13
Basic solid modeling

This chapter is dedicated to discussing the computer representation of mathematical
models of physical bodies and some main algorithms on such so-called solid models.
The attention of “classic” solid modeling is focused on representational issues for
computer models of physical bodies. Its core topics concern Boolean operations and
domain integration: the former allow the union, intersection or difference of solid
models; the latter is used to compute volumes and inertial properties. Simulating
numerically controlled (NC) machining [MV92] is another use of solid modeling
technology. It also supports offsetting, reverse engineering from both physical and
engineering models to computer models, and dimensional tolerancing analysis [RR86,
VMJ97, Voe98]. We start this chapter by outlining Voelcker’s and Requicha’s
theoretical approach, and their standard taxonomy of representation schemes. Then
some main issues about boundary representations are introduced. Finally, we discuss
two simple approaches to Boolean operations and volume integration over polyhedral
objects by using a boundary triangulation. Our aim is to present a basic introduction
to some classic notions in solid modeling. For an in-depth comprehensive review of
both theoretical foundations and research directions, the interested reader is referred
to the stimulating survey by Vadim Shapiro [Sha01].

13.1 Representation scheme

The concept of a representation scheme, located at the foundations of solid modeling,
originates in the theoretical and applied research in design and manufacturing
automation carried out by Project Automation Project (PAP) at the University
of Rochester in late 1970s. In particular, the idea of a representation scheme was
formalized by Aristides Requicha into his milestone paper [Req80]. A new interesting
framework for both geometric and solid modeling and its practical implications are
discussed by Rappoport in [Rap95].

Geometric Programming for Computer-Aided Design Alberto Paoluzzi
(© 2003 John Wiley & Sons, Ltd ISBN 0-471-89942-9



556 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

18.1.1 Definition and properties

A representation scheme is defined as a mapping s : M — R between a set M of
mathematical models of solid objects and a set R of computer representations, see
Figure 13.1. In particular:

1. The set M contains appropriate mathematical models of the class of solid
object that the scheme is designed to represent.

2. The set R contains symbolic representations, i.e. suitable data structures,
built according to some appropriate computer grammar.

Figure 13.1 The representation scheme s is a mapping between a set M of
mathematical models and a set R of computer representations

Domain A representation scheme s is usually defined only on a subset D C M of
mathematical models, that is called the domain of the scheme. In other words, not
every element of a certain class of models might be represented in a given scheme, but
this one could be designed to represent only a subset of the model collection. E.g., a
scheme used to represent plane polygons should be able to filter a priori non-simple
polygons (i.e. with self-intersecting boundary), because they are not interesting in
most modeling problems.

Validity Analogously, the codomain V' = s(D) C R of a scheme s does not
necessarily coincide with the target set R of syntactically well-formed representations,
i.e. built according to the given grammar. The set V' of representations which are not
only syntactically correct, but also semantically significant, because they correspond
to some model in the domain of the scheme, is called the wvalidity set of the scheme.

When designing a representation scheme for a solid modeler it is important to device
some validity test to check if a given representation really corresponds to some object
in the domain of the scheme. As a matter of fact, syntactically correct representations
may not be semantically significant.

Let us consider, e.g., the linked lists of vertices as representations of plane polygons.
If the domain of the scheme is restricted to simple (non self-intersecting) polygons,
then the statement appears false that every sequence of 2D points corresponds to
some simple polygon. A typical validity test in this case should look for pair-wise
intersection of boundary edges, given by couples of adjacent points.



BASIC SOLID MODELING 557

Completeness A valid representation r € V is said to be complete when it is
associated by the scheme s with just one model in the domain D of the scheme. In
formal terms, r is said to be complete when

s (r)] = 1.

The scheme s is also said to be complete when every representation in V' is complete.
In other words, the scheme s is complete when the inverse mapping s~ is a function.

The concept of completeness should be considered from an informational point of
view. A representation which corresponds to more than one model is said non complete,
because it captures some information which is common to all the associated models,
and therefore is not sufficient to completely specify any one of them. A non complete
representation is, in some sense, too general and not sufficiently specific. Conversely,
a complete representation completely specifies the model that it represents.

Unicity A representation r € s(m) is said to be unigue when the set s(m) C V
contains just one element. Analogously, a representation scheme s is complete when
|s(m)| = 1, for each model m € D.

When a scheme s is both complete and unique, it establishes a one-to-one mapping
between the domain and the validity set of the scheme. Such a kind of scheme is called
canonical, and the associated representations are called canonical representations.
A canonical scheme is quite unusual in solid modeling, depending on the high
computational costs needed to guarantee the unicity of such kind of schemes.

With a canonical scheme the identity test between two representations r, ¢ € V could
be solved in a purely syntactical way, while conversely it requires serious semantical
comparisons of the kind:

(s (r) Us () — (s~ () N s~ (q)) 2 0.

Most representation schemes for geometric objects are not unique, because the same
model may correspond to several representations. Typical reasons of non-uniqueness
are of a permutational and positional nature.

An example of permutational non-uniqueness is given by the representation of a
plane polygon as the linked list of its n vertices. In this case, each one of the n cyclic
permutations of vertices gives one equivalent representation of the same polygon. A
positional non-uniqueness is introduced when the representation is defined modulus a
rigid transformation.

r-sets In some sense, the usefulness of a scheme s is measured by the size of its
domain, i.e. by the number of mathematical models it is able to represent. The larger
is the domain, the greater are the expressive power of the scheme and its usefulness
for the purposes of a modeling system.

The Rochester group pointed out as a useful domain for a solid modeling
representation scheme the collection of so-called r-sets, i.e. the collection of regular,
closed, bounded and semi-analytic subsets of IE>.

It may be useful to remember that a subset S C IE" is called:

1. regular when it is homogeneously n-dimensional, i.e. when each point € S
has a neighborhood N(x) C S of dimension n;



558 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

2. closed when it contains its boundary. In other words, when
S = clos(S) = SUIS;

3. bounded when each point € S has bounded coordinates. In other words,
when the distance between every pair of points in S is bounded;

4. semi-analytic when the set can be expressed as a Boolean combination of
sets of type {x € IE"|f;(x) < 0}, where each f; is an analytic function.

A function f : IE" — IR is said to be analytic when it can be expanded into a
convergent power series in the neighborhood of each point x( of its domain:

oo
f(sco):Zan(sc—sco)", with |& — xo| < 7,7 > 0.
n=0

The sum, difference and product of analytic functions are again analytic. If f(x) is
analytic at g, then it is differentiable arbitrarily often in some neighborhood of xy,
and:

> £(n)
flzo) = Z fT('wO)(:c —ax9)", (Taylor series).
n=0 :

The concept of r-set played a very important role in the development of solid
modeling as a discipline, since it seems to capture the more important aspects of
the object’s solidity.

Manifolds A manifold object of dimension n is defined as a point set where each
point has some neighborhood homeomorphic to the n-disc. This means that there is
some neighborhood of the point which may be bicontinuously transformed to such a
disc.

Let us note that an n-dimensional r-set S may have a non-manifold boundary
(see Section 13.1), where some points in S do not have a neighborhood in 95
homeomorphic to the (n — 1)-dimensional disc. See, e.g. Figure 13.2.

Figure 13.2 Non-manifold boundary points: they do not have a neighborhood
homeomorphic to the 2-dimensional disc

It is very important to notice that a set of manifold models is not closed with
respect to the property of manifoldness when considering Boolean set operations. For
example, the union of two manifolds is not necessarily a manifold. Let us imagine,
e.g., the union of two cubes touching along one edge or vertex. Thus, a representation
scheme needs to take this point into careful account; in other words, it must be able
to represent both manifold and non-manifold objects.



BASIC SOLID MODELING 559

18.1.2 Taxonomy of representation schemes

A taxonomy of the more important representation schemes used in solid modeling and
CAD systems developed in the 1970s was introduced by Ari Requicha in his milestone
paper [Req80]. Such a classification continues to be valid more than 20 years later,
and is very useful both in comparing systems existing today and in designing new
ones. It is succinctly summarized in the following paragraphs. Several reviews of the
state of art in solid modeling have been published in the last two decades. They
include [Req80, RV83, Req88, RR92, Ros94, RR99, Sha01].

Primitive instancing This is a sort of procedural approach. Each representation
is a tuple with the name of a generating procedure or function as the first
element, followed by the actual values of its parameters. Both the domain and the
codomain of the scheme may be partitioned into non-intersecting classes. There
is a one-to-one mapping between classes of models and classes of representations.
This kind of approach was given new life with current object-oriented software
development techniques, and is largely used with parametric and feature-oriented
modeling systems. Some theoretically oriented recent approaches belong to this class
of representations [Rag00, RS02]. It actually needs some underlying more abstract
representation scheme where methods of general utility (like Boolean operations and
integration operators) are really implemented.

Enumerative schemes A solid model is described by enumerating the set of “full”
cells in some partitioning of the embedding space. It is possible to distinguish between
schemes using sparse Boolean matrices and schemes based upon hierarchical space
decompositions, say quadtrees and octrees, in 2D and 3D case, respectively. In most
cases such representations are approximations of the object’s space occupancy, even
for linear polyhedra.

Decompositive schemes The object is represented as a set of cells, usually of a
given topology. Unlike enumerative schemes, in this case the cell partition is induced
by the represented object itself. The BSP (Boundary Space Partition) trees belong to
this type of representation [NAT90]. As we have already seen, BSP trees are binary
trees where each internal node is associated with one of the boundary hyperplanes
of the object, and each leaf node represents a convex cell, either full or empty, of
the space partition induced by such a set of hyperplanes. Decompositive schemes also
support more abstract and generalized representations of topology [Lie89] and unifying
approaches to both geometry representation and physical simulations [JS00].

Boundary schemes These are the more common representation schemes used in
computer graphics and in most modeling kernels. The interior of a body is represented
by means of its external boundary, and in particular by a partition of it into shells,
faces, edges and vertices. Each boundary representation stores in some way some
of the binary adjacency relations between the various boundary entities. There is a
notable difference between the boundary representations of manifolds and those of
non-manifold objects.



560 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

CSG schemes The acronym stands for Constructive Solid Geometry. In this scheme
the representations are binary trees where internal nodes represent either regularized
set operations or affine transformations, whereas leaf nodes represent either primitive
solids or implicit halfspaces (usually linear or quadratic). An explicit representation
of the boundary is obtained by suitably traversing the tree.

Sweeping schemes In mechanical or civil applications, several solids may be
defined as the result of properly moving a surface along an assigned profile curve.
The representation in this case contains both the generating surface and curve. A
sweeping scheme is particularly useful and simple with parametric representation of
surfaces and curves. There are also approaches belonging to this class of schemes which
can be reduced to some generalized version of the Cartesian product.

Composite schemes Some commonly used schemes use multiple types of
representations. Typically, in a composite scheme, a boundary representation is
maintained together with another representation, often a CSG or decompositive or
primitive instancing. There are some very interesting composite octree/boundary
representations. The simplicial based representation [PBCF93], discussed in a
following section, can be considered as a composite boundary/decompositive/sweeping
representation.

The following sections are dedicated to discussing the more important types of
representation schemes.

13.2 Enumerative schemes

In enumerative schemes each model is embedded in a space partition made with space
cells of fixed topology and geometry, usually of either hexahedral or simplicial type.
The enumerative representation is some kind of enumeration of material cells of the
model, i.e. of full cells, as opposite to empty cells. Most enumerative representations
are approrimate representations, but they may have variable resolution, depending on
the needs of the supported applications. This approach is particularly suitable to easy
implementation of Boolean operations and computation of volume integrals.

Two different classes of enumerative schemes can be devised, which are respectively
classified as:

1. flat enumerative schemes;
2. hierarchical enumerative schemes.

13.2.1 Flat enumerative schemes

A parallelepiped subset of the containment space of the model is subdivided into
hexahedral (cubic) cells of size either constant or variable by rows, columns or planes.
Such representation usually consists of a binary array with three indices in the 3D
case, or with two indices in the 2D case. The resolution of this approach cannot
be very small when representing objects of large size. Consider in fact, e.g., that a
mechanical model with containment box of 1m3, represented with linear resolution



BASIC SOLID MODELING 561

of 10~*m, would require an array with 10'2 cells. It is hence customary to store such
a representation using sparse matrices, where only the boundary cells are explicitly
memorized, relying on the fact that the transitions between empty and full cells are
not frequent in a “solid”.

v o H """"""""" -

Figure 13.3 Enumerative representations: (a) with constant resolution (b) with
variable resolution

Constant resolution In Figure 13.3 we give an example of flat enumerative
representation of a curved 2D solid. The cells of plane partition may be labeled full
when completely enclosed in the solid, and empty otherwise. A different choice, say
with cells labeled empty when completely outside and labeled full otherwise, is equally
acceptable, but clearly gives a different approximation of the solid. It is easy to see
that such an approach works much better when the model is consistent with the cell
grid, i.e. has orthogonal faces and their size is a multiple of the cell step. As we already
pointed out, in order to get a good resolution, this approach must be implemented with
sparse matrices, that are encoded by using some appropriate compression technique.

Variable resolution In this kind of scheme the bounding bor of the model is
partitioned by three sets of orthogonal planes, normally coplanar to the model faces.
The resulting space decomposition into parallelepiped cells is encoded by using some
appropriate array. Since the distances between pairs of adjacent cutting planes is
generally non-constant, the partition is non-uniform, as shown in Figure 13.3b for the
2D case. An example of this representation, introduced in [Mit77], is given by the
primitive QUADARRAY defined in Script 7.4.1.

The representation used in the 2D and 3D case, is respectively given by a pair
(triplet) of real arrays, that contain the ordered distances between adjacent cutting
lines (planes), and by a Boolean array with two (three) indices, which is used to
encode the labels (empty /full) of the space partition cells. Such a representation can
be encoded as follows, in the 2D and 3D case, respectively:

<< Xarrayli1], Yarray[iz] >, BoolArrayli, is] >
<< Xarrayli1], Yarray[is], Zarrayliz] >, BoolArray[i, iz, i3] >



562 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Figure 13.4 3D enumerative representation

13.2.2 Hierarchical enumerative schemes

The hierarchical enumerative schemes use a number of trees, which encode different
partitioning schemes of the embedding space into cells of different type and size.
The most important schemes of this type are 2™-trees and bin-trees, that are briefly
discussed in the following subsections.

2"-Trees

The 2™-trees are ordered trees [AU92] characterized by the property that each non-
leaf node has exactly 2™ son nodes, respectively denoted as first, second, etc., and
as 2"-th son. When n = 2 and n = 3 such trees are called quadtrees and octrees,
which are used to represent hierarchical decompositions of the 2D or 3D space,
respectively [Sam88, Sam90b, Sam90a].

Quadtrees When the model is embedded in 2D, i.e. when n = 2, the 2"-tree
representation is called quadtree. Some useful properties of quadtrees follow:

1. a quadtree is a quaternary tree (i.e. each non-leaf node has exactly 4 sons);
2. the leafs are either white or black nodes (i.e. either empty or full);

3. the non-leafs are gray nodes (i.e. neither empty nor full);

4. the maximal depth of the quadtree is related to its resolution.

The number of arcs on the path from the root to a node is called distance of the
node from the root. Depth of a tree is the maximal distance of its nodes from the root.
The resolution of the quadtree with squared bounding box of size L and depth m is
clearly equal to

r=1L/2"

Example 13.2.1 (Quadtree encoding)

In Figure 13.5 we show both a 2D object given as a hierarchical decompositive
representation using the quadtree scheme, and its actual encoding as a labeled tree,
where black, white and gray nodes respectively represent full and empty cells, and
cells which are neither full nor empty. Note that the sons of a gray node are clockwise
ordered, according to the scheme shown in the quadruple of small boxes in the middle
top of Figure 13.5.

Octrees When the model is embedded in 3D, i.e. when n = 3, the 2"-tree
representation is called an octree. In this case the embedding space is subdivided
by three pair-wise orthogonal planes, so giving 23 cells (either white, black or gray)
at each step (see Figure 13.6).



BASIC SOLID MODELING 563

Figure 13.5 Quadtree encoding scheme: (a) 2D object (b) full cells (black), empty
cells (white) and decomposed cells (gray)

N

Bin-trees

The so-called bin-trees are binary trees representing solids in IE™. In this case tree
nodes contain hyperplanes equations of the kind Tig mod ny = Chs where dj, is
the (integer) distance of the node k from the root. Hence, in 2D, bin-tree nodes
at increasing distance from the root alternatively contain equations such as = = a;
and y = b;. In 3D, node equations will contain either x = a; or y = b; or z = ¢,
alternatively. As in the case of quadtrees and octrees, leaf nodes are labeled either
black or white, whereas non-leaf nodes can be considered as gray.

Figure 13.6 Octree: partition of a 3D cell into 8 sub-cells generated by three
orthogonal planes

Figure 13.7 Quadtree vs bintree

13.3 Decompositive schemes

In a decompositive representation scheme, a solid object is represented as a set of
cells, usually of a given topology. Unlike enumerative schemes, in this case the cell
partition is induced by the represented object itself. Also in this case it may be useful



564 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

to distinguish between non-hierarchical schemes and hierarchical schemes. Two very
useful representations in such classes are the simplicial representations and the BSP-
trees, respectively. Both are implemented within the PLaSM geometric kernel. They are
used by the MAP primitive and by the Boolean operations, respectively.

The space of models of decompositive schemes is constituted by the so-called cellular
models. They have been of increasing interest in recent years [BdB98, ES00]. In
particular, the stratification of a solid model into cells provides a common theoretical
framework to unify all representations [Sha0l]. Furthermore, it also provides a
basis for designing a representation-free standard API that is both formal and
general [ABC100].

18.8.1 Simplicial schemes

As we already know from Section 4.5, a d-simplezx is a sort of generalized triangle,
defined by the convex combination of a set of d 4+ 1 affinely independent points. In
particular, a O-simplex is a point, a 1-simplex is a segment, a 2-simplex is a triangle,
a 3-simplex is a tetrahedron, and so on. Analogously, a simplicial complex is a sort of
well-formed generalized triangulation, where every two simplices either do not intersect
or intersect along a common face, which is in any case a simplex of lower dimension,
so that intersecting simplices are well-sticked together. It is possible to show that: (1)
every solid may be triangulated by a simplicial complex; (2) every simplicial complex
is transformed by a map of its vertices into another simplicial complex. For both such
reasons, a representation scheme based on simplicial complexes may be very useful in
a geometric modeling environment [PBCF93].

18.8.2  Convez-cell partitioning and covering

In recent years, several geometric environments for solid modeling have been offering
the choice of working with either boundary or decompositive representations, by using
some kind of convex cells. In particular, a very successful kind of decomposition uses
BSP trees. Such trees were adopted as spatial indices for speed acceleration by several
computer games, including DOOM and its successors.

When PLaSM was designed about one decade ago, a hierarchical scheme called
Hierarchical Polyhedral Complex (HPC) was devised for it, with only a partial storage
of topology of the cell complex. A HPC representation allows efficient representation of
dimension-independent polyhedral complexes by using either a covering or a partition
into convex cells of the associated point set, as discussed in Chapter 5.

Currently, PLaSM uses a composite scheme which combines both BSP-trees, mainly
used for Boolean operations, the simplicial W representation, used with maps
generating polyhedral approximations of curved objects, and the HPC representation,
used for product and skeleton operations as well as to implement the hierarchical
graph underlying a complex scene or assembly.

BSP-trees

A definition of BSP-trees has already been introduced in Section 10.3.5, when
discussing the hidden-surface removal (HSR) of 3D scenes. The reader is in this case



BASIC SOLID MODELING 565

referred to that definition and discussion. The only difference introduced when using
BSP-trees as a representation of solids is a labeling of leaf nodes. In fact, each leaf of
such a tree is associated with a cell of the space partition induced by the hyperplanes
stored with the non-leaf nodes of the tree. A label from the set {IN,OUT} is hence
associated with each cell. The solid representation is given in this case by the labeled
BSP-tree.

Example 13.3.1 (BSP example)

A two-dimensional solid object is generated in Script 13.3.1 as the difference object
between a ground rectangle and a polygonal hole. Both the object and its 1D
skeleton are shown in Figure 13.8b, with the aim of displaying the underlying BSP
representation, used by PLaSM to perform dimension-independent Boolean operations.
The input hole is displayed in Figure 13.8a.

Notice that set difference between the geometric values stored in ground and hole
symbols is denoted by the symbol “~” (minus). Analogously, set union, intersection
and symmetric difference (also called exclusive or, i.e. XOR) are denoted by “+7, “&”
and “A”, respectively.

Script 13.3.1 (BSP example)
DEF ground = CUBOID:<19,22>;

DEF hole = MKPOL:<
<<9.8,4.2>,<3.2,5.8>,<1.6,12.5>,<12.4,18.2>,
<16.5,8.6>,<9.8,12.5>,<6.2,10.4>>,
<<1,2,3,7>,<3,4,6,7>,<4,5,6>>,<<1,2,3>>>;

DEF object = ground - hole;
DEF out = (STRUCT ~ [ID, @1]):object;
VRML: out :‘out .wrl’

Figure 13.8 (a) Convex cells of the input (b) BSP representation of the difference
object produced by Script 13.3.1



566 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Hierarchical polyhedral complexes (HPC)

The HPC representation scheme [PFP96] is the main representation used by the
geometrical kernel underlying PLaSM, and is based on a hierarchical description of the
object structure. In particular, the HPC representation scheme describes the geometric
shapes as hierarchical collections of polyhedra, where each elementary polyhedron is
decomposed in a set of convex cells. Each convex cell is in turn represented as a
collection of either vertex vectors or facet covectors.

In such an approach an object is represented as a multilevel hierarchical structure.
In particular, each object is represented as a decomposition in a set of objects, which
are, in turn, either hierarchical decompositions or elementary polyhedra. For example,
the plan of the building floor in Figure 13.9a is represented by the multigraph in
Figure 13.9b. Each node with an outgoing arc is called polyhedral complex, and is
decomposed in a set of disjoint elements. The outgoing arcs that compose the complex
are called polyhedral instances, and relocate (affinely map) the pointed nodes in the
proper position and orientation. The basic objects (associated with leaf nodes) are
called elementary polyhedra, and are represented in a local coordinate frame as full
dimensional complexes of convex cells.

So, a decompositive representation in convex cells is used in the representation
of each elementary polyhedron. Along with each cell a rich symbolic description is
maintained, and thus the use of numerical information is kept to a minimum. In this
way the emphasis is shifted from numeric to symbolic information, with the first being
considered less entrusting than the second, thereby increasing the robustness of the
supported algorithms.

In PLASM and in several approaches to solid modeling [Bri89, R0O90, Mau9l,
ES00, ABC*00] the reference representation is a cell decomposition. To represent the
cells as an intersection of halfspaces has several advantages. In particular, with this
representation the extrusion operation, which is of great importance in a dimension-
independent approach, is simply a linear operator upon the space of linear functions
(covectors) associated with the cell faces. Also, an affine transformation may be applied
to this representation by just multiplying the face covectors by the inverse matrix of
the transformation. Also, the computation of geometry and topology of the result of
the generalized product described in Section 14.4 is very simple.

Progressive difference A “complete” representation of a polyhedral complex must
satisfy a quite difficult geometric constraint: the interiors of elementary polyhedra
cannot intersect each other. This constraint is needed to guarantee unambiguous
representations, but reduces the flexibility of the representation scheme, which
cannot represent any design configuration where the design components are actually
overlapping. Hence it becomes useful both to extend the domain of the scheme to
the class of overlapping sets of polyhedra, and to define an operator PD (called the
progressive difference) to automatically remove the intersections between elementary
polyhedra, where they exist. In this way, i.e. by relaxation of the non-intersection
constraint, a weak representation of hierarchical objects is defined, that we call the
polyhedral sequence.



BASIC SOLID MODELING 567

Complete and weak representation A complete representation of an object is a
partitioning of its point set with an unordered set of (hierarchical) polyhedra, while
a weak representation is simply a covering of the point set. An application of the PD
operator to a weak representation returns a complete representation, since it subtracts
each element of the polyhedral sequence from all the elements with higher position in
the sequence. In such a way the ordering on the component instances is translated into
a precedence rule on their point sets: points belonging to more than one component
object are assigned to the first one in the polyhedral sequence which they belong to.

According to [Req80], we can distinguish between the representation of an object
and its abstract model, and define the latter as an element of the set M, which is
the domain of both the complete and weak representation schemes. The set R, which
contains the complete representations, is the validity set of the scheme. Conversely,
the set R* of all weak representations is the range set of the scheme, with R C R*.
A more formal and detailed definition of the HPC scheme used in the PLaSM language
can be found in [PFP96).

Example 13.3.2 (Floor layout)

Consider, e.g., the example in Figure 13.9, where the multigraph structure of the
polyhedral complex (b) is represented. An equivalent polyhedral sequence (c) is
obtained by replacing the kitchen, living and bed2 rooms by their bounding boxes.
Their sequence is a weak representation of the object (a) if bed2 follows the bath, and
both kitchen and living follow the balcony. An application of the PD operator to
the weak representation (¢) produces the complete representation (b).

floor

bed1| bed2

EL1 bath
entrance pas2 }7

kitchen living | bed3

—halcon

dwelling

Figure 13.9 Two representations: (a) building floor (b) complete representation
(partitioning) (c) weak representation (covering)

In Script 13.3.2 we give the PLaSM definition of the layout of building floor shown
in Figure 13.10, whose HPC representation is pictorially displayed in Figure 13.9.

The PLaSM definition of symbols day, night1 and night2, which are the components
of the 2D polyhedral complex dwelling, is given in Script 13.3.3. Notice that
floor_layout is an assembly of two dwelling instances, where the second is flipped
and translated both horizontally and vertically.

Notice also that the model embedded in 3D displayed in Figure 13.10 is generated by
the last expression of the Script. This model is an assembly of the embedded layout
object and of an extrusion of its 1D skeleton, generated by Cartesian product times a
1D interval.



568 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Script 13.3.2 (Layout as assembly)
DEF floor_layout =
STRUCT:< dwelling, T:<1,2>:<41,34>, S:<1,2>:<-1,-1>, dwelling >;
DEF dwelling = STRUCT:< day, T:<1,2>:<17,4>:nightl, T:2:16:night2 >;

(STRUCT ~ [EMBED:1, @1 * K:(QUOTE:<6>)]) :floor_layout;

All the sizes and the measures of length are given as multiples of a modular unit
1M = 30c¢m. In particular, in Script 13.3.3 a room alias is given for the predefined
PLaSM operator CUBOID. Then the three dwelling components called day, night1 and
night?2 are respectively defined.

Script 13.3.3 (Layout components)
DEF room = CUBOID;
DEF PD = STRUCT ~ PDIFFERENCE;

DEF day =

PD:< T:<1,2>:<3.5,-3>:balcony, kitchen, T:1:7:1living, T:2:12:entrance >
WHERE

kitchen = room:< 7, 12 >,

living = room:< 10,16 >,

balcony = room:< 7, 7 >,

entrance = room:< 7, 4 >
END;

DEF nightl = STRUCT:< bed3, T:2:8, pas2, T:2:4, wc >
WHERE

bed3 = room:< 7, 8 >,

pas2 = room:< 3.5, 4 >,

wc = room:< 3.5, 6 >
END;

DEF night2 = PD:< bedl, T:1:7:pasl, T:1:10.5:bath, T:1:7:bed2 >
WHERE
bedl = room:< 7, 14 >

pasl = room:< 3.5, 4 >,

bath = room:< 6.5, 6 >,

bed2 = room:< 10, 14 >
END;

Note In Script 13.3.3 a definition is also given for the PD operator, discussed in
this section, which may transform a weak HPC representation into a valid complete
representation, by executing a sequence of difference operations, called the progressive
difference, upon the ordered sequence of polyhedral complexes the weak representation
is composed of. Notice that PDIFFERENCE is a primitive PLaSM operator which maps
a sequence of polyhedral complexes into a complex of (possibly empty) polyhedral
complexes.



BASIC SOLID MODELING 569

Figure 13.10 Assembly with layout embedded in 3D and the extrusion of its 1D
skeleton

A full implementation of the PD operator, with
PD: R* - R

would actually require a recursive implementation, so that it would be possible to
apply the operator to any pair of hierarchical polyhedral sequences of whatever
complexity. Such an approach would require, in practical cases, an intolerable amount
of computation. So, we decided for a basic non-recursive implementation, with usage
under direct user control, as shown by Script 13.3.3.

Notice also that, from a user viewpoint, the given PD implementation must apply
to sequences of polyhedral complexes, and not to sequences of polyhedral complexes
and affine transformations, as the STRUCT operator is allowed to do.

13.4 Constructive Solid Geometry

A Constructive Solid Geometry (CSG) representation scheme [RV77, Req80] has the
set of 3D r-sets as domain and a set of binary trees as the validity set. In the standard
definition, a CSG tree is a binary tree where non-leaf nodes are either regularized
set operations (see below) or affine transformations, and where leaf nodes are either
primitive solids or implicit halfspaces.

This kind of representation has a very useful semantics. It often models exactly the
process of shape creation in the designer intentions, as well as in the manufacturing
process. Complex objects are often assembled/manufactured by applying Boolean set
operation on subassemblies or on elementary parts.

In most current systems CSG trees are used to capture the design intention,
and are not generally used as the primary internal representation of the solid. In
PLaSM a CSG representation is naturally expressed as a language expression involving
polyhedral arguments, Boolean operations and affine transformations, as shown in
Example 13.4.1. Efficient algorithms exist for converting a boudary representation of
a solid into a CSG representation [SV93]. A CSG representation can be optimized by
using algebraic rewriting rules [SV91]. An extention of the Constructive Geometry to
representing non-regularized objects is discussed in [RR91].

Example 13.4.1 (Boolean expression)
The solid object shown in Figures 13.11 and 13.12 is generated by Script 13.4.1.



570 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

7
=y e

Figure 13.11 (a) Solid object (b) Constructive Solid Geometry (CSG)
representation

Notice that the PLaSM denotation for union and difference set operations is “+” and
“=7 respectively. Set intersection and symmetric difference (XOR) are denoted as “&”
and “*” respectively. No special symbol is available for complement operation. Since
infix operators have the same precedence and are evaluated from left to right, it may
often be necessary to enclose some sub-expression between parentheses, in order to
correctly encode the desired CSG tree.

Script 13.4.1
DEF object = CUBOID:<2,10,10> +
(CUBOID:<12,10,2> - T:<1,2>:<5,5>: (CYLINDER:<1,2>:24))

Figure 13.12 (a) Resulting solid object (b) Triangulation of the boundary of cells
of the generated space partition

13.5 Boundary schemes

Boundary representations are not used by PLaSM. Anyway, they are quite well discussed
in this section because they are used by most commercial solid modeling kernels and
systems. Boundary representations, at least as the output generated by some kind of
boundary evaluation algorithm, are also needed when graphically rendering any solid
model, with the unique important exception of volume rendering techniques.

Definition A boundary representation scheme, often called b-rep, represents a d-
dimensional solid model through some representation of its (d — 1)-dimensional
boundary [Bra75]. Such an approach is complete, i.e. unambiguous, because the



BASIC SOLID MODELING 571

boundary of an orientable solid determines unambiguously its interior. In other words,
two different solids cannot have the same boundary. A boundary representation is often
defined inductively:

1. the boundary of a 3D solid is represented by a partition into bounded 2D
pieces called faces;

2. each face is in turn represented by a partition of its 1D boundary into
connected pieces called edges;

3. each edge is represented by its 0D boundary elements, i.e. by its extreme
points, called vertices.

More in general, a boundary representation of a d-dimensional solid is given by
the inductive subdivision of the elements of its (d — 1)-dimensional boundary, thus
generating a partition into cells of dimensions d — 1,d —2,...,1,0.

Topology and geometry In solid modeling literature the terms topology and
geometry of a model usually refer to the set of incidence and adjacency relations
between boundary elements, described below, and to the set of parametric equations
of faces and edges, respectively.

When representing a linear d-polyhedron, all its geometry can be recovered by
storing only the O-dimensional elements, i.e. the vertices. Each p-dimensional boundary
cell is in fact contained into the affine hull generated by p + 1 affinely independent
points.

For example, in 3D an edge is supported by the straight line generated by 2 vertices,
and a face is supported by the plane generated by three non-collinear vertices. In the
case of curved solids, the geometric information given by vertices is not sufficient, and
the equations (either parametric or implicit) of the manifolds (say, curves and surfaces)
supporting the boundary cells must be explicitly stored in computer’s memory. A
discussion of boundary representation with implicit algebraic surfaces can be found
in [Hof89].

An important distinction concerns manifold and non-manifold b-reps. The kernel
geometric libraries nowadays used in design environments with industrial strength are
largely based on non-manifold boundary representations, whose study started with
Weiler’s thesis [Wei86].

Boundary representations as hierarchical descriptions As we have already
seen, three main entities, i.e. faces (F), edges (F) and vertices (V'), are normally used
in b-reps of 3D solids. Other useful entities, shown in Figure 13.13b, are often adopted
in practical b-reps. In particular, it is customary to introduce also the following
entities:

1. the set B of connected components of the solid, called bodies;
2. the set S of connected components of the body boundary, called shells;
3. the set L of connected components of the face boundary, called loops.

It may be interesting to note that B, S and L are sets of geometric objects of
dimension 3, 2 and 1, respectively. It may be also useful to remember that the arrow
in a Bachman diagram stands for the is-made-of relationship. So, a solid is made of
a subset of bodies, a body is made of a subset of shells, and so on.



572 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Figure 13.13 (a) Bachman diagram of fundamental 3D boundary elements
(b) Extended hierarchy of 3D boundary elements

18.5.1 Adjacency and incidence relations

Let us consider the three main boundary entities F', E and V. Clearly there will exist
3x3 = 9 binary relationships between, displayed in Table 13.1a. The diagonal elements
of Table 13.1a are called adjacency relations; the others are called incidence relations.
So we speak, e.g., about the adjacency of faces and about the incidence of faces and
vertices.

Every relation in Table 13.1a is a subset of the Cartesian set product of the involved
entities. For example:

FECFxFE

In the remainder of this chapter we use a lower case letter to denote the cardinality,
i.e. the number of elements, of a set. So, we set

f=1|F|, e=|E|] and v=]|V].

It is possible to show quite easily [Woo85] that every binary relation, except EFE,
contains 2e elements. Conversely, it is |EE| > 4e, where the equality holds for solids
with exactly 3 edges incident on each vertex, like, e.g., a cube, a tetrahedron or a
polyhedral approximation of a circular cylinder.

Example 13.5.1 (Cardinality of VE)
It is easy to verify, looking at Figure 13.14, that the pairs of incident vertices and
edges in a double pyramid are exactly

\VE| =24 = 2e.

as shown by Table 13.1b.



BASIC SOLID MODELING 573

Table 13.1 (a) Binary relations between boundary entities (b) Cardinalities of
boundary relations

L [FIE[V] L IF] E [V]
F | FF | FE | FV F [ 2¢ | 2 ]2
E | EF | BE | BV E |[2c | >4dc | 2
V [[VF [ VE | VV V[ 2| 2 |2

{a} x {1,2,3,4}) U
{b} x {1,5,6,9}) U
{c} x {2,6,10,7}) U
{d} x {3,7,8,11}) U
{e} x {4,5,12,8}) U
{f} x {9,10,11,12})

Figure 13.14 Incidence relation VE between vertices and edges

~ o~ A~~~

18.5.2  FEuler equation

A fundamental equation due to Leonhard Euler (1707-1783) holds between the
numbers of faces, edges and vertices of 3D polyhedra which are homeomorphic to
the sphere, i.e. that can be bicontinuously transformed to the sphere. Such solids, like
e.g. the cube or the tetrahedron, are said to have topological genus g = 0, and also to
be topologically equivalent to the sphere. In this case it is

v—e+ f=2 (13.1)

Topological genus The number g of handles of a “sphere with handles”
topologically equivalent to a solid is called the topological genus of the solid. Such
a topological invariant is used to classify solids into equivalence classes. Solids in the
same class, i.e. with same genus, are said to be topologically equivalent. This statement
actually means that such solids may bicontinuously transform into each other, i.e. that
each can be continuously deformed into the other, and vice versa.

Example 13.5.2 (Euler equation)
In the case of a 3D cube, we have v = 8, e = 12, f = 6, so that

8§—-124+6=2.

Analogously, for a 3D tetrahedron, or 3-simplex, we have v = 4, ¢ = 6, f = 4, and
hence we have, as expected

4-6+4=2.

This demonstrates that the cube and the tetrahedron are in the same equivalence class
with respect to the topological genus.



574 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Euler—Poincaré equation A strong generalization of the Euler equation (13.1) is
due to Poincaré, French mathematician who started the study of algebraic topology
at the end of the nineteenth and beginning of the twentieth centuries.

The so-called Euler—Poincaré equation holds between numbers of vertices, edges and
faces of a connected polyhedral solid in 3D:

v—e+ f=2(s—g)+h, (13.2)
where

1. s is the number of connected components of the boundary of the solid body.
In other words s = | S|, where S is the set of shells of the body;

2. g is the topological genus of the body;

3. h is the number of holes (or internal loops) in body faces.

Example 13.5.3 (Euler—Poincaré equation)

We compute here the topological genus of the body in Figure 13.15, generated
by subtracting two orthogonal parallelepipeds from a central cube. The g genus
is computed by counting the numbers of vertices, edges, faces and so on, and by
substituting such values into equation (13.2), thus getting the unknown value of g. In
particular, by substituting v =32, e =48, f =15, s =1¢e h =4 in (13.2) we get

32-48+16=2(1—g)+4

and hence g = 3. The solid is topologically equivalent to the sphere with 3 handles,
as shown by Figure 13.15.

I

Figure 13.15 The Euler-Poincaré equation v — e + f = 2(s — g) + h is specialized
into 32 — 48 + 16 = 2(1 — g) + 4, so that g =3

18.5.8 FEdge-based schemes

Boundary representation schemes can be classified in two main classes, that we call
edge-based and face-based. The first class contains most of known representations,
and is discussed in this section. In particular, we illustrate here the so-called minimal
boundary representation, as well as Baumgart’s winged-edge [Bau72] and Méantyld’s
half-edge [M&n88] representations.

Minimal b-rep

It has been shown [Woo85] that the data structures which may implement every b-
rep of 3D models are connected subgraphs of the complete oriented graph, shown in
Figure 13.16a, defined by the sets F, £,V of boundary entities.



BASIC SOLID MODELING 575

€

Figure 13.16 (a) Complete graph of topological relations between boundary

entities (b) Minimal b-rep, given by two relations in normal form (Codd)

The smallest boundary representation, that stores two incidence relations in first
normal form [Dat97], i.e. where each tuple has constant length, is given by the pair
(EV,EF).

The representation, shown in Figure 13.16b can be given as a table indexed on edges,
where the tuple indexed by e; contains the two vertices and the two faces incident the
edge e;. This minimal boundary representation has size 4e, because each edge-tuple
contains 4 data items.

The minimal b-rep can only be used with manifold solids, where it is guaranteed
that exactly two faces meet on each edge. The number of faces incident on an edge is,
more in general, even for non-manifold solids. Clearly, the domain of minimal b-rep
scheme is restricted to the subset of manifold models.

Winged-edge representation

The so-called winged-edge representation, developed by B. G. Baumgart at the Al
Laboratory of MIT in early 1970s [Bau72], is probably the more well-known and
historically important boundary representation.

In this case we have a relational representation in normal form, based on two tables
of indices and on a primary table indexed on edges. In particular, the tuple of the
primary table indexed by e; contains 8 data items, including:

1. references to 2 incident vertices,
2. references to 2 incident faces and
3. references to 4 adjacent edges which also meet on the two adjacent faces.

The winged representation W E' is shown in Figure 13.17. The WE b-rep contains
the minimal one, since it contains the two relations EV and EF. Also it contains a
subset of EF with cardinality 4e.

The tuple of the primary WE table, indexed by the e; edge, accommodates
respectively the following fields:

(Uia Uf, f?’a fla €ir, €il, Efr, efl)

where v;, vy denote the references to the initial and final vertex of the edge e;, fr, fi
are references to right and left incident faces on e;, and e;, €;1, efr., 5 are references
to:



576 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

the edge incident on the initial vertex and on the right face of e;,
the edge incident on initial vertex and left face,

the edge incident on final vertex and right face,

the edge incident on final vertex and left face.

=W

The name of this data structure probably derives from the picture of the tuple, that
looks like the shape of a butterfly.

€| €l | Cer| €el

Figure 13.17 (a) Normalized relations of Baumgart’s representation
(b) Incidence/adjacency relations stored in the primary tuple

Optimality of winged-edge b-reps The WE representation is very interesting,
because it allows an answer to every topological query in time proportional to the size
of the query output. This is generally impossible with the minimal b-rep previously
discussed.

For example, in order to return the subset of vertices on the boundary of a face, it is
possible to access, through the table of face indices, the tuple of one of incident edges,
and then to navigate the only tuples of edges incident the face, thus accumulating, e.g.,
the first vertex of each tuple, until the starting tuple is accessed again. This approach
results in a number of storage accesses equal to the number of boundary edges (and
vertices). Conversely, an access to every tuple of the table would be needed when using
the minimal b-rep.

Multiply connected faces Like the minimal b-rep, the winged-edge scheme may
only represent manifold solids with simply connected faces, i.e. with single-loop face
boundaries. Two well-known variations of the W E scheme, allowing representation
of multiply connected faces, require either an explicit representation of the face-loop
relation [Bra79] or the introduction of so-called bridge-edges [YT85] to reduce multiply
connected face to simply connected ones, as shown by Figure 13.18. Bridge-edges are
easily recognized in the primary W E table, because they have f. = fi.

Half-edge representation

The half-edge [Man86] representation by Marti Méantyla is described by the Bachman
diagram shown in Figure 13.19. In this representation the Edge entity is needed to
implement the F'F relation. In particular, each instance of the Edge entity is linked
to two instances of the HalfEdge entity. Clearly enough, a Loop entity is a linked list
of HalfEdge instances.



BASIC SOLID MODELING o577

& &

Figure 13.18 (a) Multiply connected face (b) Simply connected face with inserted
bridge- edges

prevs nexts
- Solid  —
Edge
T
sfaces fsolid
prevf ! nextf Y
- Face -
HalfEdge
T
floops Iface
prevl ! nextl
- Loop -
T
A
ledg wloop Edge
prv ! nxt #1 y
- HalfEdge - he hSA
HalfEdgd ~[” | HalfEdge
bd1iled
vtx 4 \
prevv ! nextv /
- Vertex -

Figure 13.19 (a) Mantyld’s Half-Fdge representation (b) Diagram of topological
relations between edges and halfEdges

A typical characteristic of both this representation and of several other b-reps,
mainly when using very complex data structures, is the extensive use of so-called
Euler operators [Man88], used as middle-level access operations to the representation,
in particular when implementing very complex algorithms, like Boolean operations.
Such middle-level operations are used to step-wise modify the representation in a
consistent way, i.e. by always satisfying the Euler—Poincaré equation.

18.5.4 Facet-based schemes

Facet-based schemes are b-rep schemes where the main role is assigned to the 2D
elements of the partition of the object’s boundary. We may classify here both the
face-adjacency hypergraph by L. De Floriani and B. Falcidieno [ADF85], and the
winged-triangle b-rep [PRS89] by A. Paoluzzi et al., both discussed in this section.
We also discuss in this section, despite its name, the quad-edge representation [GS85)
by L. Guibas and J. Stolfi, because it fully exploits the duality relation between graphs
embedded on surfaces.



578 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Face Adjacency Graph

An interesting facet-based boundary representation was proposed by S. Ansaldi, L. De
Floriani and B. Falcidieno [ADF85], and called Face Adjacency Graph, making use of
some graph theoretical concepts described below, and in particular of the duality
between embedded graphs. Their approach may be found very useful when describing
and classifying geometric features in object design and manufacturing.

Graph embedding The boundary of a 3D polyhedron of genus 0 can be represented
as a planar graph, i.e. as a graph embedded — or “drawn” — on either the plane or
the sphere, with an intersection of edges located only at vertices. More generally, the
boundary of a solid of g genus can be embedded as a planar graph on a surface of g
genus.

For example, the boundary of a 3D cube can be drawn on the plane as shown in
Figure 13.20. Such embedding of the boundary graph contains 8 vertices, 12 edges and
6 faces. A face is here defined as a connected region of the plane partition generated
when subtracting vertices and edges (as point sets) from the embedding surface. One
of such regions, called the external face, is unbounded. Clearly, an external face does
not exist when the graph is drawn on the sphere.

Duality between planar graphs Let us consider an abstract planar graph as a
triplet G = (V, E, F), where V is the set of vertices, F is the set of edges and F' is the
set of faces. It can be seen that cycles of edges counstitute a group (the cycle group)
with respect to an operation of cycle addition. All the cycles can be generated by a
subset of independent generators, which constitute a basis for the group. There exists
a bijective mapping between the set of internal faces of the graph embedding and a
basis of cycles.

Given an abstract planar graph G = (V, E, F) it is always possible to uniquely
associate another planar graph, called the dual planar graph, G' = (V', E’, F') defined
by three bijective maps f, g and h, that associate vertices of primal with faces of
dual, faces of primal with vertices of dual, and edges of primal with edges of dual,
respectively:

f:V—=F, g:F =V, h:E— E.
Clearly, the duality relation is idempotent, i.e. the dual of the dual is the primal.

The two edges (v;,v;) and h(vs,v;) = (vy,,vp), associated by duality, must satisfy a
mutual intersection constraint. In particular, both must be obtained by intersection

of (the cycles of edges associated to) dual faces of the extreme vertices of the other.
In formal terms:

(vi,v7) = g~ (W) N g~ (v),
and
(’U(/p ’UI/)) = f(vl) N f(vj)a
so that
hg~ (vp) Ng~ (vg)) = flvi) O fluy).



BASIC SOLID MODELING 579

Example 13.5.4 (Boundary graphs)
In Figure 13.20 we show two plane embeddings of the primal and dual graphs
associated to the boundary of a 3D cube.

Face-Adjacency Graph The Face-Adjacency Graph (FAG) representation [ADF85]
by Ansaldi, De Floriani and Falcidieno, represents a 3D solid through the non-directed
dual of the boundary graph, where the object faces are used as vertices and the
pairs of adjacent faces are used as arcs. The connectivity properties of this graph
are representative of the topological characteristics of the solid boundary. Variations
of this structure are often used to discover and reason with the geometric features
(pockets, slots, lumps, etc.) of the object.

Quad-edge representation

A particularly elegant data structure for polyhedra is the quad-edge data structure,
invented by Guibas and Stolfi [GS85]. It is limited to closed manifolds, where edges
are always shared by two faces. In the quad-edge data structure, there are records for
vertices, edges, and faces, but the Edge record play the leading role. The edges store
complete topological information; all of the topological information stored by the faces
and vertices is redundant with respect to information in the edges.

Given a directed Edge, it is possible to find the immediately adjacent vertices,
faces, and edges, and the “symmetric” edge that points in the opposite direction. In
particular, for each edge, there are pointers to next edge around right face, with same
right face, next edge around left face, with same left face, next edge around origin,
with same origin, next edge around dest, with same destination. Similar pointers are
stored for previous elements.

Winged-triangle representation

The so-called winged-triangle representation WT, by Paoluzzi, Ramella and
Santarelli [PRS89], is a b-rep based on vertices and triangles (0- and 2-simplices) of a
boundary triangulation, i.e. of a simplicial complex associated to the object boundary.
In particular, the WT representation is a table in first normal form [Dat97] where each
tuple, indexed by the ¢; triangle, contains:

1. 3 references to incident vertices;
2. 3 references to adjacent triangles.



580 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

,_,_..._-'?
A ‘r/
H e ¥

el el
) efl

-7

(¢) The data structure for the subdivision

This scheme is characterized by the design choice of making no use of Euler
operators. This choice is allowed by the extreme simplicity of the data structure
representing the triangulation of the boundary, and by the implementation of the
Boolean algorithms, discussed in the following subsections, where the consistency of
the boundary simplicial complex is easily maintained.

i
Figure 13.22 (a) Triangle t;, with triplets of adjacent triangles and of incident
vertices (b) Tuple associated to t;

Domain of the scheme The space of mathematical models represented by the WT
scheme is quite extensive. It coincides with the set of linear regular 3-polyhedra which
are possibly:

unconnected;

unbounded (but with bounded boundary);
non-manifold ;

multishell;

with multiply connected faces.

G o=

Range of the scheme A representation in this scheme is a quadruple WT'(X) =
(V,T,v,7), where V and T are respectively the sets of 0-simplices and 2-simplices of
a boundary complex ¥, and where

v : T—->VxVxV,
T ¢« T —-TxTxT.



BASIC SOLID MODELING 581
Hence, for the boundary triangle t;, as displayed by the tuple in Figure 13.22, we have:

V(tj) = (Uj1 ) szavjs)a
T(tj) = (tjlatjzatjs)'

Validity set A WT(X) representation is valid if and only if the associated boundary
simplicial complex ¥ is:

finite;

bounded,;

closed (i.e. without boundary);
orientable.

Ll

The aims of such requirements are quite simple to explain. An infinite complex is
intractable, because it cannot be stored in a computer memory. Also, an unbounded
boundary complex is beyond the concept of a “solid” in the common experience. An
open (i.e. with boundary) boundary complex does not satisfy the fundamental property
which says that, for every body B, “the boundary of the boundary is empty”:

00B = 0.

Finally, a boundary complex must be orientable in order to separate the interior from
the exterior space.

When the above properties are satisfied, the support space [X], i.e. the point set
union of simplices in ¥, coincides with the boundary of some orientable 3-polyhedron.
It may be also useful to note that such representation scheme is complete, but not
unique. As a matter of fact, the boundary of a solid may support several different
triangulations.

Example 13.5.5 (Closed surfaces)

In Figure 13.23 we show the solid resulting from union of two translated parallelepiped
solids. We remark that in every wvalid representation the boundary complex is closed,
i.e. that every boundary triangle is always adjacent to three other triangles.

Example 13.5.6 (Open surfaces)

What was noted above is not true for the winged-triangle representation of open (say
with-boundary) polyhedral surfaces. Let consider the surface in Figure 13.24. Notice
that the triangles which are adjacent to the boundary curves have only two adjacent



582 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

triangles. Anyway, a WT representation, which is not valid as a solid representation,
can be usefully exploited by adopting a special symbol, say either —1 or L, to read as
“undefined”, to denote the empty adjacencies in triangle tuples.

Figure 13.24 Open triangulated surface

Non-manifolds as pseudo-manifolds Theoretically, the domain of the scheme
should only embrace manifold solids. But, in order to make the domain closed with
respect to Boolean operations, it is useful to represent non-manifold models in the same
scheme. To give a pseudo-manifold WT representation of a non-manifold solid is very
easy and “natural”. Let us consider for this purpose Figure 13.25. A pseudo-manifold
complex can be defined as a simplicial complex with some duplicated simplices, and
having a non-manifold support space.

No problems arise with duplicated non-manifold edges, if we choose from the various
possible representations the one with the minimum number of shells. In this case the
connection across the non-manifold edge is correctly preserved. Slightly more complex
is the case of non-manifold vertices, where some auxiliary data structure, storing the
shell-vertex incidence, is needed to track correctly the shell connection across such
vertices.

Anyway, no management of this very special case is needed either for Boolean
operations or for integration algorithms, as discussed in the following sections.

Figure 13.25 Pseudo-manifold representations of a non-manifold model

Storage space of WT representation

For each surface triangulated by a simplicial complex the following useful properties
hold. They have direct implications on the storage of the WT representation in the
computer memory.

Theorem (Storage space) The following relations between the numbers of
triangles, edges and vertices of a boundary triangulation hold:



BASIC SOLID MODELING 583

1. (Triangles-edges)
The number ¢ = |T| of triangles and the number e = |E| of edges satisfy the
equation

t=ce. (13.3)

2. (Triangles-vertices)
In a polyhedron with a number v = |V| of vertices, a number s = |S| of
boundary shells and g genus, a minimal set of triangles 7" which triangulates
the boundary has size

t=2v—4(s—g). (13.4)

3. (Storage respect to triangulation edges)
The storage space mem(WT ) needed by a triangulated surface, where ¢ = |E|
is the number of edges of the triangulation, is:

mem(WT) = 4e. (13.5)

4. (Storage respect to polyhedron edges)
For a 3D polyhedron, with € original edges, say non induced by the
triangulation, f polygonal faces and h holes in the faces (rings), we have:

mem(WT) =12(é — f + h). (13.6)

5. (Lower and upper bounds)
The storage space mem(WT ), for any 3D polyhedron, is included between %
and % of the storage required by WE representation:

1
§mem(WE) <mem(WT) < gmem(WE). (13.7)

Proof For point 1, since each triangle ¢; is incident to three vertices, all the subsets
t;V of the incidence relation TV C T x V have the same number 3 of elements, so
that [t;V| = 3 for each t; € T, and hence

V=Y |tV]=)_ 3=3t
t; €T t, €T

Also we know that the incidence relation V' F' has cardinality 2e. For the WT
representation the boundary faces coincide with the triangles of the boundary complex,
so that:

|[VT| = 2e.

By the symmetry of incidence relation, we have |TV| = |[VT), so that equation (13.3)
is proved. For point 2, the Euler—Poincaré equation [Poi53] (see Section 13.5.2) can be
specialized for a triangulation as

v—e+t=2(s—g),



584 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

since holes in the faces (rings) are not allowed (h = 0), so that
3
v—§t—|—t=2(s—g)

and hence equation (13.4) is proved. For point 3, we can write for the primary table
of the representation:

7mmmnv=&=6(%>

For point 4, from Theorem (13.4) we have

t=2v—4(s—g), (13.8)
and, from Euler—Poincaré equation
v=2s—g)+h+é—f. (13.9)
So, by substituting the v expression (13.9) into the ¢ expression (13.8) we get
t=2(—f+h)

and hence the statement is proved. The above properties can be combined, to get
lower and upper bounds for the storage space of the WT representation, as stated by
point 5.

Storage bounds Such results are quite interesting, because they give an upper
bound for the WT storage, depending either on the number of triangles or on the
number of vertices. Notice in particular that the number of boundary triangles,
and hence the size of the WT primary table, is O(v) and that, in particular, is
bounded by 2v. The lower bound of point 5 is obtained when all the original faces are
triangular. This happens, e.g., when polyhedrally approximating solids with double
curvature external surfaces. In this case the WT representation is space-optimal, since
it requires exactly the same space than the minimal b-rep discussed in Section 13.5.3.
Conversely, the upper bound is approached when the original faces of the solid have
an asyntotically increasing number of edges. In normal usage with linear polyhedra,
the average size of a WT representation is about 6 times the number of original edges
of the object.

Example 13.5.7

A minimal triangulation of cube boundary is shown in Figure 13.26. The number of
edges of such triangulation is e = 12 + 6, given by the original edges of cube, plus
one edge for each face. From equation (13.3) we get, for the number of triangles,
t=218=12.

Boolean operations on b-reps

Several approaches to the computation of Boolean operators using a boundary
representation can be found in the solid modeling literature (see, e.g. [Bra79, HHKS8S,
LTHS86, M&n88]). The very simple Boolean algorithms defined with the WT b-rep, that
do not require the use of Euler operators, can be found in [PRS89).



BASIC SOLID MODELING 585

b

Figure 13.26  Winged-triangle representation of cube boundary

r=n

Figure 13.27 (a) 2D polygons (b) Boolean difference between extruded solids

Regularized operations Set operations of union, intersection and difference, as
defined in solid modelers, are usually “regularized”. Such modified operations are in
fact closed on the set of regular solids. In other words, the combination of regular
solids by means of a regularized set operation, always returns a regular solid. This
property is generally not true for standard set operations. In Figure 13.28 we show
that a standard set operation between regular arguments may produce a non-regular
result.

A regularized set operation is defined as the closure of the interior of the result of
the standard set operation. Let us denote the operation as op, with op € {n,U, —}.
So, a regularized operation, denoted as op*, is defined as

A op* B=Xki(A4 op B),

where k and i denote the topological operations of closure and interior, respectively.
It may be useful to remember that k(S) = S UdS.

A ANB AN*B

Figure 13.28 Standard set intersection and regularized set intersection

Boolean algebra Several boundary representation schemes have as domain the set
of bounded manifolds (or non-manifolds). So, they do not allow for a complement
operator. Consequently, they must devise appropriate algorithms for each set
operation, i.e. for union, intersection and difference.



586 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Conversely, the WT representation scheme allows for a complement, and hence
properly implements a Boolean algebra over the set of 3D polyhedra [PRS89], by
explicitly enforcing the closure of the validity set of the scheme under the complement
of representations. In this way, e.g., intersection and difference are reduced to the
combination of complement and union, according to De Morgan’s theorems of Boolean
algebras. In particular, we have:

ANB = =(~AU-B),
A-B = =(-AUB).

Let us note that only two algorithms are needed in this case, to implement the basic
operations of complement and union, respectively.

18.5.5 Mass and inertia properties

The evaluation of area, volume, centroid and moments of inertia of rigid homogeneous
solids frequently arises in a large number of engineering applications, both in
Computer-Aided Design and in Robotics. Hence, quadrature formulae for multiple
integrals have always been of great interest in computer applications.

Many papers on integration methods were related to solid modeling, but as Lee and
Requicha pointed out in [LR82] most computational studies in multiple integration
often deal with calculations over very simple domains, like a cube or a sphere, while the
integrating function f(p) is very complicated. Conversely, in most of the engineering
applications, the opposite problem usually arises.

Definitions Mass and inertia properties of solid objects are defined as volume
integrals of low-degree monomial fields f(z,y, z), the integration being done over the
space portion occupied by the object under consideration. If B C IE? is the set of
body points, then the mass M, the first moments M,, M,, M, the second moments
My, Myy, M, and the products of inertia M., M., My, are defined as

///Bf(x,y,z)dM=///Bf(x,y,z)p(x,y,z)dv,

where p(z,y,z) is the local density of the body, and the scalar field f(z,y,z) is
respectively equal to 1 (mass); x, y and z (first moments); 22, y? and 22 (second
moments); yz, xz and xy (products of inertia).

Centroid The centroid G = (G, Gy, G;) of a body, also known as “center of mass”,
is defined by the ratios G, = %, Gy = J\J(I; and G, = J\A{; of the first moments to the
body mass. In homogeneous solids, where the density is constant, the centroid position

does not depend on the density, but only on the geometry of the body.

Moments of inertia The moments of inertia with respect to some axis are defined
as the volume integrals of the squared orthogonal distances from the axis. Moments



BASIC SOLID MODELING 587

of inertia with respect to a coordinate axis are hence given, respectively, by

M, = My, + M.,
Mrf] = sz + Mzz;
Myz = Mg, + My,

The moment of inertia M,.2 of body B with respect to any axis r is computed by first
translating 7 to the origin, then by rotating the translated axis r’ to some coordinate
axis, say z, and finally by computing Mz, i.e.:

M,2(B) = My2(Ryr—.. Ty B).

Timmer-Stern’s method

The volume integration problem can be stated as follows: evaluate the volume integral

[[ fav. s (13.10)

where f(p) is a scalar-valued field over B C IE3.

The integration method discussed in the following section may be considered as a
specialization of Timmer and Stern’s general method [TS80, Mor85], consisting of the
transformation of a volume integral into a surface integral and then into a parametric
line integral.

Algorithm Timmer-Stern’s integration procedure can be summarized as follows:

1. Search for a vector field @ such that:

///Bf(p)dvz///BV"I’dV- (13.11)

2. Use the divergence theorem to transform the right-hand term of
equation (13.11) into an integral on the closed boundary S of the B

integration domain
z//i’-ndS. (13.12)
s

3. Use the property of domain-additivity of surface integrals over a partition
of the boundary surface S into a set {S;} of faces such that U;S; = S, and
SiNS; =0 for each i # j :

:Z//S‘@-nd&. (13.13)

4. Transform each surface integral in a double integral in the parametric domain
St ., of the face S; of the scalar field ¥ (u, v):

:;/Si W (u, v) du dv, (13.14)

uv



588 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

where
U (u,v) = ®(z(u,v),y(u, v), 2(u,v)) - n(z(u, v), y(u, v), 2(w, v)) [P, X P,|.

5. Use again the divergence theorem in 2D to transform these last integrals into
line integrals on the closed and simple boundary curves C; of domains S;,,,.
In other words, search for a vector field x = (x1, x2) such that:

Z:/S W (u,v) du dv (13.15)

uv

Z/ V- x dudv (13.16)
i S}

uv

ij X - 7o ds. (13.17)

i YO,

6. Then use the domain-additivity of curve integral to integrate over the set of
curves associated with the boundary edges C?/ in parametric domain wv of

each boundary face:

:ZZ/ X - fuds. (13.18)

uv

7. Finally, transform each term into a single integral in the parametric domain
C}? of the trimming edge C/:

) 3 IR ORIOHOL (13.19)

The Timmer’s and Stern’s method is specialized in the next subsection for when (a)
the field f(p) is a polynomial, (b) the integration domain B is a 3D polyhedron and
(¢) a triangulation of OB is available.

Integration of polynomials over polyhedral domains

Here we summarize from [CP90] an exact and symbolic solution both to the surface and
volume integration of polynomials, by using a triangulation of the volume boundary.
The evaluation of surface and volume integrals is achieved by transforming them
into line integrals over the boundary of every 2-simplex of a domain triangulation. A
different approach to integration, using a decomposition into volume elements induced
by a boundary triangulation is given in [ILK84] where a closed formula for volume
integration over polyhedral volumes, by decomposing the solid into a set of solid
tetrahedra, but such a method cannot be used for surface integrations.

Problem statement A finite method [CP90] to compute double and triplet

integrals of monomials over linear regular polyhedra in IR? is discussed. In particular,
this method enables practical formulae for the exact evaluation of integrals to be

achieved:
s = | /5 foyds, 1= [ [ /P f(p)dv, (13.20)



BASIC SOLID MODELING 589

where S, and P are linear and regular 2- or 3-polyhedra in IR, dS and dV are the
differential surface and the differential volume. The integrating function is a trivariate
polynomial

n m p
F@) =) aapay’s,

a=0 B=0~vy=0

where «, 3, are non-negative integers.
Since the extension to f(p) is straightforwardly given by the linearity of integral
operator, we may focus on the calculation of integrals of monomials:

g™ z// aoy?2dS, I E/// x%y? 27 dV. (13.21)
S P

Algorithm preview Surface integrals are computed as a summation of integrals
over a triangulation of the surface. Any triangle is mapped into the unit triangle in
the 2-space of parameters, where integrals of monomials become particularly simple.
Then formulae for integrals over polyhedral volumes are given. They are easily derived
by transforming volume integrals in surface integrals. It is possible to show that such
integrals are computable in polynomial time, and that inertia moments are computable
in O(F) time, E being the number of edges of the solid model of the integration
domain.

A very important feature of the integration formulae presented here is that they
can also be used with a partial model of a polyhedron, consisting of the collection of
its face loops. Loops are oriented counter-clockwise if external, clockwise if internal
to another loop. Such a model, without explicit storage of face adjacencies, is very
frequently adopted in Computer Graphics.

In this case it is sufficient to consider any n + 1-sided (also unconnected or multiply
connected) face as topological sum of n — 1 oriented triangles t;, with vertices
(v0, V4, Vit1), where 1 < i <m—1.In applying formulae (13.31) or (13.34) to such a set
of triangles, any edge that does not belong to the original polygon will be computed
twice, in the two opposite directions. These contributions to the whole integral will
mutually cancel each other out, as they correspond to pairs of line integrals evaluated
along opposite paths.

Surface integration We call structure product the integral of a monomial over a
simplicial complex. Exact formulae for structure products over n-sided polygons in
2-space, the unit triangle in 2-space, and an arbitrary triangle in 3-space, are derived
in the following. Structure products are a generalization of the usual products and
moments of inertia, that can be obtained from (13.21) by assuming a + 8 + v < 2.

Polygon integrals A structure product over a polygon 7 in the plane xy is

II?B = // z%yP ds, a, 3> 0, integers. (13.22)



590 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Such integrals can be exactly expressed, when 7 is a polygon with n oriented edges,
as:

n a4+l

at 1) ati-nyn SRy
= Y, 13.2
a+1ZZ( > Zh+k+1 1 (3 3)

1=1 h=0

where p; = (x4, v:), Xi = xi41 — x4, Yi = yir1 — yi and pp41 = p1- The derivation of
the formula (13.23) is based on the application of Green’s theorem and on Newton’s
expression for binomial powers.

Unit triangle integrals The general formula (13.23) can be specialized for the unit
triangle 7" = (w,, wW,, Wy ), with vertices

wo = (0,0),  wo=(1,0), wp=(0,1), (13.24)

getting a very simplified expression. With some algebraic manipulations, we obtain!

a+l h
1 a+1) (-1)
af _ E
= oz—|—1h_0( h >h—|—ﬁ—|—1’ (13.25)

which reduces, for o = 3 = 0, to the area of the triangle (13.24): I7°° = 1/2.

Triangle integrals In the following we derive the general expression for structure
products evaluated on an arbitrary triangle 7 = (v,, v, v) of the 3-space xyz, defined
by v, = (%0, Yo, 20) and by the vectors a = v, — v, and b = v;, — v,,. The parametric
equation of its embedding plane is:

p=vot+ua+uvb, (13.26)

where the area element is
dr = |J| dudv —’—x— dudv = |a x b|dudv. (13.27)
ov

A structure product over a triangle 7 in 3-space can be transformed by a coordinates
transformation, as follows:

I1%P7 = // 2%y’ 27 dr = |a x b|// 2 (u, v)y” (u, v)2Y (u, v) du dv, (13.28)

where 7’ is the uv domain that corresponds to 7 under the coordinate transformation
(13.26). In this case we have (the proof is given in [CP90]):

B ¥
(63 o — 6 —k —m
e = |axb|z( )at z(k)yﬂ kmz_o(;)zz
h k
> (> ()

>a’;—ﬂb > > m=lpl 7Y (13.29)
i=0 =0 M

=0

1 II,?ﬁ is substituted, when referred to the unit triangle, by the symbol I7%5.



BASIC SOLID MODELING 591

where p = (h+k+m)—(G+j+1),v=_>G+j+1), and IT*” is a structure product
over the triangle (13.24), as given by formula (13.25). Of course the area of a triangle
T is:

|a x b|
5

I1°%° = / dr =|axb| I = (13.30)

Surface integrals In conclusion, a structure product over a polyhedral surface S,
open or closed, is a summation of structure products (13.29) over the 2-simplices of a
triangulation Ky of S:

IIE.‘M :// %y’ 27 dS = Z I19P7, (13.31)
s

TEK,

Volume integration Let P be a three-dimensional polyhedron bounded by a
polyhedral surface P. The regularity of the integration domain and the continuity
of the integrating function enable us to apply the divergence theorem, which can be
briefly summarized, for a vector field F = F(p) as:

// V-Fdxdydzz// F-ndS= ) //F-anT, (13.32)
P oprP reKy T

where n is the outward vector normal to the surface portion dS, and hence n, =
ax b/|ax b|.

As the function z%y%27 equates the divergence of the vector field F =
(x®H1yP27 /o +1,0,0), an expression for I IIO‘)B 7 is easily derived, which depends only
on the l-simplices of a triangulation of the domain boundary and on the structure
products over its 2-simplices.

As a matter of fact, we have:

IIIIO‘)M = /// 2%y’ 2V dx dydz
a+1 ﬂ
/// e (a+1 >d$dydz

(a xb) // LB 27 du dv. (13.33)

a+1 'eK'

Taking into account equations (13.27) and (13.28), we can substitute the integral
in the previous equation, getting finally:

1 (ax b)
IIePr = L protlBo 13.34
e e (13349

T 2

where the surface integrals are evaluated by using the formula (13.29).



592 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Computation of inertia has linear complexity Surface and volume integrals
over linear polyhedra are computable in linear time. In particular, surface and volume
integrals of a monomial x®y°27 over a linear 2-or 3-polyhedron are computable in
O(a33?42E) time, E being the number of edges of the polyhedron.

In fact for the surface and volume integrals it is very easy to see, from inspection
of the given equations, that both integrals may be evaluated in O(a?3*~4%T) time, T
being the number of triangles of a minimal triangulation of the domain. It is easy to
show that the relation T'= 2F — 2F < 2FE holds between the number T of triangles
of a minimal triangulation of a polyhedron boundary and the numbers E and F of
its original edges and faces respectively. When all triangle faces are triangular, the
relation reduces to T = %E :

This property is very important for Computer-Aided Design and Robotics
applications: it demonstrates that the inertia tensor of a linear polyhedral solid is
easy to compute. It directly implies that the inertia tensor of a linear polyhedron is
computable in O(E) time. As a matter of fact the elements of the inertia matrix of
a homogeneous object B, namely its mass M, first moments My, M,,M,, products of
inertia Mgy, My, M., and second moments My, My,, M., can be all expressed as

p/ P27 av, (13.35)
B

where p is the constant density, and where 0 < o+ 84 v < 2. Being «, 3, v bounded,
the assertion follows from the previous claim.

13.6 Examples
13.6.1 Umbrella modeling (4): solid parts

The 1D subcomplex with handle and rods defined in our last umbrella version with
curve segments and surface patches (see Section 12.6.1) is refined with 3D solid parts
in Script 13.6.1. In particular, the new handle is generated as a 3-variate mapping of
the boundary Dom of a translated parallelopided D1 * D2 * D3 in parametric space,
where D1 is a partition in 8 parts of the interval [, 27], D2 is a partition in 1 parts of
the interval [0,7/3], where r is the handle radius, and D3 = D2.

\J

Figure 13.29 Some perspectives of the model generated by Umbrella:<10,80>,
and Umbrella:<10,30>, where 80 and 30 (degrees) are the opening angles.

Finally, the curved tiny rods of the umbrella are generated from their initial wire
frame definition, by using the primitive BezierStripe operator. Such a function will



BASIC SOLID MODELING 593

Script 13.6.1 (Umbrella modeling (4))
DEF Handle (h::Isreal) = T:<1,2>:<Radius*7/6,-:Radius/6>:
(MAP: [S2%C0S ~ S1, S3, S2*SIN ~ Si]:dom )

WHERE
D1 = (T:1:PI ~ S:1:PI ~ Domain):8,
D2 = (S:1:(1/3*Radius) ~ Domain):1,
D3 = D2,

Dom = @2:(T:2:Radius: (D1 * D2 * D3)),
Radius = h/18
END;

DEF Axis (h::IsReal) = (@2 ~ STRUCT):<
Handle2, T:3:(h/10), MetalRing, Rod, T:3:(2%AB), Tip >
WHERE
Handle2 = T:<1,2>:<-1/6*Radius,-1/6*Radius>:
(CUBOID:<1/3*Radius,1/3*Radius,h/10>),
MetalRing = CYLINDER:<h/50, 0.5%xh/10>: 12,
Rod = CYLINDER:<h/90, 2%AB>: 12,
Tip = Handle2,
Radius = h/18,
AB = hx4/10
END;

DEF Rod (len::IsReal) = T:<1,2>:<-2%a,-1/2%a>:((@2 ~ CUBOID) :<2*a,a,len>)
WHERE a = len/100 END;

generate a plane surface stripe depending on the 3 control points of a quadratic Bezier
curve. The 3D solid rods are thus generated by the polyhedral product of the surface
stripe times a 1D segment of size 1en/100.

Script 13.6.2 (Umbrella modeling (4))
DEF RodCurve (len,beta,n::IsReal) =
(R:<2,3>:(PI/2) ~ T:1:(2%1len/100) ~ @2):
((T:1:(-2%1en/ (100 - 5)) ~ BezierStripe):
<<<0,0>,<0,1len/2>,<len/2 * sin:beta,len>>,2%len/100,n>
* QUOTE:<len/100>);

Umbrella:<10,80>

Some projections of the refined model, for different values of the opening angle, are
given in Figure 13.29.






