et al. (2007). A review of papers and algo-
rithms concerning the construction and counting of cells may be found in the chapter on Arrangements in the “Hand-
book of Discrete and Computational Geometry” (Goodman et al., 2017). Arrangements of polytopes, hyperplanes and
d-circles are discussed in Björner and Ziegler (1992).

Space Arrangement Given a finite collection  of geometric objects in Ed , the arrangement () is the decompo-
sition of Ed into connected open cells of dimensions 0, 1,… , d induced by  (Halperin and Sharir, 2017). We are
interested in the Euclidean space partition induced by a collection of PL cellular complexes.

Let be given a collection  of geometric objects. Examples include, but are not limited to: line segments, quads
(quadrilaterals), triangles, polygons, meshes, pixels, voxels, volume images, B-reps, etc. In mathematical terms, a
geometric object is a topological space embedded in some Ed (Delfinado and Edelsbrunner, 1995). A novel method
to compute the topology of their space arrangement () as a chain complex C∙ (see Diagram (5)), was introduced
in Paoluzzi et al. (2020). 2D arrangements generated by random rectangles and circles are shown in Figure 1.

(a) (b) (c)

Figure 1: The cells of 2D arrangements generated by (a) rectangles of random size, position and orientation; (b) exploded
view of the previous image; (c) random polygonal approximations of 2D circles with random center and radius. Take notice
of the fact that 2-cells may be non convex and/or non contractible to a point, i.e., with holes.

Example 2.2.1 (3D arrangement). In Figure 2 we show the arrangement () generated by the collection  made
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by the thirty-five 2-faces of 5 intersecting random cubes. According to (Paoluzzi et al., 2020), each 3-cell in () is
generated by a column of the sparse matrix of boundary map )3 ∶ C3 → C2, with values in {0, 1,−1}.

(a)

(b)

Figure 2: (a) A collection  of five random cubes in E3; (b) the display of 3-cells of the generated E3 arrangement ()
(not in scale, and suitably rotated to better exhibit their complex shape). The quasi-disjoint union of all atoms gives the
five cubes. Note that some cells contain holes.

The matrix of any linear map between two linear spaces contains by columns the basis of domain space represented
in the basis of the codomain space. Therefore, the columns of [)3] ∶ C3 → C2 are 2-cycles, i.e. closed chains in C2. In
particular, elementary 3-chains are join-irreducible atoms of the CSG algebra with closed regular cells. They may be
non contractible to a point (when they contain holes) and non convex. The outer cell is the complement of their union.
Any geometric model (out of 225) from the Boolean CSG algebra generated by these five cubes is made by a subset of
those 25 atoms. See Figure 2.

2.3. Cycles and Boundaries
Two greatly useful subspaces are contained within any space Cp of chains: subspaces of cycles and boundaries.

Chain, cycle, and boundary subspaces A p-cycle is defined as a p-chain in Cp without boundary, hence it is an
element of the kernel Zp of )p, the red sets in Figure 3. A p-boundary is a p-chain which is the boundary of a (p+1)-
chain, hence it is an element of the image Bp of )p+1, the pink sets of Figure 3.

Property 2.3.1 (Columns of )3 matrix are irreducible 2-cycles). In general, the matrix of any linear operator between
linear spaces, e.g., )p ∶ Cp → Cp−1, gets a sense only when bases have been fixed for both domain and codomain
spaces. In this case (orderings are already fixed by the bases) each column of [)p] contains the coordinates of a basis
vector of Cp, i.e., by the coefficients of its (unique) representation as linear combination of the Cp−1 basis. Hence,
each columns of [)3] is a closed element (vector) of Cp−1 linear space. It is closed (i.e., it is a (p−1)-cycle) because the
constraint that “the boundary of boundary of each p-chain is empty”. Therefore, every column of boundary matrices,
say the k-th column [u]k, is a cycle by definition. Whereas the matrices [)2] and [�1] = [)2]t are mathematically
computable starting from the input data set [)1] (see the Example 2.5.2), the matrix [)3] is totally unknown initially,
and was constructed algorithmically (one column at a time) by the Topological Gift Wrapping (TGW) algorithm in 3D,
introduced by Paoluzzi et al. (2020), via iteration with [)2] and [)2]t on input 2-cells, until all scalar coefficients pop
up as matrix columns. In Algorithm 8 we provide a generalized version of TGW in dimension d, with input [)d−1] and
output [)+d ]. Not all columns of [)+d ] are linearly independent, and one of them (in particular, the outer (d − 1)-cycle,
boundary of the unbounded exterior cell in Ed arrangement) must be removed, giving the matrix [)d], where all cycles
(columns) are irreducible (independent).
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Figure 3: The set of p-boundaries Bp ⊂ )p+1Cp+1 is a subset of the kernel Zp ⊂ Cp of p-cycles of p-chains, since the
boundary of a boundary is empty. In other words, )2 = )p)p+1 = 0. The standard practice with linear operators is not to
use brackets for application to an argument ()p+1(Cp+1)), and to remove the composition operator ()2 = ))).

Property 2.3.2 (Rows of )+3 matrix sum to zero). Each row of )3 matrix corresponds to an irreducible element of the
basis U2 ⊂ C2. By construction, each basis element u ∈ U2 is used exactly twice in matrix [)+3 ] with opposite coeffi-
cients +1 and −1, so proving the assertion. Once removed the outer cycle, the set of generators of the 2-cycle subspace
Z2 produced by TGW is linearly independent. In particular, the column of outer (unbound) 2-cycle corresponds to
the sum of all the others, changed of sign (if oriented) or not (if not oriented). Differently speaking, any one column
(cycle) of [)+3 ] is generated by the topological sum of all the others.

Topological Gift Wrapping (Paoluzzi et al., 2020) can be denoted as a function TGW ∶ C3 → Z2. The row space
goes from a basis of irreducible 2-chains to a basis of irreducible and oriented 2-cycles, plus one more 2-cycle. The
extra 2-cycle is reducible to the sum of all the others, and gives the oriented boundary of the “outer” unbound 3-chain.

In (Paoluzzi et al., 2020) an algorithm was presented for transformation of cycles basis to boundaries basis. This
algorithm is reported as Algorithm 9 is the Appendix. We observe that two remarks are essential for it, which con-
cern the transformation of cycle chains to boundary chains. The first is that, by construction, the basis of 2-cycles
corresponding to [)3] columns are (a) elementary (irreducible) and (b) non intersecting, even in their coordinate chain
representation, since they involve different rows (2-cells); the second concerns their cardinalities. It is well known that
Zp ⊇ Bp or, in words, there may be cycles which are not boundaries (see Figure 3). So, the boundary of the outer
chain in Cp+1, if disconnected, is built in Bp ⊂ Zp by summing two or more basis cycles, whose non-zero elements
are surely in different row positions by contruction.

Example 2.3.1 (Boundary of concentric spheres). A sphere in Ed is the locus of d-points that have distance r from a
fixed d-point, the sphere center. The sphere is a closed (d − 1)-dimensional surface (without boundary). The (d − 1)-
sphere is also the boundary of a solid d-ball, which is the locus of all d-points which have distance less or equal to
r from the center point. Let us consider the 3D space partition generated by two 2-spheres S1 and S2 with the same
center and different radiuses r1 > r2. There are three solid cells: (a) the outer unbounded cell A, i.e., E3 minus the
ball of radius r1; (b) the solid shell B with thickness r1 − r2; and (c) the solid inner ball C of radius r2. Within the two
interfaces, there are four closed irreducible 2-cycles generated as columns of [)3] in this complex, pairwise summing
to zero and with opposite orientations. Let us straight denote, from exterior to interior, as

[)+3 ] = [u1 u2 u3 u4] and [)3] = [u2 u3 u4], with u1 = −(u2 + u3 + u4).

If we denote the three “solid” basis elements in U3 ⊂ C3 (3-chain space) as A,B, C and the whole space asX, we can
express them as Boolean algebra expressions:

X = A + B + C (2)
A = X − B − C; B = X − A − C; C = X − A − B. (3)

In terms of oriented boundary 2-chains it is easy to see that

)A = u1; )B = u2 + u3; )C = u4, with u1 + u2 = u3 + u4 = 0, and hence u1 + u2 + u3 + u4 = 0.

Finally, note that the cycles u2 and u3 are not boundaries: u2, u3 ∈ (Z2 − B2) ⊂ C2.
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(a) (b) (c)

Figure 4: We show that different shape representations: (a) triangulated b-rep, and (c) LAR b-rep, produce the same E3
arrangement, and hence the same algebraic atoms (b). We show also that LAR produces a more compact b-rep, through
a much smaller [)3] matrix. Note, with a smaller number of rows and of nonzeros, and hence with a faster construction.

Example 2.3.2 (Cycles → Boundaries). The aim of this example is to illustrate that different shape representa-
tions will produce the same E3 arrangement, and hence the same algebraic atoms. In particular, it can be seen
that LAR uses a smaller b-rep, hence a smaller [)3] matrix. Using our implementation, we may define a 3D model
assembly = Lar.Struct([ tube, Lar.r(pi/2,0,0), tube, Lar.r(0,pi/2,0), tube]) with three instances of
tube=cylinder()with n = 16 sides, default diameter of length 1, height ℎ = 2, and k = 2 decompositions in the axial
direction, shown in Figure 4. For a description of Lar.Struct semantics, the reader may see the similar example 2.5.3.
The exploded 2-cycles of the space arrangement, i.e. the atoms given by the 20 columns of [)+3 ], the redundant basis
of the Z2 are shown. In the center of Figure 4b readers could see the boundary of outer space, obtainable by linear
combination of the other 2-cycles, i.e. by union of the other atoms.

Remark (Two b-reps comparison). In Figure 4 three cylinders provide the same 3-chain basis, i.e. the same atoms,
generated either by (1) boundary triangulations (see Figure 4a) or by (2) general LAR faces (see Figure 4c), where
we used quadrilaterals on the lateral surface of the three cylinders, and two polygonal approximations of circle at
their extremities. The numbers of input faces (2-cells) to be split in order to get a 3-space arrangement are 288 (with
boundary triangulations) vs 102 (with LAR). Let us compare the benefits in space and time by the different numbers
of faces in Z2 bases: (16 × 2 + 2) × 3 = 102 << 288 = (16 × 4 + 2 × 16) × 3, resulting in the second case in almost a third
of rows of the [)3] matrix. Of course, the number of columns of [)3] remains the same in both cases.

In solid modeling, the word shell is used to denote the maximal connected closed surfaces in a b-rep of a solid
object (see, e.g., Paoluzzi et al. (1989)). Here, a shell is every connected 2-cycle of the boundary of a 3-chain, or
simply: each of boundary cycles of each connected solid component, including holes. Every single shell, including
those internal to some unit 3-chain ui, is obtained by matrix multiplication [)+3 ] [ui], with ui ∈ U3 represented in
coordinates by ei, the zero vector with only one 1 in position i. The result will be in B2 ⊂ Z2 ⊂ C2, generating the
b-rep of an algebra atom (see Figure 2b and the next section).

It is important to remark again that the matrix [)+3 ], as generated by TGW, contains a basis of Z3 ⊂ C3, plus
one more column, sum of all the others. The Algorithm 9, combining appropriate columns of [)+3 ], generates a basis
[)3] of the validity subspace B2 ⊂ Z2 ⊂ C2, where each 3-basis element is being expressed as a 2-cycle (b-rep),
possibly unconnected. In other words, by construction, each irreducible unit 3-chain u ∈ U3 ⊂ C3 corresponds to a
single connected 2-cycle in Z2. Conversely, the boundary (chain in B2) of a general (sign-invariant) 3-chain, possibly
disconnected, is given by the chain sum of irreducible 2-cycles in B2 ⊂ Z2 ⊂ C2.

2.4. Algebras
A semialgebraic set is a subset of S ⊂ Rn defined by a finite collection of polynomial inequalities of the form

Q(x1, ..., xn) ≥ 0. Finite unions, intersections, complement and projections of semialgebraic sets are still semialgebraic
sets.
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Finite algebra Let  be a nonempty set, and operations ⊗i ∶ ni →  be functions of ni arguments. If for all is
A is closed under⊗i, then the system ⟨;⊗1,… , ⊗k⟩ is called an algebra. Alternatively, we say that is a set with
operations⊗1,… , ⊗k. If  has a finite number of elements, the algebra is said to be finite.

Boolean algebra In mathematics and mathematical logic, Boolean algebra is the type of algebra in which the values
of the variables are truth values, i.e., their value is either true or false, usually denoted 1 and 0, respectively. We may
think of a finite Boolean algebrasℬ as a set isomorphic to the power set P (X) of some finite set X. The power set
is naturally equipped with complement, union and intersection operations, which correspond to −,∨,∧ operations in
Boolean algebra. The complement of A is also denoted as A.

Finite Boolean Algebra is a Boolean Algebra with a finite number n of atoms. Every finite Boolean algebraℬ is
isomorphic to the field P [n], the set of subsets of first n integers, and therefore isomorphic to the Boolean algebra 2n.

Property 2.4.1 (Boolean algebra). Any finite algebraℬ is isomorphic to the Boolean algebra P (X), with the set X
containing n elements. Thereforeℬ can be mapped one-to-one onto the set �X(P (X)) of the images of characteristic
functions of P (X) elements with respect to X, i.e., with the set of strings of n elements in {0, 1}.

Shapiro (1991) presented a hierarchy of algebras to define formally a family of Finite Set-theoretic Representations
(FSR) of semi-algebraic subsets ofEd , including representation schemes for solid and non-solid objects, such as B-reps,
Constructive Solid Geometry, cellular decompositions, Selective Geometric Complexes, and others.

In this paper, we represent and implement for d = 2, 3 the solid Boolean algebras of CSG with closed regular cells,
generated by the arrangement of Ed induced by a collection of cellular complexes with polyhedral cells of dimension
d − 1 (Paoluzzi et al., 2020).

Generators A set generates the algebra (under some operations) if is the smallest set closedw.r.t the operations
and containing . The elements ℎi ∈  are called generators of the algebra . The elementary solid shapes in a
CSG expression are the generators of its own CSG algebra.

Atom An atom is an element which cannot be decomposed into two proper subsets, like a singleton that cannot be
written as a union of two strictly smaller subsets. An atom is a minimal non-zero element; a is an atom iff for every b,
either b ∧ a = a or b ∧ a = 0. In the first case we say that a belongs to the structure of b.

Structure of algebra elements We call structure of b ∈ P (X) the atom subset S such that b is the irreducible union
of S. By extension, we also call structure of b the binary string associated with the ordered sequence of its atoms
(elements of X). In other words, the structure S(b) is the image of the characteristic function �X(S).

Property 2.4.2 (Boolean atoms are unit 3-chains). There is a natural transformation between d-chains defined on a
spatial arrangement and the algebra generated by that arrangement. Unit d-chains correspond to atoms of the algebra;
the [c] coordinate representation (bit array) of any d-chain c generates the coordinate representation in boundary space:
[)d][c] = [b] ∈ Bd−1 ⊂ Cd−1. Of course, when d = 3, for the properties of the matrix of the linear operator between
linear spaces, the matrix [)3] ∶ C3 → C2 contains the domain space basis (unit 3-chains) represented in target space.

LAR Geometric Complex It is worthwhile to remark that, in order to display a triangulation of boundary faces in
their proper position in space, the whole information required (geometry& topology) is contained within the evaluated
LAR data structure or Geometric Complex (GC), by the arrangement of space given as a pair (Paoluzzi et al. (2020)):

� ∶ C0 → E3, (�2, �1, �0) ≡ V, (CF, FE, EV)

where V has type Matrix{Real} with 3 rows and #C0 columns, and (CF, FE, EV) are sparse coboundary matri-
ces. A GC transforms the (possibly non connected) boundary 2-cycle of a Boolean result (see Example 3.4.1) into
a complete b-rep of the solid. The ordered pairs of letters from V,E,F,C, correspond to the coboundary sequence
Vertices→Edges→Faces→Cells expressed through the Column→Row order of matrix maps of operators.

2.5. Using the Julia language
One of main decision of the research and development work leading to this paper, was to use the Julia language

for scientific programming. Julia has many merits, having reached optimally the main goals posed to its design, and
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shortly reported here from (Bezanson et al., 2017, 2018). Julia combines features of productivity languages, such as
Python or MATLAB, with characteristics of performance-oriented languages, such as C++ or Fortran. Syntactically
is easy and fast to write and debug, and enjoys a great collection of packages.

In particular, the language features are: (a) an expressive type system, allowing optional type annotations; (b) mul-
tiple dispatch using these types to select implementations; (c) metaprogramming for code generation; (d) dataflow type
inference algorithm allowing types of most expressions to be inferred; (e) aggressive code specialization against run-
time types; (f) Just-In-Time (JIT) compilation using the LLVM compiler framework; and (g) Julia’s carefully written
libraries that leverage the language design.

Only few syntax notions are needed in order to allow the unknowledgeable reader to understand the few lines of
code in the following pages. Julia strongly resembles Python for generic code, and MATLAB for linear algebraic
calculus with matrices and vectors. A broadcast dot operator applies any operator or function to all the elements of
an array. Multiple dispatch allows for specializing any function with multiple methods using arguments different for
number and/or type. Task-based control flows for parallel execution are natively provided, like booth cooperative
multitasking and thread-based preemptive multi-tasking. Julia’s multithreading-based model provides the ability to
schedule Tasks simultaneously on more than one thread or CPU core, sharing memory. Summing up, Julia ease the
implementation of complex algorithms by providing native support for concurrency and fast computation by design.
To implement concurrency and multithreading is just a matter of following few style rules.

2.5.1. Generation of a sparse characteristic matrix
The remaining of the section aims to both give a very short synthesis of the Julia syntax, while introducing the LAR

representation that we have used for our experiments and the prototype implementation of the algorithms discussed
in the paper. The Julia syntax is very similar to python, but instruction blocks are not visually delimited, and require
either explicit end or begin ... end. For the algebraic syntax with vectors and matrices Julia strongly resembles
MATLAB. Julia is optionally typed, so the user may not decorate the declarations of parameters with explicit types.
In most cases the compiler may infer them for code optimization.

Characteristic matrices The special usefulness of characteristic matrices Kp (0 ≤ p ≤ d), resides in the fact that
they have the same number n = #Λ0 of columns, for every p. The property may be used to multiply any two of them,
after having transposed the second one. Following this operation with some simple “filtering” of non-zero values, this
allows us to compute all the 3 × 3 binary relations between the three boundary objects V, E, F (DiCarlo et al., 2014b).

Algorithm 1 (Characteristic matrices). .

# Sparse matrix generation from a set of triplets (i,j,x) of non-zeros, given as a triple (I,J,X) of arrays

function K( CV )
I = vcat( [ [k for h in CV[k]] for k=1:length(CV) ]...)

# vcat maps arrayofarrays to single array
J = vcat( CV...) # splat operator ... transforms the array elements to function arguments
X = Int8[1 for k=1:length(I)]

# Type Int8 (capital) defines the memory map of array elements
return SparseArrays.sparse(I,J,X) # sparse is a function of SparseArrays package

end

The so-called “characteristic matrices” are used in unevaluated LAR to denote the cells of a cellular complex as
binary vectors, i.e., as rows of binary matrices.

The code snippet of Algorithm 1 computes the characteristic matrix for any sequence CV of cells, represented “by-
vertices”, i.e., as array of arrays of vertex indices, as introduced in Example 2.5.1. We consider this one the simplest
user-interface for the interactive input of a shape using a CLI (Command Line Interface). Of course, this format is also
very simple to implement in a GUI for shape definition.

In particular, the Julia function K returns a SparseArrays matrix providing the characteristic Kr matrix, given as
input an array CV specifying each r-cell as array of vertex indices. The embedding of cells, i.e., the affine map that
locate them in Ed , will be specified by a d × n array V, where n is the number of 0-cells. See V in Example 2.5.1.

Example 2.5.1 (Cellular 2-complex data (continues on Example 2.5.2)). The input data to generate the geometric
representation of the 2D cellular complex in 2.5.2 and Figure 5b follows. The embedding function 
 ∶ U0 → E2 has
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Julia type Matrix{Float64}; the matrices of operators �0 and �1 are given here as arrays of array, and converted to
CSC (Compressed Sparse Column) representation in LAR implementation:

# 
 ∶ U0 → E2 12 × 2 full matrix of 2D vertex coords
V = [0.0 1.5 3.0 1.0 1.5 2.0 1.0 1.5 2.0 0.0 1.5 3.0 ;

0.0 0.0 0.0 1.0 1.0 1.0 2.0 2.0 2.0 3.0 3.0 3.0 ]

# �0 ≡ �U0 (U1) := Edges as array of arrays of Vertex indices

EV = [[1,2],[2,3],[4,5],[5,6],[7,8],[8,9],[10,11],[11,12],
[1,10],[4,7],[6,9],[3,12],[2,5],[8,11]]

# K2 ≡ �U0 (U2) := Faces as array of arrays of Vertex indices

FV = [[1,2,4,5,7,8,10,11],[2,3,5,6,8,9,11,12],[4,5,6,7,8,9]]

Example 2.5.2 (Characteristic matrices). The sparse binary characteristic matrices K1= K(EV) and K2= K(FV) are
generated from data of cellular 2-complex 2.5.2 using the Algorithm 1. Here we show the corresponding dense matri-
ces, for the sake of readibility. Of course, the storage space of a sparse matrix is linear with the total number nnz of
non-zero elements, and the sparsity, defined as 0 ≤ 1 − nnz∕nm ≤ 1, grows with the number nm of cells, e.g., the EV
array length. The apex symbol “’” stands for matrix transpose (more generally, for matrix adjoint).

julia> K1 = K(EV) # ≡ [�0] = [)t1] sparse matrix from input EV to compute the 2D arrangement (EV)
14x12 SparseMatrixCSC{Int8, Int64} with 28 stored entries: # output from Julia’s REPL

julia> K2’ = K(FV)’ # sparse matrix from input FV to compute the 2D arrangement (EV)
12x3 SparseMatrixCSC{Int8, Int64} with 22 stored entries: # output from Julia’s REPL

julia> EF = (K(EV) * K(FV)’). ÷ 2 # (K1 ∗ K′2). ÷ 2 ≡ [)2] = [�
t
1]

14x3 SparseMatrixCSC{Int8, Int64} with 22 stored entries: # output from Julia’s REPL

The

’ stands for matrix transposition, ÷ for integer division, .÷ for broadcasting the application of the operator to all elements of array.
Also, SparseMatrixCSC{Int8,Int64} is the type of output sparse matrices. REPL, that stands for (Read, Eval, Print, Loop), is the
standard interactive interface for terminal interaction. The REPL prompt is julia>.

(a) (b)

Figure 5: (a) Sparse matrices (shown as dense) of topological operators �0 = )t1, K
t
2, �1 = )

t
2; (b) the 2D cellular complex

generated by data of Example 2.5.1. The complex has 
0 = 12, 
1 = 14, 
2 = 4, with 4 faces including the outer face, so
that the Euler characteristic is 
 = 12 − 14 + 4 = 2 as expected. Note that the exterior face (4) is included in the count.

2.5.2. Traversal of a shape hierarchy
Complex solid shapes are usually defined as hierarchical assemblies of either solid primitives or more complex

shapes, each defined in a local coordinate system. Most graphics and modeling systems implement this semantics as a
hierarchical graph, where affine geometry within the nodes is defined in local systems, and arcs are associated to affine
transformations that move the whole subgraph rooted in the ending node onto the coordinate system of the first node
of the arc. A well known recursive algorithm is used to traverse in preorder the graph, using a so-called CTM (Current
Transformation Matrix) to bring all geometry in the (global) coordinates of the root (world coordinates).

A double traversal is executed by our computational pipeline (see Algorithm 2) when evaluating a CSG tree, where
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geometry is normally on the leaves in local coordinates, and non-leave nodes may contain either affine transformations
or Boolean operators to be applied to the rooted subtree.

Algorithm 2 (Traversal of hierarchical CSG forms). .

(a) DFS preorder traversal to get all solid objects (generators) in root coordinates, and
(b) DFS postorder traversal of the CSG expression to output a parsed syntax tree with symbolic placeholders (unbound Julia

symbols) for algebra generators, whose Boolean coordinate vectors will be computed later in the computational pipeline.

In Algorithm 2 we split the transformation of coordinates from the evaluation of Boolean forms, and execute two
combined Depth First Search (DFS) traversal. The algorithm is executed in both linear time and space, since the
traversal is O(n). The placeholder will be substituted by Boolean vectors of CSG algebra generators, to be computed
later (see Algorithm 4) in the computational process.

In our prototype implementation we make use of a hierarchical user-defined data-type called Struct (different
from the Julia’s struct). The semantics of Lar.Struct() is similar to that of PHIGS structures (Kasper and Arns,
1993; Paoluzzi, 2003). In particular, a function struct2lar() is applied to a hierarchical assembly in order to get a
single unevaluated LAR model, used in the following to compute the space arrangement, and the whole data pipeline
shown in Figure 10.

Example 2.5.3 (Space arrangement from assembly tree). Consider the assembly constructed below by putting to-
gether three instances of the unit cube, suitably rotated and translated. The Lar constructor cuboidGrid of grids of
cubes with “shape” [m,n,p], returns the geometry V along with, if the optional parameter is all=true, the whole
collection VV, EV, FV, and CV of p-cells, with 0 ≤ p ≤ 3, represented “by-vertices”. Only V,FV,EV (vertices, faces,
edges) are actually needed by the Boolean generation in 3D. It might be useful to remember that the shape of a multi-
dimensional array, in Julia, Python, and other computer languages, is a tuple or array with numbers of rows, columns,
pages, etc. of data elements within the array. The length of shape tells the array dimensions: 1=vector, 2=matrix, etc.
The variable assembly is bound to the Julia’s immutable composite type generated by the function Lar.Struct(),
which provides the syntax needed to define hierarchical geometric structures used to define the dimension-independent
partition of the embedding space.

julia> using LinearAlgebraicRepresentation;
julia> m,n,p = 1,1,1;

Lar = LinearAlgebraicRepresentation;
V,(VV,EV,FV,CV) = Lar.cuboidGrid([m,n,p], all=true);
cube = V,FV,EV;

julia> assembly = Lar.Struct([ cube, # same semantics of PHIGS structures (Kasper and Arns, 1993)
Lar.t(.3,.4,.25), Lar.r(pi/5,0,0), Lar.r(0,0,pi/12), cube,
Lar.t(-.2,.4,-.2), Lar.r(0,pi/5,0), Lar.r(0,pi/12,0), cube ]);

julia> W, EV, FE, CF, boolmatrix = Lar.arrangement(assembly);

(a) Tree of the CSG assembly. (b) A graphical depiction of the system design.

Figure 6: Graphical representation of the whole process to transform a CSG tree into files describing the computed
geometry. See also Figure 10.
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Let us note that assembly is a linearization of preorder DFS of the tree. The Lar.arrangement() function applied
to assembly returns the (geometry,topology) of 3D space partition generated by it. Geometry is given by the
embedding matrix W of old and new 0-cells, and topology by the sparse matrices CF, FE, EV, i.e., by �2, �1, �0, of the
chain complex generated by the (assembly) arrangement. See section 2.4 (LAR Geometric Complex).

3. Solid Algebras and Boundary Chains
In this section we introduce and discuss a new algebraic method for boundary evaluation of any CSG (Constructive

Solid Geometry) expression tree, constructed with regularized operators of union, intersection, and difference on a
variable number of polyhedral d-solids (d = 2, 3). The result is obtained in five main steps (see also Figure 10):

1. By evaluating the input expression and producing an unevaluated LAR of generator primitives as well as the
expression AST (Abstract Syntax Tree) to be used later, after having transformed the CSG form generators into
binary strings in a Boolean array;

2. by computing an independent set of (d − 1)-cycles generating the d-space arrangement induced by the input;
3. by reducing the given CSG expression into an equivalent Boolean expression with vectors of zeros and ones

(‘false’ and ‘true’) associated to generators, without any reduction to canonical disjunctive normal form;
4. by evaluating the Boolean expression using bitwise native operators of Julia compiler, so producing a single

resulting Boolean vector X to be interpreted as coordinate representation of a 3-chain;
5. finally, the binary vector of the Boolean result is used as the coordinate vector in linear space C3 of a 3-

polyhedron, and is converted to any standard b-rep (see Algorithm 5) using sparse matrix multiplications times
the matrices of )3 ∶ C3 → C2, )2 ∶ C2 → C1, and )1 ∶ C1 → C0.

Our method is implemented in Julia using sparse matrices and vectors: the computational evaluation of every
possible solid expression with given solid generators is reduced to an equivalent logical expression of a finite set
algebra over the cells of a spatial arrangement, and solved by native bitwise operators.

We show that the structure of each term of this algebra is characterized by a discrete set of points, each one
computed once and for all in the interior of each atom. Set-membership classifications (SMC) with respect to such
single internal points of atoms, computes the structure of any algebra term, and in particular transforms each solid
variable (each term) of every Boolean formula, into a sparse logical array of length m, equal to the number of atoms.

Computing the product of two sparse general matrices (SpGEMM) is a fundamental operation in various combi-
natorial and graph algorithms as well as various bioinformatics and data analytics applications for computing inner-
product similarities. In the last few years many optimized algorithms have been deviced on multi- and many-core
architectures and GPUs.

3.1. Compendium of topological CSG method
For the sake of user convenience and understanding, we give here a paradigmatic summary of our method. For

simplicity, we discuss few examples in 2D, that show the bulk of it, and are fairly readable by any scientific and technical
reader. For this purpose, we need (a) a structure diagram (see Figure 7), to characterize and extract information
contained in chain complexes, and (b) few simple Examples, in order to discuss our method step-by-step. Two primitive
2D solidRing andRectangle are shown in Figure 8, and both some CSG forms and the corresponding oriented b-reps
are given in the following examples. Consider the boundary 1-cells ei of input shapes to generate an arrangement of
E2, as in Figure 8, according to (Paoluzzi et al., 2020). In Figure 8, the 0-cells, 1-cells, and 2-cells are denoted vi, eℎ
and uk, respectively.

From CSG forms to oriented B-reps Two chain complexes with linear spaces and linear transformations can be
defined in E2 using either a binary or a ternary field of scalar coefficients:

(a) the unsigned linear spaces Cp (p ∈ {2, 1, 0}) over the binary field ⟨{0, 1},+ mod 2,×⟩;
(b) the signed linear space C↺

p over the ternary field ⟨{0, 1,−1},+ mod 3,×⟩.

We propose the diagram in Figure 7, where A (S), P [n], andℬ stand respectively for (a) the arrangement of E2
generated by a set S of primitive shapes, (b) the powerset of natural numbers [n] ∶= {1, 2,… n}, where n is the number
of Boolean atoms in A (S), and (c) the finite Boolean algebra generated by them. The following connected examples
show some important computations over topological polyhedra in a 2D environment for simplicity.
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Figure 7: The diagram of functors between the unsigned chain complex C∙ over a binary field of scalars, and the signed
chain complex C↺

∙ over a ternary field of scalars. In red the computational pipeline proposed in this paper.

Example 3.1.1 (From E2 arrangement to b-rep of algebraic forms). In Figure 7 the same symbol is used for arrows )p
between signed or unsigned chain spaces. Of course, their matrix representations depend on the choice of the bases
in both domain and codomain spaces. The path followed by our computational pipeline in 3D is drawn in red in the
diagram. The matrix of mapping )2 ∶ C2 → C↺

1 is shown on the right of Figure 8; it contains by column the basis
elements of C2 space represented in Z↺

1 ⊂ C↺
1 subspace of 1-cycles, i.e. with coordinates in {0, 1,−1}. Some CSG

forms and corresponding oriented b-reps are given in Example 3.1.2. Note in Example 3.1.3 that
∑6
i=1 b-rep(ui) = 0.

Example 3.1.2 (Boundary matrix of 2-complex). It is easy to see that the E2 arrangement of Figure 8 produces the
boundary matrix [)2] ∶ C2 → Z1, from unoriented chains in C2 to oriented 1-cycles in Z1 ⊂ C↺

1 . A basis for the
linear subspace of 1-boundaries B1 ⊂ Z1 is produced by Algorithm 9 and built in matrix [)2] ∶ C2 → B1 by sum of
columns corresponding to u2 + u6.

(a) (b)

Figure 8: (a) The arrangement of E2 generated by a solid rectangle in 2D and by a solid ring in 2D. (b) The boundary
mapping )2 between the basis U2 ⊂ C2 of unoriented 2-chain space and the subspace Z↺

1 ⊂ C↺
1 of oriented 1-cycles.

The sign-invariant domains of the quasi-disjoint partition of E2 is a finite Boolean algebra where atoms are indicated as
u1,… , u6.

It may be worthwhile to note that any Boolean term, say Rectangle = u3 ∪ u4 ∪ u5 is also coordinate representation
[0, 0, 1, 1, 1, 0] of the corresponding chain in C2, as well its structure in a finite Boolean algebra. In particular, we get
the boundary transformations, shown in the following, from some simple CSG forms to oriented b-rep models. The
orientation of basis elements ei ∈ C

↺
1 is defined conventionally: ei is positively oriented when: ei = vk − vℎ, k > ℎ.

CSG(rectangle) = u3 ∪ u4 ∪ u5 = (u3 + u4 + u5) ∈ C2 ↦ [)2][0, 0, 1, 1, 1, 0]t = [0, 0, 1,−1,−1,−1, 0, 0]t

≡ b-rep(rectangle) = (e3 − e4 − e5 − e6) ∈ B1 ⊂ Z1 ⊂ C
↺
1

CSG(ring) = u1 ∪ u4 = (u1 + u4) ∈ C2 ↦ [)2][1, 0, 0, 1, 0, 0]t = [−1, 1, 0, 0, 0, 0,−1, 1]t

≡ b-rep(ring) = (−e1 + e2 − e7 + e8) ∈ B1 ⊂ Z1 ⊂ C
↺
1

CSG(rectangle ∩ ring) = u4 ∈ C2 ↦ [)2][0, 0, 0, 1, 0, 0]t = [0, 0, 0,−1, 0,−1,−1, 1]t

≡ b-rep(rectangle ∩ ring) = (−e4 − e6 − e7 + e8) ∈ B1 ⊂ Z1 ⊂ C
↺
1

CSG(rectangle ∪ ring) = u1 ∪ u3 ∪ u4 ∪ u5 = (u1 + u3 + u4 + u5) ∈ C2 ↦ [)2][1, 0, 1, 1, 1, 0]t = [−1, 1, 1, 0,−1, 0, 0, 0]t

≡ b-rep(rectangle ∪ ring) = (−e1 + e2 + e3 − e5) ∈ B1 ⊂ Z1 ⊂ C
↺
1

CSG(rectangle − ring) = u3 ∪ u5 = (u3 + u5) ∈ C2 ↦ [)2][0, 0, 1, 0, 1, 0]t = [0, 0, 1, 0,−1, 0, 1,−1]t

≡ b-rep(rectangle − ring) = (e3 − e5 + e7 − e8) ∈ B1 ⊂ Z1 ⊂ C
↺
1
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The linear space C2 has dimension 6 = #U2, equal to the numberM = 6 of atoms of the solid algebra generated
by the arrangement of E2 induced by the two primitive shapes rectangle and ring. The 1-cell representations of unit
2-cells are by column in [)2] ∶ C2 → C1. M is also the length of bit strings giving their Boolean structure. The
number of all distinct algebraic forms, i.e., the size of this solid algebra is of course 2M .

Example 3.1.3 (Oriented boundary chain of basis elements). With respect to Figure 8, the b-rep of each unit (i.e. basis)
2-chain (a.k.a. atom) is simply computed by (sparse) matrix-product of [)2] times the unit column vectors uk (1 ≤ k ≤
6) of each basis element, as shown in the following.
The b-reps of Boolean 2D atoms uk ⊂ E2 and their coherently oriented boundary 1-cycles in C1 are computed below:

b-rep(u1) ∶= )2u1 = [)2][u1]↦ −e1 + e2 + e4 + e6
b-rep(u2) ∶= )2u2 = [)2][u2]↦ −e2 + e5
b-rep(u3) ∶= )2u3 = [)2][u3]↦ −e5 + e7

b-rep(u4) ∶= )2u4 = [)2][u4]↦ −e4 − e6 − e7 + e8
b-rep(u5) ∶= )2u5 = [)2][u5]↦ e3 − e8
b-rep(u6) ∶= )2u6 = [)2][u6]↦ e1 − e3

3.2. Isomorphism between arrangements and algebras
The strong relationship beetween algebras and arrangements is well known—see, for example, Orlik and Terao

(1994). Conversely, the authors do not know a similar correspondence between arrangements and (co)chains. There-
fore, the major contribution of this paper is to demonstrate that there exists an homomorphism between the Construc-
tive Solid Geometry with regularization (i.e. a finite solid algebra with operations of complement, union, intersection,
and difference) and the linear space C3 of (co)chains associated by the arrangement of Euclidean space induced by a
collection of (d − 1)-objects, with basis given by the columns of the matrix of linear map )3 ∶ C3 → C2.

(a) (b) (c)

Figure 9: (a) Two input 2-complexes; (b) (4+4) 1-cells (line segments) in 1-skeletons of input, generate (c) four 2-cells
in E2: blue (u1); red (u2); white (u3); green (u4). The element u1 in basis U2 ⊂ C2 is the outer 2-cell Ω, complement of
the union of the others.

Example 3.2.1 (2D space arrangement). Generated inE2 by two overlapping single-cell 2-complexes. Figure 9c shows
the arrangement of E2 into four subsets: the red region A, the green region B, the overlapping region A ∩ B and the
outer region A ∪ B, i.e., the rest of the plane. The set of atoms of the Boolean algebra ℬ is one-to-one with this
arrangement: the four regions are the four atoms of theℬ algebra, and there are 24 = 16 distinct elements S ∈ ℬ.
The structure of each element S ∈ℬ is a union ofℬ atoms; as a chain in C2, it is a sum of basis elements.

Example 3.2.2 (Boolean algebra). Let us consider Table 1, that contains by columns the coordinate representation of
the 2-chains A, B, and Ω in the chain space C2. In algebraic-topology notations, with oriented chains:

A = u2 + u3, B = u3 + u4, Ω = u1 = −(u2 + u3 + u4).

The Boolean algebra of sets is represented here by the power set A = P (U2), with U2 = {u1, u2, u3, u4}, whose
24 = 16 binary terms of length #U2 = 4 are given in Table 2, together with their semantic interpretation in set algebra.
Of course, the coordinate vector representing the universal set, i.e. the whole topological spaceX ∶= E2 generated by
[)2] columns is given by [X] = [1, 1, 1, 1]t, including the outer cell A ∪ B. Let us remember that the complement of
A, denoted −A or A, is defined as X⧵A and that the difference operation A⧵B is defined as A ∩ B.

Alberto Paoluzzi et al.: Preprint submitted to Elsevier Page 15 of 33



Finite Algebras for Solid Modeling

Table 1
Truth table (Example 3.2.2) associating the unit 2-chains ui ∈ U2 (1 ≤ i ≤ 4), basis of linear space C2, to rows of the
table, and solid objects A,B and Ω = A ∪ B to columns. See Example 9c for images of the E2 space and the arrangement
induced by colored 1-skeletons of the 2-complexes in Figure (b) of Example 3.2.1.

Ω A B
u1 1 0 0
u2 0 1 0
u3 0 1 1
u4 0 0 1

Table 2
Truth table (Example 3.2.1) provides the complete enumeration of elements S of the finite Boolean algebra  = 24
generated by two solid squares A,B and four atoms u1, u2, u3, u4. The same binary representation holds for coordinates of
elements of chain space C2 with basis U2 = (u1, u2, u3, u4). associated with the arrangement (), with  = {)(A), )(B)}.

U
2

X
=
E2

A B A
∪
B

A
∪
B

A
⧵B

A
∩
B

B
⧵A

A
⊕
B

A
⧵B

B B
⧵A

A A
⊕
B

A
∩
B

∅

u1 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0
u2 1 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0
u3 1 1 1 1 0 0 1 0 0 1 0 1 0 1 0 0
u4 1 0 1 1 0 0 0 1 1 1 0 0 1 0 1 0

3.3. Computational Pipeline
This section summarizes the whole computational process producing an evaluated LARmodel of a CSG expression

tree with values defined in Julia by: solid primitives; nested assemblies of data structures denoted as LAR.Struct();
affine transformations; and the macro @CSG including Boolean ops (see the Section A.2 in the Appendix).

3.3.1. Overview: models and representations
a. The set of models M of our representation scheme is the family of sets of piecewise-linear (PL) polyhedra

even unconnected and/or non-manifold. Collections of 3-polyhedra are one-to-one with (coherently-oriented)
3-chain complexes, with p-chain bases of p-cells (0 ≤ p ≤ 3) that are connected, but possibly non-manifold
and non-contractible. They are also one-to-one with arrangements of E3 and hence with Boolean algebras of
sign-invariant cells of such arrangements.

b. Given any collection of cellular polyhedra in this domain, the computation of induced E3 arrangement is sum-
marized by:
(a) extract the 2-skeletons of polyhedra and merge efficiently (via interval-trees) all their 2-cells;
(b) compute in 2D the local chain complex C2⟵⟶C1⟵⟶C0 on each 2-cell � of the input data set by the TGW

algorithm (Paoluzzi et al., 2020), given here as Algorithm 8;
(c) identify via topological congruence (DelMonte et al., 2020) 3D multiple instances of p-cells (0 ≤ p ≤ 2);
(d) finally compute the global chain 2-complex partitioning the whole space E3, and the matrix [)2] of the

boundary operator )2 ∶ C2 → C1.
c. The TGW algorithm in 3D, with input the matrix [)2], produces the matrix [)+3 ] whose columns are a basis of
C3 expressed through the target subspace Z2 of 2-cycles. The cycles which are boundary of holes are linearly
combined, to get the set of generators spanning B2 ⊂ Z2 ⊂ C2, the subspace of 2-chains that are boundaries of
3-chains (see Figure 3), in particular of atoms of E3 partition, including the outer space.

d. The B2 elements are one-to-one with the 3D subsets of a partition, i.e., an arrangement of E3 and this is one-to-
one with the atoms of a Boolean solid algebra, produced by our original collection of PL polyhedra, generators
of this algebra. Each generator solid has a structure made by disjoint union of some atoms, and is representable
as a binary string, whose length equals the total number of atoms.

e. The validity set (the set of all valid representations) of our representation scheme is the linear space B2, i.e.,
the subspace of 2-cycles that are boundary of some coherently oriented 3-chain (i.e. of some PL 3-polyhedra).
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The domain of the scheme is dom(�2|B2 ), with �2 ∶ C2 → C3, capturing the idea of solidity using oriented
boundaries.

f. The set of 2n binary strings with length n (the number of atoms) provides a Boolean algebra of sets. Here we
have operations of union and intersection, as well as difference and complementation. This algebra is isomorphic
to the Boolean Algebra of PL polyhedra provided by our generators, and hence isomorphic to the solid algebra
that is called Constructive Solid Geometry (CSG).

g. In conclusion, every CSG expression tree may be converted into an equivalent expression, including binary vec-
tors of length n, round brackets, Boolean operator symbols, and solved efficiently bitwise by the Julia optimizing
compiler. The resulting binary vector [x], the coordinate representation of a 3-chain within the linear chain space
C3, is converted by matrix multiplication [)3][x] into a 2-boundary in B2, our b-rep representation of the CSG
expression. This one may be converted into any external geometry format through multiplications with [)2] and
[)1] matrices.

Figure 10: Evaluation pipeline (Algorithm 0) from Julia @CSG macros to a geometric model: (1) the evaluation process
starts from a (hierarchical) @CSG <expr>; (2) computation of space arrangement; (3) evaluation of Boolean form generators
into atomic binary sequences; (4) bitwise computing of Boolean result by available Arithmetic-Logical Units; (5) output
of 3D geometric model. Algorithms 1-5 are in the main text; Algorithms 6-11 in Appendix A. See also Figure 6b.

Algorithm 0 (Evaluation Pipeline)
The evaluation of a 3D Boolean functional form @CSG <expr>, into an evaluated LAR model (V,(CF,FE,EV)), made
by a 3 × n array V and by a triple (CF,FE,EV) of sparse arrays, providing the geometric embedding C0 → E3, and a
chain complex �2, �1, �0, consists of several tasks (see Figure 10):

1. Evaluation of data and functional forms. Input: a single @CSGmacro block, possibly delimited by begin...end
clause, including solid terms and (nested) component @CSG clauses. Output: parse tree of compound @CSG ex-
pression; ordered tuple of variable names associated to input objects in a single coordinate frame: (X1,…,XN).

2. Computation of space arrangement. Input: tuple of N terms (generators) in world coordinates: (X1,… ,XN).
Output: sparse boundary matrices (FC,EF,VE) as [)3], [)2], [)1], and vertex matrix V. The columns of [)+3 ],
generated by algorithm 8 give all the irreducible cycles of Z2 ⊂ C2. Via Algorithm 9, (computing boundaries
from cycles), the columns of [)3] are associated with the atoms spanning B2 and generating the @CSG algebra.

3. Evaluation of Boolean terms. Input: the b-rep of M atoms of CSG algebra, generated by the chain complex
(V,(FC,EF,VE)), and input (X1,…,XN) terms. Output: M ×N matrix B::Matrix{Bool} whose column Bj
gives the bit vector of lengthM (the number of atoms) representing the Xj generator of @CSG algebra.

4. Bitwise computing of Boolean function. Input: the Boolmatrix B; the parse tree of @CSG expression. Output: a
single BitArray of lengthM . The 1s in this array denote the unit 3-chains (atoms) whose quasi-disjoint unions
(generators) produce the Boolean solution vector, i.e., the binary value of the evaluated @CSG form.

5. Boundary evaluation of output 3-chain. Input: the 3-chain (binary) coordinate representation X of the Boolean
result; the chain complex W,(FC,EF,VE). Output: the boundary representation of the Boolean result, possibly
exported in a standard vector graphics format *.<ext>, like, e.g., the file formats *.OBY, *.PLY, or *.DAE. Our
software prototype may currently export in files *.OBY, both 2D and 3D.
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The final stage of our approach to constructive solid geometry consists in generating a representation of solid
arguments as linear combinations of unit 3-chains, i.e., of 3-cells of the space partition generated by the input. The U3
basis of 3-chains is represented in C↺

2 , i.e. the linear space of chains over the ternary field of coefficients {0, 1,−1}
by the columns of the )3 matrix. See Section 3.1 for detailed computational example. This set of 2-cycles can be
seen as a collection of point-sets, including the whole outer space and the empty set. In this sense, it generates both a
discrete topology of E3 and, via the Stone Representation Theorem (Stone, 1936), a finite Boolean algebraℬ over C3
elements.

3.3.2. Set-Merbership Classification (SMC)
The LAR representation of atoms, i.e., join-irreducible elements of distributive latticeℒ () ≅ (d−1) as discrete

point-sets (see Section 2.4), is used to map the structure of each term X ∈  to the set algebraℬ ≅ (). Assume
that: (a) X ∈ ; (b) a partition of Ed into subsets Ai ∈ () is known; (c) a one-to-one mapping Ai ↦ pi between
atoms and single internal points is available; (d) a SMC oracle, i.e., a set-membership classification (Tilove, 1980)
test is available.

A naive approach to SMC, where a single point pk (in the interior of the atom Ak ∈ ℒ ()) is tested against all
input solid terms X ∈ () may be computed in quadratic time O(MN), whereM is the number of atoms, and N
is the number of input solid terms X. An efficient O(M logN) procedure is developed by using two one-dimensional
interval-trees for the arrangement(d−1) of E3, in order to execute the SMC test only against the terms in the subset
of elementary 2-cells in i ⊆ U2 ⊂ C2, whose containment boxes intersect the vertical rayi from the test point pi.

Algorithm 3 (Set-Membership Classification).

The structure of term X in the finite algebraℬ() can be computed using a generate-and-test procedure. Such a
SMC test is simple and does not involve the resolution of “on-on ambiguities” (Tilove, 1980), because of the choice
of using an internal point pi in each atom Ai. Set Membership Classification (SMC) is executed via a ray-polygon
intersection test in 3D, actually through ray-plane intersection, followed by point-polygon-containment test in 2D. The
topological operator i return a generic interior point of the point-set it is applied to.

In our current implementation in 3D, the SMC test is executed by intersecting a ray from pi with the planes con-
taining the 2-cells of atoms in (pi), and testing for point-polygon-containment in these planes (via maps to the z = 0
subspace). In summary, we decompose Ed into join-irreducible elements Ai of algebra A (), and represent each Ai
via a single point pi. By the Jordan curve theorem, an odd (transversal) intersection number of the vertical ray for pi
with boundary 2-cells of Xj produces an oracle answer about the query statement pi ∈ Xj . If true, the intersection
counterB[i, j] is incremented. At the very end, the (sparse) integer matrixB is transformed to binary via the remainder
operator (%) applied element-wise (dot operator “.”) to all B matrix elements. An odd number i implies Ai ⊆ Xj . An
even number i gives the converse result.

The procedural SMC algorithm works once for each atom Ai, and computes both a single internal point pi and the
subset of generators 2-cells i whose box is intersected by rayi. Using the intersection of two queries (on xi and yi of
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pi) over two interval trees, many generatorsXj may be excluded in O(M logN) time, detailed tests on planes of faces
being executed only when the surely negative answers of intersection were already excluded.

3.3.3. Binary representation of Boolean terms
In practice, we construct a binary representation (of the structure) of each termX of a solid Boolean expression, as

a subset of U3 (basis of 3-chains). Remember that, by construction, U3 partitions both E3 and the input solid objects.

Bit vectors A subset Y ofX can be identified with an indexed family of bits with index setX, and the bit indexed by
x ∈ X being 1 or 0 according to whether or not x ∈ Y . The Boolean algebraℬ = P (X) of the power set of X can
be defined equivalently as a set of bit vectors, all of the length n = #X, with #ℬ = 2n.
Mapping generators to bit vectors To translate a CSG formula  including a solid term X to machine language
it is sufficient (once computed the [)3] matrix, and hence the U3 basis) for each unit 3-chain uk ∈ U3, to test for set-
membership a single internal point pk ∈ uk, by checking if pk ∈ X. In the affirmative case the k-th bit of coordinate
vector [X] ∈ 2M ≅ P (U3) is set to true. Of course, this translation may be done in parallel for all atoms Ak in the
space arrangement (U3) (see Algorithm 3).
Abstract Syntax Tree (AST) This paragraph is mainly extracted from Julia developer’s documentation. In Julia,
an AST is a lisp-like expression returned by the parser and manipulated by macros. Front-end ASTs consist almost
entirely of Exprs and atoms (e.g. symbols, numbers). Expressions (Exprs) are represented as parenthesized lists using
operators and/or symbols. Some operators are special forms (not necessarily function calls), and in those cases the
operator itself is the expression head. Some operators (+ and *, e.g.) use N-ary parsing; chained calls are parsed as a
single N-argument call. They are immutable and ‘interned’, i.e., hashed by the language implementation. Julia and Lisp
have in common the ability to represent the language’s code as a data structure in the language itself (homoiconicity).
Symbols in Julia are the same as in Lisp or Scheme. In particular, a symbol is a way to represent a language variable
in metaprogramming. In order to construct expressions in Julia that use variables, the AST use unbound symbols, that
are bound in this project by Algorithm 4, that provides a fairly high view of machine-level operations.

Algorithm 4 (Mapping generators to characteristic vector of CSG solution).

Example 3.3.1 (Boolean matrix). The variable boolmatrix (see last expression of Example 2.5.3) is a Matrix of 8×4
Bool values, and maps the 8 atoms of the E3 arrangement to the 4 generators of the associated solid algebra.

In other words, boolmatrix contains by column the results of Set Membership Classification (SMC, Algorithm 3)
for a single internal point of each 8 atomic 3-cells (rows) of the E3 partition, against the outer space Ω and each
K1,K2,K3 cube instance (matrix columns). Of course, each cube was suitably mapped to world coordinates by Struct
evaluation. Also, note boolmatrix[1,1] = true by the containment of a single its point in the first atom Ω ≡ outer
space of the arrangement. The remaining elements of the first row and column are all false because the same point is
contained neither in K1,K2,K3, nor in any Ai atom (i > 1). The sparse boolmatrix is shown as dense Matrix below.

julia> Bmat = Matrix(boolmatrix)
8x4 Matrix{Bool}:
true false false false
false false false true
false true true false
false true true true
false true false false
false false true false
false true false true
false false true true
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Example 3.3.2 (Boolean generators). Continuation of example 3.3.1. Our cube instances K1,K2,K3 are extracted here
from boolmatrix columns into variables A,B,C, so describing how each one is partitioned by (ordered) 3-cells in U3.
The whole space is given byX = Ω∪A∪B∪C. The reader may check that bit-wise union of all Bmat columns is true.

julia> A,B,C = boolmatrix[:,2], boolmatrix[:,3], boolmatrix[:,4]
(Bool[false, false, true, true, true, false, true, false],
Bool[false, false, true, true, false, true, false, true],
Bool[false, true, false, true, false, false, true, true])

3.3.4. Bitwise resolution of set algebra expressions
When the input initial solids have been mapped to arrays of Booleans, now called A, B, and C, any expression of their

finite Boolean algebra is evaluated by logical operators, that operate by comparing corresponding bits of variables.

Bitwise operators In particular, the Julia language offers bitwise logical operators and (&), or (|), xor (⊻), and
complement (!), as well as a dot mechanism for applying elementwise any function to arrays. Hence, we can write
expressions like (A .& B) or (A .| B) that are evaluated bitwise and return the result in a new BitArray vector
variable. We remark that these operators can be used also in prefix and variadic form. Hence, bitwise operators can
be applied at the same time to any finite number of variables. Parallel application is implicit in the language.

Example 3.3.3 (Boolean formulas). Continuation of examples 3.3.1 and 3.3.2. Some assignment statements follow,
in order to show simple examples of Julia’s syntax with Boolean expressions and vectors (1-dim arrays). In particular,
the AminBminC variable contains the value of the intersection of the first term Awith complements of other terms B and
C, with A, B, C of Example 3.3.2, giving the set difference (A⧵B)⧵C. In other words, the variable AminBminC contains
the result of the set difference denoted &(A, B, C), mapped into the geometric model shown in Figure 11, made by a
single atom (see variable AminBminC in the last line below).

julia> AorB = A .| B;
julia> AandB = A .& B;
julia> AxorB = A .⊻ B;
julia> AorBorC = A .| B .| C = .|(A, B, C);
julia> AandBandC = A .& B .& C = .&(A, B, C);

julia> AminBminC = A .\ B .\ C = .&(A, .!B, .!C)
8-element BitArray{1}:
[false, false, false, false, true, false, false, false]

3.4. Boundary computation
Remember from Section 2.1.2 the notation C∙ for the chain complex over the binary field {0, 1}, and C↺

∙ for the
oriented chain complex over the ternary field {0, 1,−1}, to get oriented boundaries. Actually, the boundary matrices
generated by the TGW algorithm 8 are maps C3 → C↺

2 in 3D, and C2 → C↺
1 in 2D.

In most cases, the target geometric computational environment is able to display—more in general to handle—
a solid model only by using some boundary representation, typically a triangulation. It is easy to get such a represen-
tation by multiplying the matrix of 3-boundary operator )3 ∶ C3 → C↺

2 times the coordinate vector in C3 space of the
solid expression, say X, computed as a binary term of our set algebra. Once obtained in this way the signed coordinate
vector of the solid object’s boundary, i.e., the 2-chain made by its oriented 2-cells (faces), these must be collected by
columns into a sparse “face matrix”, and translated to the corresponding matrix of oriented 1-cycles of edges, by right
multiplications of [)2] times the face matrix.

Property 3.4.1 (Storage space of LAR Geometric Complex). The topology of a LAR 3-complex is fully represented
by the operators �2, �1, �0, i.e., by the sparse arrays (CF,FE,EV), providing the incidences between vertices, edges,
faces, and 3-cells (atoms) for both b-reps and cellular representations. If a b-rep (FE,EV) is used, LAR storage is
1/2 of the winged-edge representation by (Baumgart, 1972), often used as a storage standard (Woo, 1985) for solid
modeling, and equal (2 × FE) to half-edge (Muller and Preparata, 1978), widely used in Computational Geometry, of
course counting over the same cells.

It may be useful to remark that the triangulation of faces, given here at the end of the explicit computation of
boundary elements in Algorithm 5, is only needed for display purpose, and often left to the graphics hardware.
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(a) (b) (c) (d) .

Figure 11: Boundary surface of Boolean difference (A⧵B)⧵C of three cubes, with 2-cells in different colors: (a) view from
the front; (b) view from the back; (c) front with exploded 2-cells; (d) back with exploded 2-cells. Note that 2-cells of the
resulting boundary may be non-convex.

Algorithm 5 (Boundary evaluation).

The last stage of the computational pipeline (see Figure 10 and Algorithm 5) starts from the Boolean solution X
of the binary form generated by Julia evaluation of the target CSG form, after substituting each column of the Boolean
structure matrixB to the corresponding generator object of the algebraℬ() induced by the space arrangement().
Remind that  is the collection of geometric objects (2-chains) generated in world coordinates by the traversal of a
hierarchical assembly of geometric primitives (Paoluzzi et al., 2020).

The solution vector X depends of course on the syntax tree of the Boolean formula generated by Algorithm 2 in
Section 2.5.2, which produced both geometry in world coordinates and the target syntax tree. The vectorX is computed
element-wise (bit-to-bit) by the hardware of the ALUs, or bitwise in parallel on many-core architectures like GPUs.

Example 3.4.1 (Boundary of solid expression). Continuation from Example 3.3.3. The Julia variable AminBminC,
from which we start, contains the Boolean vector computed at the end of Example 3.3.3. Here we show the very
simple Julia computations needed to generate the oriented boundary polygons (2-cells) of the solid solution of the
CSG expression A - B - C, displayed in Figure 11, being the values in A,B,C already computed in Example 3.3.2.

First, the value of the variable AminBminC is converted (from Boolean to binary) and stored within the binary
vector difference—the coordinate representation of a 3-chain—by the vectorized constructor “Int8.”. Then the
oriented boundary 2-cycle of the Boolean expression is computed and stored in a variable (named boundary) through
multiplication times the boundary matrix [)3] ≡ CF’.

Let us recall that CF (i.e., Faces → Cells) is the sparse matrix of coboundary operator �2 ∶ C2 → C3, and that
[�2]t = [)3], which in Julia is CF’.

# X ≡ A - B - C = AminBminC
# difference equal to intersection of complements
julia> AminBminC = .&(A, .!B, .!C)
8-element BitArray{1}:
[false, false, false, false, true, false, false, false]
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julia> difference = Int8.(AminBminC)
8-element Array{Int8,1}:
[0, 0, 0, 0, 1, 0, 0, 0]

julia> boundary = CF’ * difference
47-element Array{Int8,1}:
[1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 1, 0, 0, 0, 1, -1, 0, -1, 0, -1, 0, 0, 1, 0, 0, 0, -1, 0, 0,

0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0]

Finally, we remind that in oriented chain notation it is possible to write the oriented boundary of solid difference
using the following expression, where fk stands for kth face (2-cell, or unit 2-chain) of the computed E3 arrangement:

boundary ↦ fA∖B∖C = f1 − f3 − f7 + f9 + f11 + f15 − f16 − f18 − f20 + f23 − f27 − f33 + f38 − f43

The actual reduction to the triangulated boundary (needed only for display) is obtained using also FE’ and EV’ sparse
matrices and a constrained Delaunay triangulation (CDT) algorithm (see Algorithm 5).

Remark (From solid chains to B-reps). Of course, the 14 non-zero elements in the boundary coordinate array of the
AminBminC variable, provide the coherently oriented boundary 2-cells of the solid resultX ∈ C3, stored in AminBminC.
Each of them is transformed into a (possibly non connected) 1-cycle by the FE’ sparse matrix, i.e., by the 2-boundary
matrix [)2] = [�1]t. Finally, every 1-cycle is transformed into one or more sequences of 0-cells, using the EV’ matrix,
i.e., by using [)1] = [�0]t. The 0-cells are then cyclically ordered, and used to generate sequences of 3D points via the
embedding matrix V, which provides the vertex coordinates by column. This last step gives the ordered input for face
triangulation using a CDT in 2D (Constrained Delaunay Triangulation) algorithm (Shewchuk, 2002).

4. Conclusion
In this section we provide a digest of the scope of the paper and our technical contributions. A simple low-

dimensional (2D) review of the topological method proposed was given in Section 3.1.

4.1. Summary
The domain of our representation scheme is currently restricted to the Boolean Algebra of PL polyhedra, which

can be also disconnected and/or non-manifold. The elements of this algebra are in one-to-one correspondence with
(coherently-oriented) 3-chains complexes, using basis p-chains (p-cells, p = 0,… , 3) that are connected, but possibly
non-manifold and non-contractible. While the restriction to PL solids simplifies the initial implementation, the pro-
posed algebraic approach is topological in nature, and does not depend on shape linearity. For instance, Example 3.1.2
uses topological polyhedra with non linear geometry.

Given any collection of models in this domain, using the approach from Paoluzzi et al. (2020), we construct the
evaluated LAR (Linear Algebraic Representation) representation of their arrangement in E3, including the 3-chain
complex with linear )p operators represented by sparse matrices. In particular, the columns of matrix [)3], including
the boundary cycles of the exterior space, supply a basis of the linear subspace Z2 of 2-cycles. Some irreducible
2-cycles in Z2 are linearly combined to get a basis B2 ⊂ Z2 ⊂ C2 of bounding 2-cycles, spanning the subspace of
2-chains that are boundaries of 3-chains.

We have shown that the 3-cells and elementary (basis) 3-chains in LAR are in one-to-one correspondence to the
atoms in the Boolean algebra of closed regular sets (CSG representations), and that the elements of B2 are in one-to-
one correspondence with the boundaries of such sets. It follows that each 3D solid in this Boolean algebra may be
represented either by a bit string indicating its structure in terms of atoms, i.e by a coherently oriented 3-chain, or by
its oriented bounding 2-cycle, via multiplication with the matrix of )3 ∶ C3 → C2.

Finally, we have described a fully implemented procedure for computing the boundary representation (bounding
2-cycle) of any variadic CSG expression in this algebra — a variadic function being a function of indefinite arity, i.e.,
one which accepts a variable number of arguments. The algebra generators are first converted into equivalent binary
strings representing their Boolean atoms, round brackets to denote explicit precedence in CSG expression, and Boolean
operator symbols, then solved efficiently by the Julia optimizing compiler. The resulting binary vector X, coordinate
representation of a 3-chain in chain space C3, is converted by matrix product [)3]X into a 2-cycle in B2, the oriented
boundary representation of the CSG expression, and finally may be converted into any given geometry format.
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Example 4.1.1 (Solid algebra 3D). The arrangement of E3 shown in Figure 12 is a 3-complex with 2208 vertices, 5968
edges, 5360 faces, and 1600 solid cells. The Euler characteristic � is �0−�1+�2−�3 = 2208−5968+5360−1600 = 0.
This count includes the outer (unbounded) 3-cell. We recall that the Euclidean d-space is topologically equivalent to
the d-sphere minus one point. the Euler characteristic of the d-sphere is � = 1 + (−1)d = 2 or 0, for either even
or odd space dimension d. It is worthwhile considering the complex shape of some 3-cells and 2-cells (red circle in
Figure 12c-d). Such complicated shapes Figure 12d) are handled by LAR as straightforwardly (unordered list of vertex
indices) as triangles and tetrahedra in 3D.

(a) Fragmented faces after the
2-cell splitting;

(b) Solid 3-cells assembled to
give the solid union;

(c) Exploded set of atoms of
Boolean algebra associated to
this arrangement;

(d) One single (very complex)
3-cell evidenced.

Figure 12: Arrangement of E3 produced by 8 concentric unit cubes randomly rotated about the origin. The input data
2 is made by 6 × 8 = 48 square 2-cells. The input configuration is close to the worst case O(n2) for Boolean operations,
since every 2-cell is intersected by most of the other ones. The central largest atom signed in yellow in subfigure (c) is the
intersection of all the cubes, and is an approximated 3-ball.

4.2. Significance and Outlook
Solid Modeling was conceived by engineers as a rigorous and universal language for geometry-based engineering.

Mathematically, at its core, all solid models are computer representations of elements of some algebraic systems that
are constructed and maintained by algorithms corresponding to the operations in the respective algebras. While this
view is widely accepted as a good practice in solid and geometric modeling, it is rarely explicitly articulated or used
directly to design data structures and algorithms. Furthermore, when multiple representations are used simultaneously,
the relationships between them is often relegated to heuristic and ill-defined notions of “representation conversion,"
“translations,” and “interoperability" – undermining the rigor and robustness of solid modeling systems. In contrast,
the results in this paper demonstrate that algebraic properties can be used directly to construct computationally efficient
representations and algorithms, as well as to maintain correspondence between different representations. As a result,
all higher level operations and applications correspond to formal algebraic expressions in the corresponding algebraic
systems, increasing expressive power and improving the robustness of the implementations.

This paper, in particular, focuses on the algebraic relationships between CSG and boundary representations of
PL solids, as summarized in the diagram in Figure 7. We show that the (regularized) arrangement of a given set of
primitives is isomorphic to the finite Boolean algebra of regularized sets containing all possible CSG representations,
which in turn is isomorphic to the linear vector space of 3-chains C3 over the binary field ⟨{0, 1},+ mod 2,×⟩. The
latter are transformed by the boundary operation )3 into oriented 2-boundaries in B2 ⊂ C↺

2 over the ternary field
⟨{0, 1,−1},+ mod 3,×⟩ that corresponds to usual boundary representations. Based on these algebraic relations, any
and all operations on CSG and boundary representations reduce to compositions of operations within the respective
algebras and isomorphims between the algebras. In particular, we show that boundary evaluation of any CSG repre-
sentation with a finite number of primitives reduces algebraically to a composition of Boolean operations on bit strings,
sparse matrix multiplication, and point membership tests – without sacrificing efficiency or requiring specialized geo-
metric data structures. By sake of completeness, it is worthwhile to remark that our topological methods, while defined
over PL polyhedra by simplicity of prototypical implementation, should equally hold over chains of curved cells.

Our results point to a new research direction in solid modeling, where high-level applications are formulated al-
gebraically and automatically compiled (via algebraic transformations) into composition of standard scientific com-
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putations that are efficiently implemented using high-performance programming languages and are guaranteed to be
correct by construction. The present research may be extended in many directions, in particular with general curved
solid, whose incidence relations can be represented by multi-graphs and sparse arrays, and cells are piecewise non-
linear. The methods introduced in this paper are applicable to topological polyhedra, and shown here mostly PL only
as the follow-up of many experiments and PL prototypical implementations. To extend our topological approach to
wider classes of CSG algebras, say, with curved boundaries, two additions are needed. In particular, to substitute our
embedding mapping of 0-cells with a general strategy for embedding curved 0-, 1-, and 2-cells and chains. Of course,
our face-vs-faces intersection method (Paoluzzi et al., 2020) should be suitably extended, making use of the wide body
of knowledge accumulated in curved solid modeling in the past forty years.

Acknowledgement
We are grateful to the three anonymous reviewers for careful reading of the manuscript and sharing their time,

efforts, and insights during the two rounds of revisions. Of course, any omissions and errors are our own.

References
Armstrong, C., Bowyer, A., Cameron, S., Corney, J., Jared, G., Martin, R., Middleditch, A., Sabin, M., Salmon, J., Woodwark, J., 1999. Djinn: a

geometric interface for solid modelling. Technical Report. Information Geometers Ltd.. Winchester, UK.
Arnold, D.N., 2018. Finite Element Exterior Calculus. volume 93 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for

Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
Baumgart, B.G., 1972. Winged edge polyhedron representation. Technical Report Stan-CS-320. Stanford University. Stanford, CA, USA.
Bezanson, J., Chen, J., Chung, B., Karpinski, S., Shah, V.B., Vitek, J., Zoubritzky, L., 2018. Julia: Dynamism and performance reconciled by

design. Proc. ACM Program. Lang. 2. URL: https://doi.org/10.1145/3276490, doi:10.1145/3276490.
Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B., 2017. Julia: A fresh approach to numerical computing. SIAM Review 59, 65–98. URL:

http://julialang.org/publications/julia-fresh-approach-BEKS.pdf, doi:10.1137/141000671.
Bieri, H., 1995. Nef polyhedra: A brief introduction, in: Hagen, H., Farin, G., Noltemeier, H. (Eds.), Geometric Modelling, Springer Vienna,

Vienna. pp. 43–60.
Björner, A., Ziegler, G., 1992. Combinatorial stratification of complex arrangements. J. Amer. Math. Soc. , 105–149.
Cimrman, R., 2015. Sparse matrices in scipy, in: Varoquaux, G., Gouillart, E., Vahtras, O., deBuyl, P. (Eds.), Scipy lecture notes. release: 2022.1

ed.. Zenodo, p. Section 2.5. URL: https://scipy-lectures.org/advanced/scipy_sparse/index.html, doi:10.5281/zenodo.594102.
Delfinado, C., Edelsbrunner, H., 1995. An incremental algorithm for betti numbers of sinplicial complexes on the 3-sphere. Computer Aided

Geometric Design 12, 771–784.
DelMonte, G., Onofri, E., Scorzelli, G., Paoluzzi, A., 2020. Local congruence of chain complexes. CoRR abs/2004.00046. URL: https://arxiv.

org/abs/2004.00046, arXiv:2004.00046.
DiCarlo, A., Paoluzzi, A., Shapiro, V., 2014a. Linear algebraic representation for topological structures. Computer-Aided Design 46, 269–274.

URL: https://doi.org/10.1016/j.cad.2013.08.044, doi:10.1016/j.cad.2013.08.044.
DiCarlo, A., Paoluzzi, A., Shapiro, V., 2014b. Linear algebraic representation for topological structures. Comput. Aided Des. 46, 269–274. URL:

http://dx.doi.org/10.1016/j.cad.2013.08.044, doi:10.1016/j.cad.2013.08.044.
Dimca, A., 2017. Hyperplane Arrangements: an Introduction. Springer. URL: https://www.springer.com/gp/book/9783319562209.
Edalat, A., Lieutier, A., 1999. Foundation of a computable solid modeling, in: Proceedings of the 5th ACM Symposium on Solid modeling and

Applications, Ann Arbor, Michigan. pp. 278–284.
Fabri, A., Giezeman, G.J., Kettner, L., Schirra, S., Schönherr, S., 2000. On the design of cgal a computational geometry algorithms library. Softw.

Pract. Exper. 30, 1167–1202. URL: http://dx.doi.org/10.1002/1097-024X(200009)30:11<1167::AID-SPE337>3.0.CO;2-B, doi:10.
1002/1097-024X(200009)30:11<1167::AID-SPE337>3.0.CO;2-B.

Fogel, E., Halperin, D., Kettner, L., Teillaud, M., Wein, R., Wolpert, N., 2007. Arrangements, in: Boissonat, J.D., Teillaud, M. (Eds.), Effective
Computational Geometry for Curves and Surfaces. Springer. Mathematics and Visualization. chapter 1, pp. 1–66.

Goodman, J.E., O’Rourke, J., Tòth, C.D. (Eds.), 2017. Handbook of Discrete and Computational Geometry – Third Edition. CRC Press, Inc., Boca
Raton, FL, USA.

Hachenberger, P., Kettner, L., Mehlhorn, K., 2007. Boolean operations on 3d selective nef complexes: Data structure, algorithms, optimized
implementation and experiments. Comput. Geom. Theory Appl. 38, 64–99. URL: http://dx.doi.org/10.1016/j.comgeo.2006.11.009,
doi:10.1016/j.comgeo.2006.11.009.

Halmos, P., 1963. Lectures on Boolean Algebras. Van Nostrand.
Halperin, D., Sharir, M., 2017. Arrangements, in: Goodman, J.E., O’Rourke, J., Tòth, C.D. (Eds.), Handbook of Discrete and Computational

Geometry – Third Edition. Chapman and Hall/CRC, New York, NY, USA, p. chapter 5|33 pages.
Hatcher, A., 2002. Algebraic topology. Cambridge University Press.
Hoffmann, C.M., 1989. Geometric and Solid Modeling: An Introduction. Morgan Kaufmann Publishers, San Mateo, CA.
Hoffmann, C.M., Hopcroft, J.E., Karasick, M.S., 1988. Towards implementing robust geometric computations, in: Proceedings of the fourth ACM

symposium on Computational geometry, Urbana-Champaign, Illinois, United States. pp. 106–117.
Jarvis, R.A., 1973. On the identification of the convex hull of a finite set of points in the plane. Information Processing Letters , 18–21doi:https:

//doi.org/10.1016/0020-0190(73)90020-3.

Alberto Paoluzzi et al.: Preprint submitted to Elsevier Page 24 of 33

https://doi.org/10.1145/3276490
http://dx.doi.org/10.1145/3276490
http://julialang.org/publications/julia-fresh-approach-BEKS.pdf
http://dx.doi.org/10.1137/141000671
https://scipy-lectures.org/advanced/scipy_sparse/index.html
http://dx.doi.org/10.5281/zenodo.594102
https://arxiv.org/abs/2004.00046
https://arxiv.org/abs/2004.00046
http://arxiv.org/abs/2004.00046
https://doi.org/10.1016/j.cad.2013.08.044
http://dx.doi.org/10.1016/j.cad.2013.08.044
http://dx.doi.org/10.1016/j.cad.2013.08.044
http://dx.doi.org/10.1016/j.cad.2013.08.044
https://www.springer.com/gp/book/9783319562209
http://dx.doi.org/10.1002/1097-024X(200009)30:11<1167::AID-SPE337>3.0.CO;2-B
http://dx.doi.org/10.1002/1097-024X(200009)30:11<1167::AID-SPE337>3.0.CO;2-B
http://dx.doi.org/10.1002/1097-024X(200009)30:11<1167::AID-SPE337>3.0.CO;2-B
http://dx.doi.org/10.1016/j.comgeo.2006.11.009
http://dx.doi.org/10.1016/j.comgeo.2006.11.009
http://dx.doi.org/https://doi.org/10.1016/0020-0190(73)90020-3
http://dx.doi.org/https://doi.org/10.1016/0020-0190(73)90020-3


Finite Algebras for Solid Modeling

Kasper, J.E., Arns, D., 1993. Graphics Programming with PHIGS and PHIGS PLUS. Hewlett-Packard/Addison-Wesley, Inc., Reading, MA, USA.
Muller, D.E., Preparata, F.P., 1978. Finding the intersection of two convex polyhedra. Theoretical Computer Science 7, 217–236.
Orlik, P., Terao, H., 1994. Commutative algebras for arrangements. Nagoya Mathematical Journal 134, 65 – 73. URL: https://doi.org/,

doi:nmj/1118779934.
Paoluzzi, A., 2003. Geometric Programming for Computer Aided Design. John Wiley & Sons, Chichester, UK. URL: https://doi.org/10.

1002/0470013885.
Paoluzzi, A., Ramella, M., Santarelli, A., 1989. Boolean algebra over linear polyhedra. Comput. Aided Des. 21, 474–484. URL: http://dl.acm.

org/citation.cfm?id=70248.70249.
Paoluzzi, A., Shapiro, V., DiCarlo, A., Furiani, F., Martella, G., Scorzelli, G., 2020. Topological computing of arrangements with (co)chains. ACM

Trans. Spatial Algorithms Syst. 7. URL: https://doi.org/10.1145/3401988, doi:10.1145/3401988.
Preparata, F.P., Shamos, M.I., 1985. Computational Geometry: An Introduction. Springer-Verlag New York, Inc., New York, NY, USA.
Requicha, A., 1977. Mathematical models of rigid solids, in: Tech. Memo28, Production Automation Project. University of Rochester, pp. 1–37.
Requicha, A.A.G., Rossignac, J.R., 1992. Solid modeling and beyond. IEEE Comput. Graph. Appl. 12, 31–44. URL: https://doi.org/10.1109/

38.156011, doi:10.1109/38.156011.
Rossignac, J.R., O’Connor, M.A., 1989. A dimension-Independent Model for Pointsets with Internal Structures and Incomplete Boundaries. Tech-

nical Report Research Report RC 14340. IBM Research Division. Yorktown Heights, N.Y. 10598.
Rossignac, J.R., Requicha, A.A., 1991. Constructive non-regularized geometry. Computer-Aided Design 23, 21–32. URL: https://www.

sciencedirect.com/science/article/pii/001044859190078B, doi:https://doi.org/10.1016/0010-4485(91)90078-B.
Rowland, T., 2005. Characteristic function, in: From MathWorld. A Wolfram Web Resource, p. Foundations of Mathematics > Set Theory > Sets.

URL: ttps://mathworld.wolfram.com/CharacteristicFunction.html.
Shapiro, V., 1991. Representations of Semi-algebraic Sets in Finite Algebras Generated by Space Decompositions. Ph.D. thesis. Cornell University.

Ithaca, NY, USA.
Shapiro, V., 1997. Maintenance of geometric representations through space decompositions. International Journal of Computational Geometry &

Applications 7, 21–56.
Shapiro, V., 2002. Solid modeling, in: Farin, G., Hoschek, J., Kim, M.S. (Eds.), Handbook of Computer Aided Geometric Design. Elsevier, pp.

473–518. URL: https://doi.org/10.1016/B978-0-444-51104-1.X5000-X.
Shewchuk, J.R., 2002. Delaunay refinement algorithms for triangular mesh generation. Computational Geometry 22, 21 – 74. URL: http:

//www.sciencedirect.com/science/article/pii/S0925772101000475, doi:https://doi.org/10.1016/S0925-7721(01)00047-5.
Stone, M.H., 1936. The theory of representations for Boolean algebras. Trans. Am. Math. Soc. 40, 37–111. doi:10.2307/1989664.
Tilove, R.B., 1980. Set membership classification: A unified approach to geometric intersection problems. IEEE Trans. on Computer C-29, 874–883.
Voelcker, H.B., Requicha, A.A., 1977. Geometric Modelling of Mechanical Parts and Processes. Technical Report Production Automation Project

Memoranda, 23. University of Rochester. Rochester, N.Y.
Voelcker, H.B., Requicha, A.A.G., 1993. Research in solid modeling at the University of Rochester: 1972-1987, in: Piegl, L. (Ed.), Fundamental

Developments of Computer-Aided Geometric Modeling. Academic Press Ltd.,, London, England, p. 203–254.
Woo, T., 1985. A combinatorial analysis of boundary data structure schemata. Computer Graphics & Applications, IEEE 5, 19–27.
Zhou, Q., Grinspun, E., Zorin, D., Jacobson, A., 2016. Mesh arrangements for solid geometry. ACM Trans. Graph. 35, 39:1–39:15. URL:

http://doi.acm.org/10.1145/2897824.2925901, doi:10.1145/2897824.2925901.

A. Appendix
The purpose of this appendix is mainly to provide some examples of computational methods with chain complexes,

and to remind (mainly from Paoluzzi et al. (2020)) specialized algorithms on such algebraic data structures, normally
executed by basic operations with arrays. The interested reader may find it useful for understanding better the current
prototype and the future implementation as a domain specific language.

A.1. Relevant matters
In this section we give an outline of concepts and algorithms needed to implement the computational pipeline of

Algorithm 0 (Evaluation process) between an input @CSG form and its resolution in term of computer representation
(b-reps or 2D / 3D meshes) to be used in CAD and graphics applications. Many of these were already introduced and
discussed in (Paoluzzi et al., 2020), and are given here for the sake of the reader.

A.1.1. Chain-cochain duality
This §§ is quite technical, and can be skipped at first reading, but justifies our assumption to identify chain and

cochain spaces and notations, being this paper interested only to topology and not to functional analysis over chains.
Any chain space, being linear, is associated with a unique dual cochain space. A linear map L ∶ V → W between

linear spaces induces a dual map L∗ ∶ W ∗ → V ∗ between their dual spaces. If (and only if) the primal chain space
has finite dimension, as in our case, then its dual cochain space has the same dimension, and is therefore linearly
isomorphic to the primal. Moreover, the coboundary operator �k is the dual of the boundary operator )k+1 :

(�k!)g = !()k+1g), for every ! ∈ Ck, g ∈ Ck+1. (4)
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There exist infinitely many linear isomorphisms between a finite-dimensional linear space and its dual. Each such
isomorphism is produced by identifying element-wise a basis of the primal space with a basis of its dual.

By identifying the natural bases of chain and cochain spaces, we express to be only interested to combinatorial
topology aspects of cell complexes. As a consequence, the boundary and coboundary matrices are related by transpo-
sition, and given the coordinate vector of a p-cell, provide both the incident p − 1 and p + 1 cells, respectively. Being
only interested in topological properties, we have adopted the most straightforward choice, identifying elementwise the
natural bases of the corresponding chain and cochain spaces. Under the selected identification, we have that the matrix
[�p−1], representing �p−1 in the natural bases of Cp−1 and Cp, equals the transpose of the matrix [)p], representing )p
in the natural bases of Cp and Cp−1, so that the two relations, critical for our approach, follow:

[�p−1] = [)p]t,

C∙ = (Cp, )p) ∶= C3
�2
⟵
⟶
)3
C2

�1
⟵
⟶
)2
C1

�0
⟵
⟶
)1
C0, where )Cp−1◦ )Cp = 0, and �Cp+1◦ �Cp = 0. (5)

Property A.1.1 (Minimal representation). The LAR cellular representation in Example 2.5.1 is actually redundant,
since the map FV (“faces-by-vertices”) can be generated from V and EV (“edges-by-vertices”) using the methods given
in (Paoluzzi et al., 2020), that are summarized in Section 3.3.1. In other words, given any straight embedding of a
planar graph in a plane, the cellular 2-complex—i.e., the graph complement—and its arrangement in E2 are completely
specified.

CSC sparse matrix in Julia The compressed sparse column (CSC) format represents a sparse matrix M by three (one-
dimensional) full arrays. In Julia, CSC is the preferred (actually unique, by now) storage format for sparse matrices.
The sparse M is stored as a struct containing: Number of rows, Number of columns, Column pointers, Row indices
of stored values, and Stored values, typically nonzeros.

A.1.2. Published algorithms and data structures
Most of algorithms given in this section were already published in Paoluzzi et al. (2020), and are summarized

here for the sake of reader convenience. The extended version of Algorithm 7 is in the manuscript by DelMonte et al.
(2020). See also Figure 10 and Figure 6.

Algorithm 6 (Splitting of 2-cells in 2D). Input: unevaluated LAR; output: set of 1-chain complexes.
Each set (�) of (d − 1)-cells of possible intersection with a fixed (d − 1)-cell �, is efficiently computed by

combinatorial intersection of Box(�) query results on d different (one for each coordinate) interval-trees (Preparata
and Shamos, 1985). In particular, every (�) set, for � ∈ 2 input, is affinely mapped in E3, moving � to the z = 0
subspace. The arrangements (�) = C∙(�) are computed in E2, and then mapped back into E3.

Algorithm 7 (Chain Complex Congruence (CCC)). Input: set of 1(-2)-chain complexes; output: 1(-2)-chain complex.
We have discussed in DelMonte et al. (2020) the block diagonal marshaling matrices [Δ0] and [Δ1] of local

coboundary matrices generated by Algorithm 6. The target of the CCC algorithm is to merge the local chains by
using the equivalence relations of �-congruence between 0-, 1-, and 2-cells (elementary chains). To understand all the
mathematical details, the interested reader should look at the paper by DelMonte et al. (2020). In particular, we reduce
the block-diagonal coboundary matrices [Δ0] and [Δ1], used as matrix accumulators of the local coboundary chains,
to the global matrices [�0] and [�1], representative of congruence topology, i.e., of congruence quotients between all
0-,1-,2-cells, via elementary algebraic operations on their columns.

1. Discover the �-nearness of vertices by calling the function CSG.vcongruence(V::Matrix;epsilon=1e-6) on
the 3 × n input V of 3D coordinates, which returns the new vertices W and the vclasses map of �-congruence.
The 3 × m matrix W holds the coordinates of class representatives, mapped to each class centroid.

2. With the Julia function CSG.cellcongruence we replace each subset of columns of Delta_0 sparse matrix
corresponding to �-near vertices, with their centroid. A new matrix is produced from the array of new vectors.
Finally, equal rows of this new matrix, discovered via a dictionary, are substituted by a single representative.

3. The same function CSG.cellcongruence is also applied to [Δ1], by summing each subset of columns corre-
sponding to each class of congruent edges, so generating a new Julia sparse matrix from the resulting set of
columns. Then, we reduce every subset of equal rows, if any, to a single row representative of congruent faces.
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4. Finally, a higher-level Julia function CSG.chaincongruence maps the input data W, Delta_0, Delta_1, into a
compact representation V, EV, FE of the chain complex, where V ∶ C0 → E3, �0 ∶ C0 → C1, and �1 ∶ C1 → C2

Algorithm 8 (Topological Gift Wrapping). Input: (d − 1)-chain complex; output: (d)-chain complex.
The TGW algorithm (Paoluzzi et al., 2020) is summarized here in d-space. The algorithm builds the unknown

Ud basis of Cd space one element at a time, as a new output column, built as linear combination of Ud−1 basis of
Cd−1. The aim is to discover the unknown atoms of the Ed arrangement, like enclosing them in an envelope petal by
petal. The name TGW comes from the similarity with Gift Wrapping algorithm by Jarvis (1973), but is not restricted
to convex shapes, and uses )d−1 an �d−2 topological operators. The input is the sparse matrix [)d−1]; the output is the
matrix [)+d ] ∶ Cd → Zd−1, from d-chains to oriented (d-1)-cycles. It is based on the topological property that the
intersection of any two d-chains is exactly one or zero (d − 1)-chain. It follows that every basis (d − 1)-chain (column
of input matrix) must be used exactly twice, summing to 2n, where n is the number of columns of input matrix [)d−1].
This fact provides a simple tool for halting the algorithm, that stops when input (d−1)-chains have been used 2n times.
The interested reader may find a through 3D discussion of this algorithm in (Paoluzzi et al., 2020).

1. Initialization: m, n = [)d−1].sℎape ; marks = zeros(n); [)+d ] = [] ;
2. while sum(marks) < 2n do

(a) select the (d − 1)-cell seed of the column extraction
(b) compute boundary cd−2 of seed cell
(c) until boundary cd−2 becomes empty do

i. corolla = []
ii. for each “stem” cell � ∈ cd−2 do

a. compute the � coboundary
b. compute the new petal cell
c. orient petal and insert it in corolla

iii. insert corolla cells in current cd−1
iv. compute again the cd−2 boundary of cd−1

(d) increment the marks counters of used cells
(e) append a new column to [)+d ]

Algorithm 9 (From cycles to boundaries). Input: (d)-chain complex; output: evaluated LAR (Geometric Complex).
We discuss here how to reduce the matrix [)+3 ] of irreducible 2-cycles generated by the TGW Algorithm 8, into

the matrix [)3] of 2-boundaries of irreducible 3-chains (atoms) of the E3 arrangement induced by the input.

1. Search, for each connected component k of the 2-complex generated by congruence Algorithm 7, the [)+3 ] outer
column;
(a) Repeat the search and elimination for each matrix [)+3 ]k of a component.

i. In each [)+3 ]k look for the cycle which contains the highest number of non-zeros,
i.e., the highest number of 2-cells.

ii. Before elimination, check that the involved subset of vertices
contains the extreme values (max and min) for each coordinate.

iii. If true, remove this cycle from the component matrix.
In the very unlikely opposite case, the second longest cycle will be candidate, and so on.

2. All component matrices [)3]k without the local outer cycle (1 ≤ k ≤ n), are composed together columnwise is
a single sparse block matrix [)3] = [[)3]1⋯ [)3]k⋯ [)3]n].

By construction, each irreducible input 3-chain u ∈ C3 corresponds to a single connected PL 3-cell, possibly non-
convex and non path-contractible to a point. When this algorithm terminates, the boundary of a 3-chain may consists
of one or more shells, i.e., may possibly be non-connected, made by one or more isolated 2-cycles (corresponding to
internal holes and/or unconnected components).
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Algorithm 10 (Topological invariants). Input: geometric data structures; output: several types of invariants).
Invariants are predicates (functions that return a Boolean value) that must be satisfied by current values of variables

in specific points during the program evaluation process. In particular, topological invariants are evaluated dynami-
cally during execution to catch common numerical errors. The TGW algorithm is particularly fragile with respect to
topological errors of this type, so that few invariants are evaluated in various points of the pipeline. The more common
invariant is the topological characteristic, or Euler number, both in 2D and in 3D. In fact we have V − E + F = 2 and
V − E + F − C = 0 on the 2-sphere and the 3-sphere, topologically equivalent to the plane and the space, respectively.
Some invariants are therefore computed:

1. Before 2D splitting, for each input 2-face, we have a “soup” of line segments to mutually intersect, with E ≤ 2V;
2. After 2D splitting and TGW, for each simply connected 2-face component, it is necessarily V − E + F = 2.
3. Before chain complex congruence, when building [Δ0] and [Δ1] sparse container matrices, [Δ1][Δ0] = 0
4. After CCC we must have, for the quotient topology, that [�1][�0] = 0 holds, with l = V columns of [�0];
5. Before TGW in 3D, with input [)2]m,n = [�1]⊤ we have m = E, n = F, and l − m + n = p;
6. After TGW in 3D, the identity V − E + F − C = 0 must hold, where C = p.

A.2. Boolean DSL
In this section we discuss a preliminary design of aDomain Specific Language (DSL) about the Constructive Solid

Geometry (CSG) algebra introduced in this paper, as a Julia’s small set of macros, being currently under development.

Functional form Let ⟨;⊗1,… , ⊗k⟩ be an algebra generated by  = {ℎ1, ..., ℎm}. A syntactic expression con-
structed as a valid sequence of operations ⊗i on n variables xi denoting elements of  is called a functional form Φ
over the algebra . Note that Φ(x1, ..., xn) is not a function (is not a set of ordered pairs) but defines a function of n
arguments � ∶ n → .
Remark (Evaluation process). We use capital Greek letters such Φ,Π, etc. to denote forms, and denote functions over
algebras by lower case Greek letters. The distinction between forms and functions is important. Forms and functions
over an algebra are formally related by an evaluation process, assigning values to the variables in the form, and com-
puting the resulting value of the expression. This relationship is expressed by writing �(x1, ..., xn) = |Φ(x1, ..., xn)|.

Property A.2.1 (Evaluation process). If is a finite algebra, there is a finite number of distinct functions over, but
an infinite number of distinct forms, e.g., strongly redundant. If S ∈  is an element of the algebra generated by ,
there exists a form Φ over  such that: S = |Φ()|.We then say that S is describable in  by . In general, Φ()
is not unique, but |Φ()| is unique by definition (Shapiro, 1991).

Domain Specific Language The Domain Specific Language (DSL) proposed in this section for our CSG algebra
is very simple. Its well-formed formulas are made by Julia identifiers of variables, the assembly constructor function
Lar.Struct(), Boolean operation symbols, and round brackets. A CSG expression is coded as a prefix Julia macro
@CSG, to provide a simpler interface to create Julia objects with complicated structure. The list of object models
associated to variables is extracted by traversing the @CSG expression. Each object will be located and oriented in
world coordinates using the Lar.Struct datatype, allowing to combine hierarchical assemblies (cellular complexes
in local coordinates) and affine transformations.
Boolean forms Clause is an expression formed from a finite collection of literals that matches other clauses and/or
LAR models, by matching Boolean combinations of other clauses. It is built using one or more @CSG macro, each
one with a typed “Struct” occurrence. The semantics of a Struct, natively including only “aggregation” and “affine
transformation”, will be enriched by n-ary union, intersection, difference, and by complement symbols. Let A, B, C,…
be either LAR models or Struct literals or values. We have, with :union, :intersect, :diff symbols, and @CSG a macro:

@CSG (+, A,B,C,...) := Struct (:union, [A,B,C,...])
@CSG(*, A,B,C,...) := Struct (:intersect, [A,B,C,...])
@CSG (-, A,B,C,...) := Struct (:diff, [A,B,C,...])
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@CSG (+,X1,X2,X3,Y,Z) @CSG (+,X1,X2) @CSG X1

A = @CSG (-,(*,Y,Z),X1,X2,X3) @CSG (+,A,(*,B,Z)) @CSG (+,(*,Y,Z),A)

@CSG (+,A,X1) B = @CSG (+,X1,X2,X3)) @CSG (+ B,Y,Z)

Figure 13: Five input primitives  = {X1, X2, X3, Y, Z}, with three orthogonal cylinders, a cube and a sphere. The E3 arrange-
ment they generate is (S), shown exploded, together with evaluated DSL formulas (see Section A.2). The value returned
by evaluating a Julia @CSG macro is of type GeometricComplex, i.e., an evaluated LAR (see section 2.4). There are 40 atoms
in this algebra, and 240 ≃ 1012 terms with different structure. The coordinate representation of each atom is a 40-element
BitArraywith only one bit equal to 1 (true), and all the others equal to 0 (false). For computations of CSG forms with large
algebras, we use sparse vectors. It is worthwhile to remark that two partial solids are stored as bit strings within variables A
and B, and that their symbols may be used in other @CSG expressions. Bit strings are both the structure of Boolean forms and
coordinate representations of 3-chains. By multiplication times the sparse matrix [)3] we get the b-rep as an oriented 2-cycle
(see Example 3.1.1).

B. Appendix: Julia Examples
Julia’s 2-array (matrix) names made by two characters from V,E,F,C, which stand for vertices, edges, faces, and

volumes, in turn for 0-, 1-, 2-, and 3-cells, respectively, will be often used instead of mathematical simbols )p and �q .
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In such cases we always represent the maps: YX : X → Y, and YX’ = XY.

B.1. Simple 2D example
In the following example we build the sparse matrix [)2] of operator )2 ∶ C2 → C1 from multiplication of char-

acteristic matrices K(EV) and the transposed K(FV). For details see DiCarlo et al. (2014b). Some matrices are written
transposed here for sake of space. The function K, to contruct sparse characteristic matrices, is given in Algorithm 1.

Example B.1.1 (1-boundary). Continuation from Examples 2.5.1 and 2.5.2. Variables b1 and b2 in this example are
the 1-cycles in Figures 14a and 14b, generated by product of 2-boundary operator matrix [)2] ≡ EF, times a 2-chain
([1 1 1]’ and [1 1 0]’, respectively). The Julia function Sparsearrays.findnz reports two arrays of indices and
non-zeros of a sparse vector, and these are used as indices for the EV array, to extract the edges of the 1-cycle. Function
findnz is the inverse of the sparse and sparsevec functions of Julia’s SparseArrays package, which retrieves the
inputs used to create the sparse array.

julia> Matrix( K(EV) * K(FV)’)’
2 1 2 1 2 1 2 1 2 2 0 0 2 2
1 2 1 2 1 2 1 2 0 0 2 2 2 2
0 0 2 2 2 2 0 0 0 2 2 0 1 1

julia> EF = (K(EV) * K(FV)’) .÷ 2;

julia> Matrix(EF’)
3x14 Array{Int64,2}:
1 0 1 0 1 0 1 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 0 1 1 1 1
0 0 1 1 1 1 0 0 0 1 1 0 0 0

julia> b1 = (EF * [1 1 1]’) .% 2
1x14 Array{Int64,2}:
1 1 0 0 0 0 1 1 1 0 0 1 0 0

julia> b2 = (EF * [1 1 0]’) .% 2
1x14 Array{Int64,2}:
1 1 1 1 1 1 1 1 1 1 1 1 0 0

julia> SparseArrays.findnz(b1)[2]
[1, 2, 7, 8, 9, 12]

julia> SparseArrays.findnz(b2)[2]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

julia> EV[findnz(b1)[2]]
[1, 2]
[2, 3]
[10, 11]
[11, 12]
[1, 10]
[3, 12]

julia> EV[findnz(b2)[2]]
[1, 2]
[2, 3]
[4, 5]
[5, 6]
[7, 8]
[8, 9]
[10, 11]
[11, 12]
[1, 10]
[4, 7]
[6, 9]
[3, 12]

Note also that in the product matrix A = EF of characteristic matrices, like in row 1 of left snippet, a term aij = ei×fj
denotes the number of 0-cells shared by chains ei and fj .

(a) (b)

Figure 14: The 1-boundaries C1 ∋ [c1] = [)2][b1] = [1,1,0,0,0,0,1,1,1,0,0,1]’ and C1 ∋ [c2] = [)2][b2] =
[1,1,1,1,1,1,1,1,1,1,0,0]’ of two 2-chain vectors [b1] = [1,1,1]’, and [b2] = [1,1,0]’, with b1,b2 ∈ C2. Note
that the b2 ∈ C1 cycle is disconnected, i.e. reducible to the sum of two irreducible 1-cycles.
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B.2. Computational examples
This section provides the reader with some simple examples of solid modeling programming stylewith Julia and its

sparse and non-sparse arrays. We believe that giving a look to a few simple concrete examples is useful for understand-
ing our computational approach and its possible developments. Sections B.2.1 and B.2.2 aim at showing the sequence
of spaces and transformations that finally produce a solid model when evaluating a Boolean expression through a
function application Lar.bool3d(assembly). This one is the function of our current prototype which implements
the whole computational pipeline, connecting all the subsystems shown in Figure 6b. This function features as formal
parameter a single value assembly, of Lar type Struct.

We show in Section B.2.3 that the exactness property ()2 = 0) of any chain complex can be used to check the
accuracy of calculations. The Euler characteristic of the union solid model generated in Example 2.5.3 is stepwise
computed in Section B.2.4, where we use the chain maps )3, )2, )1 to obtain the sets (and numbers) of faces, edges
and vertices belonging to the boundary of the union solid, which is a closed 2-manifold of genus zero (see Figure 15).
As we said before, a specific API and a mini DSL for CSG expressions based on Julia’s macros and metaprogramming
are being planned (see Section A.2).

B.2.1. Variadic union
The term variadic stands for taking a variable number of arguments; especially, taking arbitrarily many arguments.

(a) (b) (c) (d) .

Figure 15: Boolean union A∪B ∪C of three cubes (from assembly of Example 2.5.3), with 2-cells in different colors: (a)
view from the front; (b) view from the back; (c) front with exploded 2-cells; (d) back with exploded 2-cells. For clarity
sake, only the boundary 2-cells are displayed. The space partition generated other 2-cells in the interior, of course.

In order to compute the union of three affinely transformed instances of the unit cube, we consider the assembly
expression given in Example 2.5.3. First we get the E3 space partition and the structure matrix of generators produced
by the function Lar.bool3d applied to assembly object; then we combine the logical arrays A, B, and C, building the
value of BitArray type for the union variable, that stores the logical representation of the specific 3-chain. Let us
remark that the bitwise “or” operator (“|”) is applied in a vectorized way to arrays, by inserting a dot character:

julia> W, (EV, FE, CF), boolmatrix = Lar.bool3d(assembly);
julia> A,B,C = boolmatrix[:,2],boolmatrix[:,3],boolmatrix[:,4]
julia> union = .|(A, B, C);
julia> @show union;

union = Bool[false, true, true, true, true, true, true, true]

Finally, the boundary 2-cycle faces is generated by multiplication of the sparse matrix [)3] (i.e., CF’) times the
binary converted union. The mapping Bool → {0, 1} is applied via a vectorized application of the Int8 constructor:

julia> faces = CF’ * Int8.(union);
julia> @show faces;
faces = [1, 0, -1, 0, 0, 0, -1, 0, 1, 0, 1, 0, 0, 0, 1, -1, 0, -1, 0, 0, 1, -1, 0, -1, 1,
0, 0, 0, 1, 1, 0, -1, 0, 0, 1, 0, -1, 0, 0, 0, -1, 1, 0, 1, 0, 0, -1]

With fk ∈ U2, where U2 is the basis of chain space C2 generated by  (assembly), we may write in chain notation:

faces ↦ fA∪B∪C =f1 − f3 − f7 + f9 + f11 + f15 − f16 − f18 + f21 − f22 − f24
+ f25 + f29 + f30 − f32 + f35 − f37 − f41 + f42 + f44 − f47

(6)
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The boundary representation, i.e., the subset of boundary’s oriented faces, is given by the 2-cycle in Equation (6). They
are transformed into a boundary triangulation, needed for graphic display, by proper use of [)2] = FE’ and [)1] = EV’.

B.2.2. Meaning of ) matrices
Continuation from Section B.2.1. By definition, the matrix [)2] = FE’ = EF contains by columns the U2 basis

expressed as an ordered sequence of irreducible 1-cycle vectors. Signed values provide cyclic ordering of 1-cycles of
edges, easily extendible to higher dimensions. It is often stated that cyclic ordering of polygon sides is not extendable
to higher dimensions. On the contrary, this can be easily done, using d-cycles. With eℎ ∈ U1, we have:

FE’[:, 1] ↦ f1 = e1 -e2 +e4 -e5 +e6 -e7 +e8
FE’[:, 2] ↦ f2 = e3 +e7 -e8
... ... ...
FE’[:,47] ↦ f47 = e64 -e69 +e77 -e81 -e86 +e88

Each 1-cell eℎ is mapped to an ordered pair of 0-cells vj ∈ U0, via the boundary matrix [)1] = [�0]t = EV’:

EV’[:, 1] ↦ e1 = v2 - v1
EV’[:, 2] ↦ e2 = v6 - v3
... ... ...
EV’[:,49] ↦ e49 = v29 - v26

The geometric embedding in E3 of the A ∪ B ∪ C model generated in Section B.2.1 is provided by the coordinate
array W ∈ ℝ349, with 3 rows and 49 columns. The coordinate array V embedding the initial assemblymodel, consisting
of three non (yet) intersected cubes, has instead dimension 3 × 24.

B.2.3. Correctness checks
A computational approach based on chain complexes offers unique tools for checking the accuracy of calculations,

that are correct by construction, since both )2 = 0 and �2 = 0 hold, when applied to any chain. In words, every
boundary is a cycle, or equivalently: the chain complex is exact. Also, we know that the boundary of every solid is a
possibly non-connected closed surface, hence a 2-cycle. This holds if and only if the construction of [)] matrices is
done correctly. In the following example, we start from the chain of boundary faces of Section B.2.1.

julia> pairs = [(f,sign) for (f,sign) in enumerate(CF’ * Int8.(union)) if sign != 0];
julia> faces = map(prod, pairs); # standard map of functional languages
julia> @show faces; # @show is a macro to view values into variables
faces = [1,-3,-7,9,11,15,-16,-18,21,-22,-24,25,29,30,-32,35,-37,-41,42,44,-47]

Weobtain the following 2-chain as boundary 2-cycle. The cardinality of faces array in union boundary is�2 = 21.

faces ↦ fA∪B∪C =f1 − f3 − f7 + f9 + f11 + f15 − f16 − f18 + f21 − f22 − f24 + f25 + f29 + f30
− f32 + f35 − f37 − f41 + f42 + f44 − f47

(7)

The edge subset on the boundary of the union solid is computed by: (a) transforming the faces array of signed indices
of 2-cells into the COORD representation (rows,cols,vals) of a sparse matrix (Cimrman, 2015); (b) holding a single
boundary face (2-cell) per column in facemat; (c) multiplying this matrix times the [)2] operator, thus obtaining the
new sparse matrix edges4face, holding a face 1-cycle per column; and, finally, (d) extracting only the positive instance
of boundary edges belonging to the boundary faces. The number of boundary edges �1 = 57 is one half of the non-zero
terms in the sparse vector edges4face. The other half has the opposite sign, so that the total sum is zero:

julia> nonzeros = hcat([[abs.(face),k,sign(face)] for (k,face) in enumerate(faces)]...);
julia> facemat = sparse([nonzeros[k,:] for k=1:size(nonzeros,1)]...); # load 2-cells in facemat
julia> edges4face = FE’ * facemat; # generate 1-cells in sparse edges4face array
julia> rows,cols,vals = findnz(edges4face); # extract (I,J,X) from sparse array edges4face
julia> edges = [e*sign for (e,sign) in zip(rows,vals) if sign==1];

# filter positive edge indices
julia> @show edges; # edge indices in EV array of array
edges = [1,4,6,8,10,14,18,20,9,23,26,27,2,34,30,36,38,5,29,24,43,15,42,28,47,51,53,54,21,52,57,

48,61,62,64,50,59,66,55,58,40,63,68,77,79,80,35,78,83,72,88,7,74,87,69,81,86]

We remark again that, without filtering out the terms of negative sign, we would get an edges array of signed
indices summing to zero, according to the constraint )2 = 0. This attests to the exactness of calculations.
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B.2.4. Euler characteristic
Euler characteristic of the connected boundary of a solid of genus g in E3 is defined as

�(g) = �0 − �1 + �2 = 2 − 2g,

where �0, �1, �2 are, respectively, equal to the number of vertices, edges and faces on the boundary of the solid. In
our case, continuing as test-case the Example started in Section B.2.3, the number of boundary faces is �2 = 21,
according to Eq. (7). The edges indices given in Section B.2.3 determine the 1-chain eA∪B∪C (or, more precisely, the
non-independent 1-cycle generated by the independent 2-cycles of boundary faces). The cardinality of the edges array
provides �1 = 57. Note that, in order to counting the edges, we consider only the positive instances of 1-cells, since
they appear in pairs (positive and negative) in a closed and coherently orientedcellular 2-complex.

edges ↦ eA∪B∪C = e1 + e4 + e6 + e8 + e10 + e14 + e18 + e20 + e9 + e23 + e26 + e27 + e2 + e34 + e30 + e36 + e38 + e5 + e29 + e24
+ e43 + e15 + e42 + e28 + e47 + e51 + e53 + e54 + e21 + e52 + e57 + e48 + e61 + e62 + e64 + e50 + e59 + e66 + e55
+ e68 + e77 + e79 + e58 + e40 + e63 + e80 + e35 + e78 + e83 + e72 + e88 + e7 + e74 + e87 + e69 + e81 + e86

(8)

The final script computes the 0-chain vA∪B∪C of vertices on the boundary of union solid, with cardinality �0 = 38.
julia> nonzeros = hcat([[abs(e),k,sign(e)] for (k,e) in enumerate(edges)]...);
julia> edgemat = sparse([nonzeros[k,:] for k=1:size(nonzeros,1)]...);
julia> verts = sort(collect(Set(findnz(copEV’ * edgemat)[1])));
julia> @show verts;
verts = [1,2,3,4,5,6,7,8,9,10,12,15,17,18,19,20,21,24,25,26,27,30,31,32,33,34,

35,36,37,38,39,41,44,45,46,47,48,49]

In chain notation:
verts ↦ vA∪B∪C = v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 + v9 + v10 + v12 + v15 + v17 + v18 + v19 + v20 + v21 + v24 + v25 + v26

+ v27 + v30 + v31 + v32 + v33 + v34 + v35 + v36 + v37 + v38 + v39 + v41 + v44 + v45 + v46 + v47 + v48 + v49 (9)

The generated union solid model has topological genus g = 0 (see Figure 15). Therefore, the test of correctness
provided by checking the Euler characteristic � via Eqs. (7), (8), and (9), gives the correct answer:

�(union) = �0 − �1 + �2 = 38 − 57 + 21 = 2

Example B.2.1 (2D variadic Booleans). Figure 16 shows some simple examples of 2D variadic Booleans, obtained
by applying the Boolean operators “.|”, “.-”, “.!”, and “.&” to a Struct(assembly) expression without affine
transformations, using 2-cells (B-reps of generators) imported from SVG (Simple Vector Graphics).

(a,b) (c,d) (e,f) (h,g)

Figure 16: (a,b) start-to-end: from polygon input via SVG to (exploded) difference of outer box and interior walls; (c,d)
boundary of union and union of some shapes; (e,f) difference 2-complex and its boundary; (g,h) boundary of outer box
minus the previous 2-complex, and the corresponding 2-complex.
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