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Abstract. We introduce a novel method for dynamic generation of decompositions of
polytopal complexes with meshes of quads, hexahedra and higher dimensional cells having
the hypercube topology. Both the algorithm and the mesh representation are multidimen-
sional, and can be used with complexes of dimension two, three, four, and with discrete
higher-dimensional spaces, both manifold and non manifold. The generation is very fast,
since the refined meshes are derived by previously available cells using topological for-
mulas and code templates, and can be easily parallelized. The proposed approach can
be applied to any cell decomposition with convex cells, both solid and embedded, of any
intrinsic dimension. Last but not least, the refined cells have the hypercube topology, as
required by most simulation codes.

1. Introduction

The last open problem (P23) at the very end of Edelsbrunner’s book “Geometry and
Topology for Mesh Generation” [7], asks “What is the asymptotic order of the maximum
number of hexahedral in a hexahedral mesh with n vertices?”. In this paper we introduce
a constructive method answering some related questions in a multidimensional setting.

First we give a definition of hyper-cuboidal complex (HCC), that generalizes the concept
of hexahedral mesh to higher (and lower) dimensional spaces. Then we introduce a novel
method to partitionate any finite-dimensional d-complex of polytopes, and to produce a
HCC where every k-cell has the topology of the k-hypercube (0 ≤ k ≤ d). In 2D we obtain
a mesh of quads from any mesh of convex polygons; in 3D we get an hexahedral mesh from
any mesh of 3-polytopes such that all the vertices of every cell are trihedral. An interesting
result is the following: a d-polytopal mesh E is subdivided into a HCC with n vertices,
n = |E0|+ · · ·+ |Ed|, where Ek denotes the input k-skeleton.

In particular, we use the abstract poset of a cell complex, completely characterized by
its Hasse graph, as a representation of the complex. The Hasse graph H = (N,A) of a
d-complex is a d-partite graph, where nodes N and arcs A are partitioned into disjoint
subsets Nk and Ak ⊂ Nk ×Nk+1 (0 ≤ k ≤ d− 1), respectively.

The very simple generative algorithm introduced in this paper builds in a large extent
over an amazing property relating the hypercube and simplex topologies: it is known [8]
that the Hamming graph (see Section 2) is isomorphic to the Hasse diagram of the powerset
lattice. In particular, the Hamming graph of the d-hypercube is isomorphic to the Hasse
graph of the (d−1)-simplex. Of course, the topology of the simplex is combinatorially much

easier to work with, since a d-simplex contains all
(
d
k

)
subsets of k vertices as (k− 1)-faces.
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Strengths of this approach are: (a) an upper bound on the hexahedral decompositions of
d-polytopal meshes with n-vertices, (b) a constructive characterization of the hexahedral
mesh topology, and (c) a d-dimensional subdivision hierarchy enabling efficient hexahedral
streaming, compression, and progressive computations on meshes. The main open ques-
tions left by the present work are: (a) the current decomposition is not (yet) provably
optimal, and (b) no bounds are yet given on the quality of the hexahedral mesh elements,
e.g. by guaranteeing that the Jacobian norm is positive for all hexahedra in the mesh in
the 3D case.

Some references related to hexahedral decompositions are: [5], [6], [11], [2], [3], [12].
The paper is organized as follows. Section 2 provides some background about poly-

topal complexes and related concepts like the Hasse graph as the representation of a chain
(cochain) complex and the operations of boundary and coboundary. Section 3 deals with
some introductory concepts implied by the relationship between the Hasse diagram of a
d-complex and the Hamming graphs of k-cuboids (0 ≤ k ≤ d), that is the main tool used in
this paper. Section 4 discusses the HCC (Hyper-Cuboidal Complex) generative algorithm,
giving both an informal preview and a formalized characterization. Section 5 quickly ex-
plores the range of validity of the algorithm. Section 6 provides a set of examples, showing
the rate of growth of the number of k cells in a d-grid, and supplies the generation of
decompositions of the circle, the sphere, and the simplest non-convex polyhedron. In the
conclusion section we outline the open problems and the next research directions related
to this approach.

2. Background

2.1. Polytopal complex. A polytope in Ed is a bounded convex subset of Ed. A polytopal
complex is a cell complex where all cells are polytopes. Simplicial complexes, quad meshes,
hexahedral meshes, and in general every well-formed decomposition of finite spaces with
convex subsets are polytopal complexes.

2.2. Hasse graph representation. A transitive reduction of a binary relation R on a set
X is a minimal relation R′ on X such that the transitive closure of R′ is the same as the
transitive closure of R. The Hasse diagram is a mathematical diagram used to represent
a finite poset (partially ordered set) as a drawing of its transitive reduction. In practice,
it is an implicitly oriented drawing of a relation of partial order. In our setting a Hasse
diagram represents the (direct) containment between the faces of a set of polytopes.

The Hasse graph can be shown to be a direct implementation of the chain (cochain)
complex defined by a decompositive representation scheme in solid modeling [4]. This
representation is very general, in that it applies to most domains that can be character-
ized as cell complexes, without any restrictions on their type, dimension, codimension,
orientability, manifoldness, and connectedness.

Implementation. The Hasse diagram implementation we make use in the XGE geometric
kernel of the Python package pyplasm (see Section A), is locally a DAG but is globally
cyclic, since every highest level node n ∈ Nd (i.e. a d-face) is connected by a direct arc
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(n,m) to every lowest level node m ∈ N0 (i.e. a 0-face) it is composed of. In other
words, the arc subset Ad ⊂ Nd × N0 corresponds to the relation of convex combination
between vertices and highest-dimensional cells of the complex; conversely, the subsets of
arcs Ak ⊂ Nk−1 × Nk (1 ≤ k ≤ d) represent the (direct) containment between faces of a
polytopal complex.

2.3. Hypercube topology. The topology of hypercubes is amazingly rich and beautiful.
Some aspect of this richness, useful in the remainder of this paper, are summarized in this
section.

Definitions. The d-dimensional hypercube Qd := [0, 1]d can be defined as the Cartesian
product of d closed intervals [0, 1] ⊂ R. It can be also defined either as the convex hull of
its 2d vertices, or as the point-set intersection of internal halfspaces bounded by the affine
hulls of 2d (d-1)-facets. Let remember that a half-space is either of the two parts into
which a hyperplane divides an affine space. Here the hyperplanes are the affine hulls of
hypercube facets, i.e. of convex faces of dimension d− 1.

Coordinate representation. Each d-hypercube vertex can be identified by a d-tuple of binary
coordinates. The 0-dimensional hypercube has only one vertex, with zero coordinates.
Inductively, the d-hypercube can be generated by adding either one more 0 or one more
1, respectively, to two copies of the coordinates of vertices of the (d − 1)-dimensional
hypercube.

Hamming graph. The Hamming graph H(d, q) is the graph Cartesian product of d copies
of the complete graph Kq. Therefore it has has qd vertices.

Hypercube topology. The d-hypercube topology is completely characterized by the Hamming
graph H(d, 2), i.e. by a graph (N,A) with |N | = 2d, and such that there is an ard (i, j) ∈ A
if and only if the arcs ni and nj differ precisely by one coordinate. The Hamming graph
of the 4-dimensional hypercube is shown in Figure 1.

Hasse diagrams and Hamming graphs. It is important to notice that the Hamming graph
of the d-hypercube is isomorphic to the Hasse diagram of the (d− 1)-simplex. Looking at
Figure 1, the reader may note that the drawing is isomorphic to the Hasse diagram of the
tetrahedron σ3, characterized by one 3-face, four 2-faces, six 1-faces, four 0-faces, and one
(-1)-face (the empty set). We make use of this property in the mesh refinement algorithm
introduced in this paper.

3. Cardinality of Hasse graphs

We can build the Hasse graph H(c3) of the 3-cube starting from the Hasse graph H(σ2)
of the 2-simplex. In particular, we may get the k-level nodes (k-cells) of the output graph
H(c3) from the set of sublattices of depth k in the input graph H(σ2). Therefore, according
to the above and looking at Figure 3, we get that the number of 0 cells in H(c3) is given
by the number of nodes 1 + 3 + 3 + 1 = 8 in H(σ2); the number of 1-cells in H(c3) is the
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Figure 1. The Hamming graph of the 4D hypercube. The binary strings
in (a) are substituted in (b) by their decimal values.
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Figure 2. (a) The four 3-cells incident on vertex v15 of the 4D hypercube;
(b) the 3-cells incident on vertex v0.

number of edges 3 + 6 + 3 = 12 in H(σ2); the number of 2-cells in H(c3) is the number of
square subgraphs 3 + 3 = 6 in H(σ2).

4. HCC generative algorithm

In abstract terms, we can see the generation of a HCC as a morphism γ : Hd → Hd

between Hasse graphs of d-complexes, that takes into account the topology of (k − 1)-
simplices (1 ≤ k ≤ d). Let consider the Hasse graphs H := (N,A), and H ′ = γ(H) :=
(γ(N), γ(A)) = (N ′, A′). Accordingly, nodes in N ′k are one-to-one with the H subgraphs
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Figure 3. The relationship between the Hamming graph of the 3-cube
(i.e. the Hasse graph H(σ2) of the 2-simplex) and the Hasse graph H(c3)
of the 3-cube. Just a A1 subset, corresponding to the arcs on the boundary
of the yellow face on the left diagram, is shown in the right diagram. In
yellow are highlighted the 4 vertex-nodes, the 4 edge-nodes and their face-
node.

Figure 4. The hexahedral complexes generated by the decomposition of
the 3D cube complex after one and two iterations.

that are isomorph to the Hasse graph of the simplex σk−1; and the arc (u,w), with u,w ∈
N ′, exists in A′ if and only if γ−1(u) is a subgraph of γ−1(w).

4.1. Algorithm preview. The first step of the generative algorithm takes the Hasse graph
H = (N,A) of the input complex and starts from the fact that the node set N is one-to-one
with the k-faces of the complex (0 ≤ k ≤ d). Therefore, the Hasse graph H ′ = (N ′, A′) of
the output HCC is built bottom-up, starting from the subset N ′0 of nodes representing the
0-faces of the ouput complex. In particular, in each node n′ ∈ N ′ is stored the coordinate
position of the centroid of one face of the complex. By definition, the set N ′0 is isomorphic
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to the set N via the identity map:

(1) N ′0 = γ(N) := id(N) = N.

The geometric relationship between the two node sets is elucidated in Figures ??a and ??b,
where an exploded view of the HCC of the tetrahedral complex inscribed in the unit 3D
sphere is shown.

Subsequently, the subset N ′1 of H ′ nodes corresponding to the 1-cells of the HCC is built.
We therefore look in H for all the subgraphs isomorph to the Hasse graph of the 0-simplex.
The latter is an algebraic lattice represented by only two nodes (the zero and the unity)
and only one arc. The set of all such subgraphs, to be mapped one-to-one with the node
subset N ′1, is therefore constituted by the set A of arcs of H = (N,A). Therefore we can
easily build N ′1 from the graph H by considering the downwards arcs leaving from each
n ∈ Nk (1 ≤ k ≤ d), i.e.:

N ′1 = γ(A) =

d⋃
k=1

γ(Ak)

The arc subset A′1 ⊂ N ′1×N ′0 contains two elements for each node n′ ∈ N ′1. In particular,
for each n′ = γ(a), with a = (nh, nk) ∈ A, we place in A′1 the pair of arcs (n′, n′h), (n′, n′k).
According to (1), n′h = γ(nh) = nh, and n′k = γ(nk) = nk. An exploded picture of the
partial construction, up to this point, of the HCC complex represented by the Hasse graph
H ′, is given in Figure ??c.

The same construction applies to the upper levels N ′k and A′k (2 ≤ k ≤ d) of the H ′

graph. Specifically, nodes n′ ∈ N ′k are the images, under the morphism γ, of the Hasse
graph of the (k − 1)-simplex, that we denote H(σk−1). The next problem hence concerns
the extraction from H of all the subgraphs isomorphic to H(σk−1). Luckily, the structure
of this graph is very simple. We discuss the algorithm for this extraction in the next two
subsections.

4.2. Lattice character of H(σk). The special character of Hasse graphs of simplices is
inherent to their lattice nature. Therefore they have a lowest element (the zero of the
lattice) and a highest element (the lattice’s unit). Also, the longest graph path in H(σk)
has length k. Last but not least, H(σk) is isomorphic to the lattice of the power set P(K),
the set of all the subsets of K = {0, 1, . . . , k}. This lattice is built by assuming K as the
graph root (the lattice’s unit), then by connetting it to the nodes that represent the k + 1
subsets of k elements extracted from K, and then by repeating ricorsively this construction
for each new node, until the k + 1 singletons {0}, {1}, . . . , {k} are connected to the empty
set, i.e. to the lattice’s zero.

4.3. Enumeration of H subgraphs isomorphic to H(σk). According to the lattice
properties recalled above, the enumeration of the H subgraphs isomorphic to H(σk) can
be generated by considering each node

n ∈
d⋃

h=d+1−k
Nh
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Algorithm 1: Hyper-Cuboidal Complex (HCC) Splitting

Data: graph g = (N,A) = ∪k(Nk, Ak), 0 ≤ k ≤ d
Result: new graph g′ = (N ′, A′) = (∪kN ′k,∪kA′k), 0 ≤ k ≤ d
begin

1 for n ∈ N do // create N ′0
2 new n′ ∈ N ′0
3 n′ ←− Centroid(n)

4 for k ∈ {1, d− 1} do // create N ′k, A′k−1, 1 ≤ k ≤ d
5 for h ∈ {k, d} do
6 for n ∈ Nh do
7 Hn ←− DownTraverse(g, n, k)

8 F ←− {UpTraverse(g′, Hk, k − 1) | N ′0 ⊃ Hk ∈ Hn}
910 for F ′k−1 ∈ F do // update N ′k

11 new n′ ∈ N ′k
12 for f ′ ∈ F ′k−1 ⊂ N ′k−1 do // update A′k−1
13 new a′ ∈ A′k−1
14 a′ ←− (f ′, n′)

15 for n ∈ Nd do // create N ′d, A′d−1, A′d
16 Hn ←− DownTraverse(g, n, d)

17 F ←− {UpTraverse(g′, Hd, d− 1) | N ′0 ⊃ Hd ∈ Hn}
18 V ←− {RemoveDups(Hd) | N ′0 ⊃ Hd ∈ Hn}
19 for (F ′d−1, V

′
0) ∈ F × V do // create N ′d

20 new n′ ∈ N ′d
21 for f ′ ∈ F ′d−1 ⊂ N ′d−1 do // update A′d−1
22 new a′ ∈ A′d−1
23 a′ ←− (f ′, n′)

24 for v′ ∈ V ′0 ⊂ N ′0 do // update A′d ≡ A′−1
25 new a′ ∈ A′d
26 a′ ←− (n′, v′)

as the root of a set of lattice subgraphs of H of length k. Let us denote as γk(n,m) the
(unique) lattice subgraph with lenght k, unit n and zero m. In order to generate the nodes
belonging to each γk(n,m) subgraph rooted in n, it is sufficient (a) to compute all the paths
of length k leaving downwards from n; (b) sort them with respect to the last element; (c)
group the paths in equivalence groups with respect to the same last element m. Finally,
the union set of nodes in each group of paths is computed, to remove the repeated nodes,
since paths with same unit and zero may share also other nodes.
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Of course, the search for subgraph enumeration occurs in H, so that the nodes in every
group refer to faces of the input polytopal complex. By means of the canonical identification
of N with N ′0, the very same group of nodes γk(n,m) also refers to nodes of graph H ′

corresponding to 0-cells of the output HCC.

4.4. Morphism γ : H → H ′. For each H subgraph isomorphic to H(σk−1) and rooted
in n ∈ N , a new node η(n) =: n′ ∈ N ′k is created (1 ≤ k ≤ d). The arcs in A′k are
generated bottom-up by traversing upwards H ′ from the elements in N ′0 of each group
γk(n,m) described in the above subsection, until to reach a subset S′k−1(n,m) ⊂ N ′k−1 of
nodes of H ′ corresponding to the (k − 1)-faces of the output HCC, that get at this point
connected to the new node n′ ∈ N ′k. Therefore we have, for each layer E′k of edges in the
output ECC:

E′k =
⋃

n′∈N ′
k

S′k−1(n,m)× {n′}, 1 ≤ k ≤ d

4.5. Comments to HCC splitting algoritm. Here we discuss the HCC splitting, whose
pseudocode is given in algoritm 1. The formulation is dimension-independent, and can be
applied to any-dimensional polytopal complex. It is composed by three stages, denoted
below as algorithm initialization, main body and finalization, to be executed in sequence.
The process, in bottom-up style, starts by generating the 0 cells of the Hasse graph of the
output complex, continues by generating the k-layers of the Hasse graph, and terminates
by generating the top-level layer of d-cells, with links to subsets of 0-cells they are convex
combination of.

Initialization (lines 1–3). For every node n in the input Hasse graph g = (N,A), i.e. for
every k-face (0 ≤ k ≤ d) in the input polytopal complex, create a 0-level node n′ in the
output node set N ′, and set-up its position to the centroid of the face n. Of course, the
centroid of a 0-face (vertex) coincides with the vertex itself.

Main body (lines 4–14). For every intermediate level k of the multipartite graph g, with
1 ≤ k ≤ d − 1, the algorithm creates the corresponding level sets N ′k, A

′
k−1 in the output

graph g′.
This task is accomplished by looking in g for all the sublattices of depth k. In order to

be endowed with depth k, such subgraphs must just be rooted in level subsets Nh ⊂ N ,
with k ≤ h ≤ d. Since we look for sublattices isomorphic to the Hasse graph of the (k−1)-
simplex, denoted here H(σk−1), it suffices to extract only the sets of subgraph nodes,
all rooted on n, and denoted as Hn. Actually, the function call DownTraverse(g, n, k)
(a) computes all the down-paths of g with root n and length k, (b) sorts them on the last
element, (c) groups the paths with the same last element (the zero of each sublattice),
finally (d) eliminating the duplicated nodes.

In row (12) of Algorithm 1 each element Hk of the set Hn is transformed into the set
F ′k−1 of (k − 1)-faces of the new node n′ ∈ N ′k uniquely associated with the subgraph Hk

of g. In particular, a new arc in A′k−1 is created for each element in F ′k−1.
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Finalization (lines 15–26). This last section of the algorithm is dedicated to the construc-
tion of the last pair N ′d, A

′
d−1 of nodes and arcs of the output graph. At the same time,

a further set of arcs A′d ≡ A′−1 is created, linking each d-dimensional face (i.e. each node
n′ ∈ N ′d) to its vertices (nodes n′ ∈ N ′0).

5. Range of validity

It is not difficult to understand, looking at the mapping between sublattices of Hasse
diagrams and node cells of the generated complex, why Algorithm 1 generates full (hyper)-
cuboidal decompositions only when starting from polytopal d-complexes where all d-cells
have all vertices on the extremal point of a d-hedral angle, i.e. at the intersection of d
internal halfspaces bounded by the affine hulls of the (d− 1)-facets of the d-cell. In partic-
ular, in 3D we need that each internal angle of every 3-cell is a trihedron, where a triple of
three affinely independent vectors share a common vertex [1]. When this condition is not
satisfied, if the goal it to generate a complex with only cuboidal cells, then some cutting of
3-cells that do not satisfy this requirement is needed. In particular, in order to generate a
full hexahedral decomposition of the sphere of Example 6.3, a decomposition of “basket”
polytopes of each sphere layer is required, as shown by Figure 8.

Figure 5. (a-d) Polytopal decomposition of the pyramid; the top vertex
has degree 4, and the cell it belongs to is a “Morse crystal”.

The simplest example of non-trihedral polytope is given by the 3D pyramid with squared
basis. The iterated application to it of Algorithm 1 is shown in Figure 5. It is possible
to notice that all other 3-cells have 8 vertices but are not hexahedrons, because of a non-
planarity, that is being smoothed with the distance of cell from the Morse crystal.

6. Examples

In this section we discuss some examples of generation of polytopal and hyper-cuboidal
cell complexes. In particular we show the rate of growth of the number of k cells in a d-grid,
the generation of decompositions of the circle and the sphere, and the decomposition of
the simplest non-convex polyhedron.
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Table 1. Cardinalities of k-skeletons of d-grids

d k0 k1 k2 k3 k4
∑

i ki

1 n 3 2 5

2 n2 9 12 4 25

3 n3 27 54 36 8 125

4 n4 81 216 216 96 16 625

1 n 5 4 9

2 n2 25 40 16 81

3 n3 125 300 240 64 729

4 n4 625 2000 2400 1280 256 6561

1 n 7 6 13

2 n2 49 84 36 169

3 n3 343 882 756 216 2197

4 n4 2401 8232 10584 6048 1296 28561

1 n 9 8 17

2 n2 81 144 64 289

3 n3 729 1944 1728 512 4913

4 n4 6561 23328 31104 18432 4096 83521

6.1. Cell complexes of multidimensional grids. Let quickly analyze some numeric
relation between the number of cells of the k-skeletons (0 ≤ k ≤ d) of d-dimensional grids,
generated by Cartesian product of d instances of a 1-dimensional grid with n vertices (0-
cells). In particular, we show in Table 1 that the total number of k-cells (0 ≤ k ≤ d) of the
d-complex associated to a d-grid grows with the same order of magnitude than the number
k0 of vertices of the grid, usually called nodes in numerical analysis and related software
systems.

6.2. Polytopal decomposition of circle. In this section we show the quad decomposi-
tion of polytopal complexes that partition the 2D circle. Such polytopal decompositions
are generated by starting from a n-gon centered in the origin, and attaching an irregular
pentagon — with three vertices on the next circle boundary — to each 1-cell of the pre-
vious boundary, therefore allowing for doubling the number of the boundary cells at each
step of refinement. Of course, the construction may be repeated more times, in order to
further improve the generated circle approximation. The last picture in Figure 6 shows the
refinement into a quadrilateral cell complex generated by the algorithm presented in this
paper.

6.3. Polytopal decomposition of sphere. A polytopal decomposition of the 3D sphere
may be generated by starting from the unit tetrahedron with centroid in the origin of a
Cartesian system in E3, and with vertices lying on the surface of the unit sphere. To each
triangular cell of this “initial” tetrahedron’s boundary we may attach a “basket” polytope
generated by projecting the vertices of the face from the origin (center of the sphere) to the
sphere surface with radius 2. Also, we project the centroids of the face edges to the same
circle, and connect the dots, as shown in Figure 7a, where the 1-skeleton of the bottom of
such “basket” polytopes is shown. In Figures 7b and 7c the full 1-skeleton of the generated
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Figure 6. (a-c) Polytopal decomposition of the circle; (d) quad decompo-
sition of the previous complex.

decomposition and the boundary 2-cells of the basket adjacent to the tetrahedral face are
shown, respectively. In Figure 7d an exploded view of the generated solid polytopes is
finally given. It may be of interest to note that the sphere decomposition so generated is a
geodetic sphere, since all cell faces belong to a great circle. The construction of the sphere
given here is a direct generalization of the circle decomposition given in Example 6.2 and
shown in Figure 6, generated by layers with double number of polytopal cells with respect
to the previous layer. in this case the number of cells for each layer increases times a factor
6, since on each triangle on the surface of a layer is attached a polytope with superior
boundary made by 3× 2 triangles, as shown in Figure 7.

6.4. Polytopal decomposition of Schönhardt polyhedron. The Schönhardt polyhe-
dron is the simplest non-convex polyhedron that cannot be triangulated into tetrahedra
without adding new vertices. It can be generated by rotating in opposite directions the two
triangular faces of a wedge (the extruded triangle) about the normal axis. The polytopal
complex shown in Figure 11 is produced by adding 8 vertices at the extremal points of the
visibility kernel.

It is easy to prove that the Schönhardt polyhedron is a star-shaped polyhedron. It can
in fact be shown that each intersection of the lateral boundary with a 1-parameter family
of planes, parallel to the top and bottom faces, is a star-shaped polygon [13]. In particular,
the generic intersection polygon has six edges and degenerates linearly into the two extreme
triangles, whereas at the middle of the family all the sides have equal length.

The visibility kernel is obtained as the common intersection of the internal half-spaces
bounded by the affine hulls of the 6 lateral faces of the solid. The polytopal complex result-
ing from the construction shown in Figure 11 contains 1 hexahedron, 6 square pyramids,
9+2=11 tetrahedra, for a total of 18 3-cells produced by adding 8 internal vertices to the
initial 6 vertices of the Schönhardt polyhedron.

Unfortunately, the 6 pyramids have one non-trihedral vertex, so that a full decomposition
into hexahedra is not possible, as shown by Figure 12. A good hexahedral decomposition
can be conversely obtained starting for a polytopal decomposition with all trihedrals angles,
obtained by adding 9 more vertices—one for each tetrahedron connecting a pair of adjacent
star branches.
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Figure 7. Some constructive steps in the process of building a polytopal
decomposition of the sphere, starting from a tetrahedron centered in the
origin.

Figure 8. Decompositions of the non-trihedral basket polytope into 5 tri-
hedral polytopes without adding new vertices.

Figure 9. Polytopal decompositions of the sphere: (a,b) with 2 layers of
polytopes; (c,d) with 3 layers of polytopes.

7. Conclusion

In this paper we have introduced a novel multidimensional algorithm for hierarchical
splitting of polytopal complexes into hyper-cuboidal complexes, a dimension-independent
generalization of hexahedral meshes and meshes of quads. The given approach is robust and
fast. Furthermore, it is not difficult to set-up in a distributed computational environment,
where it can be executed as a streaming of k-cells, for k growing from zero to the dimension
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Figure 10. Spheres with one, two and three polytopal layers. Polytopal
decompositions are on the top row. The corresponding hexahedral decom-
positions are on the bottom row.

Figure 11. The construction of the Schönhardt polyhedron step-by-step:
(a) visibility kernel of such star-shaped polyhedron; (b) adding a pyramid
per kernel’s face; (c) adding a tetrahedron per kernel’s edge (but the ones
on the lateral surface); (d) adding a top and a bottom tetrahedron.

d of the solid cells of the mesh. Further improvements are possible, making even faster the
reconstruction of the topology of the (k − 1)-facets of k-cells, that are currently generated
in a purely combinatorial manner.
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Figure 12. Schönhardt polytopal complex transformed into a hexahedral
complex: (a) after one decomposition step; (b) after two decomposition
steps; (c) exploded view of the 3-skeleton of the complex; (d) inside view of
such skeleton.

Acknowledgement

The algorithms and the cell complexes discussed in this paper have been implemented
in Python using the pyplasm library, a recent port of the geometric language Plasm [9, 10],
that includes the C++ geometry kernel XGE and its fast implementation of Hasse graphs.
Pyplasm provides efficient support for dimension-independent geometric programming, in-
cluding Boolean ops, Cartesian products, Minkowsky sums, Schlegel diagrams, and much
more. Ports to other modern languages (Cython, Javascript, Clojure, Erlang) and to
mobile devices are on the way.
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Appendix A. Algorithm’s source in Python

A pseudo-code description of the HCC splitting is given in Algorithm 1. The Python
implementation of the function hccmesh, closely resembling the pseudocode formulation,
is given by Listing 1 in Appendix A. The implementation strongly relies on the internals of
the Graph class of the XGE (eXtreme Geometric Environment) C++ kernel of the Python
package pyplasm.

def hccmesh(g):

d = g.getMaxDimCells()

g1 = Graph(d)

for node in range(1,g.getNumNode()+1): # create the 0-layer of HCC

newnode = g1.addNode(0)

g1.setVecf(newnode,CENTROID(g)(node))

for k in range(1,d): # create N_k, A_{k-1} (1<=k<=d-1)

for h in range(k,d+1):

for root in CELLSPERLEVEL(g)(h):

subgraphs = DOWNTRAVERSE(g,k,root) # search g for subgraphs

faces = [UPTRAVERSE(sg,k) for sg in subgraphs] # backtrack g1

for face in faces: # update N_k

newnode = g1.addNode(k)

for node in face: # update A_{k-1}

g1.addArch(node,newnode)

for root in CELLSPERLEVEL(g)(d): # create the d-layer of HCC

subgraphs = DOWNTRAVERSE(g,d,root)

facets = [UPTRAVERSE(sg,d) for sg in subgraphs]

vertices = [list(set(CAT(sg))) for sg in subgraphs]

for facet,verts in zip(facets,vertices):

newnode = g1.addNode(d) # update N_d

for node in facet: # update A_{d-1}

g1.addArch(node,newnode)

for vert in verts: # update A_d = A_{-1}

g1.addArch(newnode,vert)

return g1 # return the output HCC graph

Listing 1: The HCC algorithm coded in Python

The library functions invoked by hccmesh have the semantics discussed in the following:

Graph : constructor of the objects of the Graph class, data structure used for repre-
senting the Hasse diagrams of cell complexes.

Graph.getMaxDimCells : method of the Graph class, used to extract the maximal
dimension of cells in the represented complex.

Graph.getNumNode : method of the Graph class, used to get the current number of
nodes in the Hasse diagram.
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Graph.addNode : method of the Graph class, used to add a new node (cell) of given
dimension to the Hasse diagram of the complex.

Graph.addArch : method of the Graph class, used to add a new arc (direct contain-
ment relation) to the Hasse diagram of the complex.

Graph.setVecf : method of the Graph class, used to store a either a position vector
or a hyperplane covector to a node of the complex.

CENTROID : pyplasm function to compute the centroid of a cell.
CELLSPERLEVEL : pyplasm function to return the list of IDs of cells of given dimension.
DOWNTRAVERSE : pyplasm function. Return all the subgraphs of a Hasse graph that

are also sublattices of given depth.
UPTRAVERSE : pyplasm function. Return the set of nodes (cells) that are sons of the

root of a sublattice starting from its nodes of level zero.
CAT : pyplasm function. Concatenates a list of lists.


	1. Introduction
	2. Background
	2.1. Polytopal complex
	2.2. Hasse graph representation
	2.3. Hypercube topology

	3. Cardinality of Hasse graphs
	4. HCC generative algorithm
	4.1. Algorithm preview
	4.2. Lattice character of H(k)
	4.3. Enumeration of H subgraphs isomorphic to H(k)
	4.4. Morphism : HH'
	4.5. Comments to HCC splitting algoritm

	5. Range of validity
	6. Examples
	6.1. Cell complexes of multidimensional grids
	6.2. Polytopal decomposition of circle
	6.3. Polytopal decomposition of sphere
	6.4. Polytopal decomposition of Schönhardt polyhedron

	7. Conclusion
	Acknowledgement
	References
	Appendix A. Algorithm's source in Python

