
15

Motion modeling

This chapter is dedicated to discussing some geometric techniques for animation
modeling and motion planning. In particular, the reader is introduced to the degrees
of freedom of a moving system, and to the central issue of configuration space (CS),
the set of numeric k-tuples that determine the placement and orientation of all the
system components. A curve in configuration space, parametrized on the time domain,
completely specifies the motion of the system. When the animated scene is too
complex, it is necessary to project the configuration space onto coordinate subspaces
related to the various actors, and to adopt a graph-theoretic approach to global
choreography, allowing for motion coordination of interacting actors. The chapter also
presents a general geometric technique to compute a polyhedral approximation of
free configuration space, that encodes all the feasible motions of a mobile system
in presence of obstacles. From a geometric programming viewpoint, the reader will
learn that PLaSM provides flash animations based on 2D keyframes and gives a good
support, based on CS sampling, to the symbolic generation of animated VRML of
complex storyboards.

15.1 Degrees of freedom

Consider a moving system R = {Ri}, as a set of rigid bodies, either mutually
constrained or not. The motion of R is performed within a working space WS ⊂ IEd,
that contains an environment E = {Ej}, which is a set of rigid obstacles, that are
either stationary or move along known trajectories. Dimension of the motion planning
problem is the minimal dimension d of an Euclidean space such that R ∪ E ⊂ IEd.

The moving system R has also a number k of degrees of freedom (DOFs) which
is equal to the minimal number of scalar parameters that uniquely determine the
configuration of R, i.e. the placement and orientation of all the R elements with
respect to a reference coordinate frame.

The degrees of freedom of a moving system are also called generalized
coordinates [FL87], and constitute the main ingredient for the computation of the
system dynamics using either the Lagrange-Euler or the Newton-Euler formulations.
But system dynamics is beyond the scope of this book. The interested reader may

Geometric Programming for Computer-Aided Design Alberto Paoluzzi
c© 2003 John Wiley & Sons, Ltd ISBN 0-471-89942-9

650 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

study a good Robotics book, for example [FL87]. A classical reading in Mechanics
is [LCA26]. The realistic simulation of behavior of physical systems is one of the main
achievements of computer graphics in the last decade [CS89].

Rigid 2D body The translational motion of a planar body B moving amidst a
collection of polygonal obstacles has geometrical dimension 2 and 2 degrees of freedom,
because the orientation of B does not change, and the body position is determined by
the position of one of its points, fixed in advance.

The more general motion of a single rigid planar figure has dimension 2 and 3 degrees
of freedom, including two translational and one rotational degree. The rotational
degree determines the orientation of the figure with respect to a reference coordinate
frame. It is usually chosen as the angle between two corresponding axes from a fixed
reference frame and from a frame attached to the object.

Example 15.1.1 (2D body with 3 DOFs)
The simplest example is given in Script 15.1.1, where body2D is a rectangle. The
x and y coordinates of its bottom-leftmost corner are assumed as the translational
DOFs, whereas the angle between its bottom edge and the x axis of the fixed frame
in IE2 is taken as the rotational DOF. The 2D cuboid configurations are generated
as the images of the body2D function, depending on three real parameters. The four
configurations produced by the last expression are displayed in Figure 15.1. The reader
should notice that the object CUBOID:<2,1> is generated in a local frame centered on
the bottom leftmost corner and aligned with the fixed reference frame. Notice also
that the rotation tensor must be applied before the translation tensor.

Script 15.1.1 (2D body with 3 DOFs)
DEF body2D (x,y,angle::IsReal) =

(T:<1,2>:<x,y> ∼ R:<1,2>:angle): (CUBOID:<2,1>);

(STRUCT ∼ AA:body2D):
< <0,0,0>, <2,2,PI/4>, <4,2+2*SIN:(PI/4),0>, <6,0,3*PI/4> >

3

1

2

4

Figure 15.1 Four configurations of the 2D cuboid. The fixed reference frame is
aligned with the bottom and left edges of configuration 1

MOTION MODELING 651

Rigid 3D body The general motion of a single rigid body B moving in a 3D space
has 6 degrees of freedom. In this case there are 3 translational DOFs, corresponding
to the position of a body point, and 3 rotational DOFs, corresponding to a triplet
of Euler angles, that determine the orientation of a reference frame attached to the
body, with respect to a fixed coordinate frame.

A common choice for the triplet of Euler angles φ, θ, ψ, in this case called roll, pitch
and yaw angles, respectively, leads to a triplet of elementary rotation tensors Rz(φ),
Ry(θ) and Rx(ψ), where Rz , Ry and Rx respectively denote rotations about the z,
y and x axes. Their composition in the order specified below gives to the general 3D
rotation tensor that gives the body its orientation with respect to the fixed frame:

R(φ, θ, ψ) = Rz(φ) ◦ Ry(θ) ◦ Rx(ψ).

Some different choices for the Euler angles are quite common in Robotics, but are
unusual in graphics and animation systems.

Our well-trained reader is certainly aware at this point that the above rotation
tensor is applied to the moving system B before the translation tensor, in order to
get a given body configuration, i.e. the orientation and position corresponding to a
6-tuple of generalized coordinates.

Example 15.1.2 (3D body with 6 DOFs)
The function body3D given in Script 15.1.2 produces a position and orientation of
the CYLINDER with radius 0.2 and height 0.8, originally aligned with the z axis and
with the basis centered on the origin of the coordinate frame. The new configuration
depends on the 6 generalized coordinates dx, dy, dz, roll, pitch and yaw.

Script 15.1.2 (3D body with 6 DOFs)
DEF body3D (dx, dy, dz, roll, pitch, yaw::IsReal) =

(T:<1,2,3>:<dx,dy,dz> ∼ R:<1,2>:roll ∼ R:<1,3>:pitch ∼ R:<2,3>:yaw):
(CYLINDER:<0.2,0.8>:24);

STRUCT:< MkFrame, body3D:< 0.5,0.5,0, PI/2,0,PI/4 > STRUCT MkFrame,
MKvector:<0,0,0>:<0.5,0.5,0> >;

The graphical assembly generated by the last expression, where MkFrame is the
generator of the model of the standard 3D frame, and MKvector is the generator of
the vector difference of two assigned points, is shown in Figure 15.2.

A given configuration of our cylinder, say, without reference frames, is clearly
generated by the application of the generating function body3D to the 6-tuple of DOFs:

body3D:< 0.5,0.5,0, PI/2,0,PI/4 >

Mechanical manipulators A mechanical manipulator, more often called a robot
arm, is an ordered set or rigid bodies, called links, pairwise connected by either revolute
or prismatic joints. The first link is attached to a supporting basement, whereas the last
link may handle a tool. A fixed reference frame is associated with the arm basement,
and another reference frame is considered as rigidly attached to each link.

652 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Roll

Pitch

Yaw

Figure 15.2 Position and orientation of a 3D body, depending on 6 degrees of

freedom. Both the attached and the fixed frame are shown

Joint transformations Various kinds of joints may allow for different combinations
of rotational and translational DOFs. Usually, a spherical joint permits either 2 or
3 rotational degrees of freedom, a cylindrical joint allows for 1 rotational and 1
translational DOF, whereas a prismatic joint gives 1 translational degree. Notice that
each joint is associated with a link pair and constrains the relative movement of the
second link with respect to the first one.

A transformation tensor depending on the allowed degrees of freedom can hence
be associated with each joint, i.e. to each ordered link pair (Ri, Rj). This tensor will
specify the position and orientation of the reference frame attached to the Rj link
with respect to the coordinate frame associated to the Ri link.

Kinematics chains and bones When analyzing the structure of a manipulator
R = {Ri} as a graph G = (N, A), whose nodes are the links and whose arcs are the
joints, i.e. with N = R and A ⊂ R2, the resulting graph is most often acyclic,1 i.e. is
a set of open kinematics chains.

Models of anthropomorphic robots also contain a tree made of links and joints. In
computer animation a simplified representation and visualization of system links, used
to visualize the degrees of freedom and to specify the configuration space paths that
define the system motion, is usually given as a set of pairwise jointed bones.

Example 15.1.3 (Plane robot arm)
Let us consider a simplified 2D robot arm, as a kinematics chain with four links and
three rotational joints. We also assume that (a) the links are rectangles; (b) they are
equal to each other; (c) the first link is rigidly connected to the embedding space,
i.e. it cannot move.

In Script 15.1.3 we give the link object as a rectangle with the main axis aligned
with the negative y axis, and with the position of the rotational joint positioned on
the origin. The rotational joint is a function of a real parameter. When applied to an

1 Or, even better, is a tree.

MOTION MODELING 653

arbitrary value α of the argument in degrees, joint:α returns an affine transformation
tensor. Finally, arm is a function of the three joint angles, respectively denoted a1, a2
and a3.

To fully understand the meaning of the arm body expression, the reader should
remember the semantics of hierarchical structures from Section 8.2.1. Two different
configurations of the plane robot, produced by application of the arm generating
function to different triples of actual parameters, are displayed in Figure 15.3.

Script 15.1.3
DEF link = (T:<1,2>:<-1,-19> ∼ CUBOID):<2,20>

DEF joint (alpha::IsReal) = T:2:-18 ∼ R:<1,2>:(alpha * PI/180);

DEF arm (a1,a2,a3::IsReal) = STRUCT:
< link, joint:a1, link, joint:a2, link, joint:a3, link >;

x

-y

α1

2α 3α

x

-y
α1

2α

3α

Figure 15.3 Two plane robot configurations generated by arm:<30,45,60> and

arm:<60,45,30>

15.2 Configuration space

Each one of the generalized coordinates ξi of a moving system with k degrees of
freedom, may vary continuously within a real interval

Ξi = [ξmin
i , ξmax

i] 1 ≤ i ≤ k.

where ξmin
i and ξmax

i are often called joint limits in robotics applications.
The Cartesian product CS of the k intervals Ξi is called the configuration space of

the moving system:

CS := Ξ1 × Ξ2 × · · · × Ξk ⊂ IRk.

Each point (ξ1, . . . , ξk) ∈ CS corresponds to a different configuration of the moving
system, i.e. to a different placement and orientation of all its parts.

Motion A continuous curve

γ : [0, 1] → IRk,

654 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

such that γ[0, 1] ⊂ CS, completely defines a feasible motion of a mobile system.
The image of a smooth CS curve is also known as configuration space path. Clearly,

γ(0) and γ(1) respectively correspond to the starting system configuration and to the
goal configuration of the motion.

When reparametrized2 in a time interval, such curve gives the configurations as a
function of time, so that the curve itself and its first and second derivatives represent
the configuration space displacement, velocity and acceleration.

Since a continuous acceleration is produced by a continuous force or torque,
and standard actuators operate continuously, a feasible motion actually requires a
configuration space curve at least of class C2. More often, smooth CS curves are used
to represent a motion, and in particular polynomial or rational curves. Non-uniform
splines provide a very simple control of the motion acceleration.

Example 15.2.1 (Configuration space path)
A continuous curve in configuration space for the 2D robot arm defined in Script 15.1.3
is produced in Script 15.2.1 by the cubic Bézier generating function CSpath, where the
intervals generator of 1D polyedral complexes is given in Script 11.2.1. The curve
image in CS with reference axes labeled as α1, α2 and α3, is displayed in Figure 15.4a.
Notice that the sampling function produce the following values:

Sampling:6 ≡ < 0 , 1/6 , 1/3 , 1/2 , 2/3 , 5/6 , 1 >

A motion representation by graphical aggregation of the robot placements
corresponding to the generated CS sampling is given in Figure 15.4b.

Script 15.2.1 (Bézier configuration space path)
DEF CSpath = (CONS ∼ Bezier:S1):<<0,0,0>,<90,0,0>,<90,90,0>,<90,90,90>>;

DEF Sampling (n::IsInt) = (AA:/ ∼ DISTR):< 0..n, n >;

(MAP:CSpath ∼ Intervals):18;
(STRUCT ∼ AA:(arm ∼ CSpath ∼ [ID]) ∼ Sampling):18;

x

z

-y
α3

2α
1α

Figure 15.4 (a) Configuration space path produced as a cubic Bézier curve
(b) Set of configurations corresponding to a sampling of the path

2 See Section 5.1.2.

MOTION MODELING 655

Example 15.2.2 (Different CS paths)
Two different configuration space paths for the plane robot arm with 3 rotational
DOFs are given in Script 15.2.2 and displayed in Figure 15.5. Notice that both the
corresponding motions have the same start and goal configurations, whereas the two
intermediate control points of the configuration space path are different.

Script 15.2.2
DEF CSpath1 = Bezier:S1:<<0,0,0>,<90,0,0>,<90,90,0>,<90,90,90>>;

DEF CSpath2 = Bezier:S1:<<0,0,0>,<0,90,90>,<90,90,0>,<90,90,90>>;

Figure 15.5 Two movements of the plane arm, corresponding to different

configuration space paths, i.e. to different behaviors

Free configuration space The set FP of free positions for a moving system B
with k degrees of freedom is the compact subset of CS ⊂ IRk constituted by all points
whose corresponding placement of the moving system is free, in the sense that B
neither intersects any obstacle in its working space WS nor self-intersects. The set FP
is more often known as free configuration space.

A goal configuration r2 is reachable from a starting configuration r1, i.e. there
exists a feasible motion between them, if they are both contained in a same connected
component of FP. To compute FP is therefore equivalent to deciding in advance all
the possible reachability problems for a mover B and a set of obstacles E. Clearly, in
order to plan the motions from a given starting configuration r1 of the mover, it is
sufficient to determine just the connected component of FP that contains r1.

The reader interested to algorithmic robot motion planning is referred to the
Latombe book [Lat91].

15.3 Animation with PLaSM

In the last few years, PLaSM has been extended to support colors, textures, cameras
and animations. In particular, PLaSM was aimed at giving symbolic support to the
design of very complex animations.

656 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

For this purpose the language semantics were extended, and both an animation
methodology and an animation server were developed [BBC+99]. The animation
server, used only for display, was first implemented using OpenInventor as the
animation engine. More recently, the language interpreter started to directly export
animated VRML files, and some simple flash animations.

In this section we discuss the basic concepts of the PLaSM animation model, based
on CS sampling, and give several simple examples. The design and implementation
of complex animations with more than one animated actor are discussed in the next
sections.

15.3.1 Some definitions

Let us start our discussion of the PLaSM approach to the generation of computer
animations by giving some definitions.

Scene A scene is here defined as a function of some real parameters, with values
in some suitable data type, that we called animated hierarchical polyhedral complex
(ahpc).

Configuration Each feasible set of parameters defines a configuration of the scene.

State A corresponding pair <time, configuration> is a state of the animation. The
product of the time domain times the configuration space gives the state-space of the
animation.

Behavior The animation behavior is a curve in animation state-space. Each part
of the scene may change in time with respect to position, orientation and modeling
parameters, and may even change its internal assembly structure.

Animation An animation is a pair <scene, behavior>.

15.3.2 Generating flash animations

The PLaSM language may give basic support to the generation of flash animations,
exported as .swf files,3 that are rendered by a flash viewer, usually embedded by
default as a plug-in in web browsers.

Animations of this kind are based on the explicit generation of sequences of frames
either by inbetweening of key-frames or by configuration space sampling.

The reader should remember that flash animations are, by definition, 2D only.
The animation of a 3D scene would require a preliminary projection of the scene data
base. Consequently, in the remainder of this section we assume we are dealing with
2D data only.

3 Where the file suffix stands for ShockWaveFlash by Macromedia.

MOTION MODELING 657

Key-frame inbetweening An important technique of computer generated
animation, originating from traditional animation methods, consists in setting from
scratch some pictures, called key-frames, with important postures of the characters in
the scene, and in deriving a sufficient number of intermediate figures by interpolation,
that in this context is called inbetweening.

With PLaSM, this animation technique may be instanced by defining the either open
or closed polygonal contours of the objects in two or more subsequent keyframes, and
by generating the intermediate postures by the shape interpolation or approximation
methods defined in Section 7.3.2, that the interested reader is invited to review at this
point.

Notice that a shape is there defined as an equivalence class of congruent figures,
where the class representative is chosen with a vertex in the origin of the reference
frame. Hence, in order to instance a shape in a plane configuration, two translational
and one rotational parameter values are required. Such parameters, needed for
placement and orientation of characters generated by shape interpolation, are equally
derived by interpolation of the placements of two shape points, using 3D (three DOFs)
curves or splines parametrized on the time domain.

Configuration space sampling When the shape as well as the placement of an
actor may be generated by using a PLaSM generating function depending on actual
parameters of numeric type, the easiest way to produce a flash animation consists
of a variation of the CS sampling method used to export VRML animations.

The only difference in this case regards the need for explicit generation of a sequence
of polyhedral complexes, one for each frame of each moving actor. As it is easy to
understand, such an approach is quite space-inefficient, but is the only approach
allowed by the Macromedia API to produce .swf files. It follows that only quite
simple flash animations can be safely exported and efficiently rendered.

PLaSM primitives for Flash animation

The PLaSM primitives that affect the flash rendering of an exported .swf file are
listed and discussed in this section. To load a flash file in a web browser from an
html page requires some specialized tags. They are given in Script 15.3.1 for the
sake of user comfort, because the two more diffuse browsers require some horrible tag
attributes. Below we give a solution for an html anchor that works on both browsers,
at least at the time of this writing!

Notice that in Script 15.3.1 the filename is flashExample.swf, supposed to be in
the same directory of the html page, and that the anchor name is flashExample.

A flash file may contain either a movie or a single static picture, that is also
considered a movie. Hence we discuss here the primitives used to generate and export
from PLaSM both single pictures and simple animations.

RGBACOLOR The RGBACOLOR primitive of the psmlib/flash.psm predefined
library, applies to number quadruples in [0, 1]4, i.e. in RGBA space, where α ∈ A,
the last color coordinate, denotes (the opposite of) transparency, ranging from full
transparency (α = 0) to full opacity (α = 1). Two examples follow:

658 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Script 15.3.1 (Embedding a flash file into html)

<OBJECT CLASSID="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" WIDTH="100%"
CODEBASE="http://active.macromedia.com/flash5/cabs/

swflash.cab#version=5,0,0,0">
<PARAM NAME="MOVIE" VALUE="flashExample.swf">
<PARAM NAME="QUALITY" VALUE="high">
</OBJECT>

<EMBED SRC="flashExample.swf"
WIDTH="100%" PLAY="true" LOOP="true" QUALITY="high"
PLUGINSPAGE="http://www.macromedia.com/shockwave/download/

index.cgi?P1 Prod Version=ShockwaveFlash">
</EMBED>

DEF darkGrey = RGBACOLOR:<0.1, 0.1, 0.1, 1>;
DEF trasparentDarkGrey = RGBCOLOR:<0.1, 0.1, 0.1, 0.7>;

FILLCOLOR is used to fill the object interior with the specified RGBACOLOR:

DEF name = pol2D FILLCOLOR RGBAcolor;

LINECOLOR is used to associate the given color property to the boundary edges
of the object:

DEF name = pol2D LINECOLOR RGBAcolor;

ACOLOR is used to give a color property both to the edges and to the interior of
the object:

DEF name = pol2D ACOLOR RGBAcolor;

LINESIZE is the operator used to specify the lineWidth in pixels of the object
edges. In this case we have:

DEF name = pol2D LINESIZE lineWidth;

Flash is the exporting directive for single pictures, that exports the pol2D object,
visualized in a display area of areaWidth, to the file with name fileName.swf

Flash:pol2D:areaWidth:′fileName.swf′;

ACTOR is applied to the sequence polComplexSequence of frames related to the
same object, and then to the startingTime integer, that specifies the ordinal time
when the object must start being visible in the movie. The duration of the action
of the actor in the movie will depend on the frameRate parameter specified in the
exporting FlashANIM statement.

DEF name = ACTOR:polComplexSequence:startingTime;

MOTION MODELING 659

FRAME is used to generate a given 2D polyhedral complex to be visible in the movie
in the (ordinal) time interval [startingTime, endingTime].

DEF name = FRAME:polComplex:startingTime:endingTime;

FlashANIM is the statement used to export a movie. It must be successively applied
to an animation2D value, that must be either (a) a sequence of sequences of 2D
polyhedral complexes, or (b) a sequence of ACTOR and FRAME expressions. The resulting
function is applied to the areaWidth parameter (in pixels), to the ′fileName.swf′

string, and finally to the frameRate integer parameter:

FlashANIM:animation2D:areaWidth:′fileName.swf′:frameRate

Example 15.3.1 (A first example)
A very simple but complete example of generation and exporting of a flash animation
is given in Script 15.3.2. In particular, a default colored square moves translationally
over a background of a yellow rectangle with black borders. As stated by the FlashANIM
primitive, the animation rendering is planned for a display area 300 pixel wide at a
framerate of 10 frames per second. Also, the life cycle of the FRAME generated object
(the yellow rectangle), corresponds to the ordinal time interval [1, 30], whereas the
mover object (the cyan square) appears at ordinal time t = 21 and completes its
motion at ordinal time 21 + 10. The actual movie duration is 3.1 sec, depending on
the given framerate.

Script 15.3.2 (Translating square)
DEF mover (tx::isInt) = T:<1,2>:<tx,5>:(CUBOID:<1,1>);

DEF moverSequence = (AA:mover:(1..10));
DEF static rectangle = (CUBOID:<10,20> fillcolor yellow);

DEF background = FRAME:static rectangle:1:30;
DEF actor = ACTOR:moverSequence:21;

FlashANIM:< background, actor >:300:′animation1.swf′: 10;

Example 15.3.2 (Umbrella animation)
Here we animate the opening of the wire-frame umbrella with curved rods given in
Script 11.5.2. So, in the following Script 15.3.3 we start by loading the flash, vector
and viewmodels libraries. The latter is needed to set-up a proj projection of the
3D wire-frame umbrella in 2D space. Two clips to be displayed are then defined,
corresponding to the opening umbrella, and to the same but reversed frame sequence.
Finally, our flash animation, to be rendered at a framerate = 20 in a screen area
wide 200 pixels, is exported to the umbrella.swf file.

660 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Script 15.3.3 (Animated umbrella)
DEF proj = projection: parallel: dimetric;

DEF umbrellaFun = proj ∼ t:1:5 ∼ umbrella:10;
DEF umbrellaFrames= aa:umbrellaFun:(2 scalarVectProd 11..80);
DEF clip1 = ACTOR:umbrellaFrames:1;
DEF clip2 = ACTOR:(REVERSE:umbrellaFrames):41;

FlashANIM:< clip1, clip2 >:200:′umbrella.swf′:20;

Figure 15.6 The set of frames used for the Flash umbrella animation

15.3.3 Generating VRML animations

Unlike flash animations, where only a basic support is currently given, to be possibly
combined with the importing and editing of the generated .swf files within the
flash interactive development environment (IDE), PLaSM offers quite sophisticated
support to the design of complex VRML animations. The language may support the
development of animations at three different levels:

1. by offering primitives resulting in a hierarchical animation, where movie clips
may contain other movie clips, and are translated and scaled hierarchically
on the time axis;

2. by supporting the choreography methodology discussed in the next section,
that allows for automatical coordination of the time interaction of
independently defined actors, by using network programming techniques, and
by defining each clip storyboard as an oriented graph;

3. at a finer modeling level, a functional programming approach may define
actors as chains of operators going from parameter spaces with smaller
dimension, to spaces with higher dimension, up to the actor configuration
space, even of very high dimension. The actor postures and motion can
therefore be controlled at the more appropriate level, with the minimal
animator effort.

Last but not least, the use of a scripting language in designing and implementing
animations, allows for reuse of characters and for automatic generation of different
behaviors. It is interesting to notice that the top-level animation systems contain
a scripting language, like, e.g., Maya and MEL. Actually, every action performed

MOTION MODELING 661

in Maya runs based on MEL scripts. MEL is an integral part of Maya’s overall
design [LG02].

Animation data structure

In order to insert an animation support into PLaSM, a new primitive data type
Animated Hierarchical Polyhedral Complex, completely transparent to the user, was
added to the language. We often refer in the following sections to such a data type
using the abbreviation AnimPolComplex. We also call clip a data object of this type.
An animated polyhedral complex is defined as a quadruple

animpolc := < polc, id, tstart, tend >

where

1. polc := is a hierarchical polyhedral complex annotated with properties;4
2. id := is the unique identifier of the clip;
3. tstart := is the clip starting time;
4. tend := is the clip ending time.

Timeline A clip timeline is the interval [tstart, tend] of the clip representation as
AnimPolComplex.

Animation primitives

The set of specialized PLaSM primitives for animation modeling is introduced below.
MOVE and FRAME are respectively dedicated to generating animated polyhedral
complexes with a given behavior and to background objects on the scene in a
specified time interval. ANIMATION is a container for non-linear editing of hierarchical
animations. LOOP has the obvious meaning, SHIFT and WARP are used for hierarchical
timeline translation and scaling, respectively.

FRAME is used for display of static objects is used for display of static objects polci

that are present on the scene only in a time interval [ti, ti+1]. Two patterns of usage
are allowed:

FRAME : polc : < tstart, tend >;
FRAME : < polc1, polc2, ... , polcn > : < t1, t2 , ... , tn , tn+1 >;

MOVE must be orderly applied to (a) generator of geometric data, given as a
function of real parameters (degrees of freedom); (b) configuration data, given as n-
sequence of CS points; (c) timing data, given as an increasing sequence of n time
values.

4 In particular, annotated with the sequence of CS points to be pairwise linearly interpolated
during the polyhedral complex animation, and with the name of the generating function.

662 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

MOVE : objfun : < par1, par2, ... , parn > : < t1, t2, ... , tn >

where the function objfun generates the object placement objfun:pari at ti time, and
where the object configurations are linearly interpolated between the CS points pari

and pari+1 within the time interval [ti, ti+1]. Notice that PLaSM curves or splines
can be used to generate a proper sampling of generic behavior curves.

ANIMATION is used as a container that allows hierarchical aggregation of
both standard and animated polyhedral complexes, including nested ANIMATION
invocations. It may also contain hierarchical operators over both standard and
animated polyhedral complexes, say STRUCT operators and affine transformations, as
well as LOOP, SHIFT and WARP operators discussed below.

ANIMATION : (pols::isseqof:(OR∼[isanimpol,isfun,ispol])) → isanimpol

The reader should notice that the STRUCT operator is overloaded to the behavior of
the ANIMATION operator, so that they are fully interchangeable. What to actually use
may be mainly a matter of code self-documentation.

LOOP and OUTERLOOP are used to repeat times times the animated polyhedral
complex anim. In particular, LOOP repeats the content of the timeline [tstart, tend],
whereas OUTERLOOP works on [0, tend].

LOOP : (times::isint)(anim::isanimpol) → isanimpol
OUTERLOOP : (times::isint)(anim::isanimpol) → isanimpol

SHIFT applies a timeline translation to the animated polyhedral complex anim from
[tstart, tend] to [tstart + t, tend + t].

SHIFT : (t::isnum)(anim::isanimpol) → isanimpol

WARP and OUTERWARP produce a timeline scaling of the anim parameter. In
particular, WARP scales [tstart, tend] with the time origin as fixed point of the scaling,
whereas OUTERWARP scales [tstart, tend] with tstart as fixed point.

WARP : (t::isnum)(anim::isanimpol) → isanimpol
OUTERWARP : (t::isnum)(anim::isanimpol) → isanimpol

Overloading of PLaSM primitives

Some important predefined PLaSM geometric operators have been extended to work
also with animated polyhedral complexes. They include:

1. affine transformation tensors: T, S, R;
2. hierarchical assembly: STRUCT
3. geometric constructors: CUBOID, MKPOL;
4. function mapping over polyhedral constructors: MAP.

The remainder of this section is dedicated to discussing some implementation details
of the PLaSM animation subsystem. The standard reader may go directly to the next
section for some easy animation examples.

MOTION MODELING 663

Animated behavior The MOVE primitive is implemented by evaluating the
geometry generation function objfun in a modified primitive PLaSM environment
named *anim env*. In such an environment a new type is defined:

AnimBehaviour := << par1, par2, ... , parn >, < t1, t2, ... , tn >>

This data type is used to manage (via the redefinition of the APPLY combinator)
the parameter propagation in expression evaluation. In particular, a primitive
redefined only in *anim env*, in order to accept both its standard parameters and
the ones of AnimBehaviour type, absorbs this parameter and creates some basic
AnimPolComplexes. In particular, the primitive PLaSM application

f:a = APPLY:< f,a >

was redefined in such a way that:

f : <<par1, par2, ... , parn>, <t1, t2, ... , tn>> → AnimPol

if the function f can accept AnimBehaviour values in *anim-env*; otherwise we have

f : << par1, par2, ... , parn >, < t1, t2, ... , tn >> →
<< f:par1, f:par2, ... , f:parn >, < t1, t2, ... , tn >>

if f is a standard function. With this approach, the animation parameters are
normally processed by all the standard PLaSM functions, until they encounter a function
that supports the generation of animations, i.e. a function which can be applied to
AnimBehaviour values.

Specialized methods Some specialized methods work with values of type Anim-
Behavior:

1. anim-arg(arg::TT) returns arg if it is of AnimBehaviour type, else, if
arg is a sequence <a1, . . . , an>, then an AnimBehaviour with parameters
<anim-arg:a1, . . . , anim-arg:an> is returned; The purpose of this
method is to homogenize AnimBehaviour with respect to sequences.

2. anim-pred(pred::IsFun)(arg::IsAnimBehaviour) is used to check if all
arg parameters verify the pred predicate.

3. Finally we have:

IsAnimBehaviourOf(pred::IsFun)(arg::TT) ≡ anim-pred:pred:(anim-arg:arg)

Affine transformations The elementary affine tensors T, S and R are redefined as
follows, so that they can be applied to standard polyhedral complexes as well as to
animated polyhedral complexes:

{ T | S | R }(index::OR ∼ [IsInt,IsSeqOf:IsInt])
(par::IsAnimBehaviourOf:(OR ∼ [IsNum,IsSeqOf:IsNum]))
(pol::OR ∼ [IsPol, IsAnimPol]) → IsAnimPol

664 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Geometric constructors The geometric constructor CUBOID may be animated
by giving a value of type AnimBehaviour to its numeric parameters. Analogously,
an animated behavior can be given to the points parameter of MKPOL constructor.
Anyway, at least at the time of writing, the internal structure of a polyhedral complex
can be animated only by animating the parameters of the embedded transformations.

CUBOID (par::IsAnimBehaviourOf:(IsSeqOf:IsNum)) → IsAnimPol

MKPOL (points::IsAnimBehaviourOf:(IsSeqOf:(IsSeqOf:IsNum)))
(cells::(IsSeqOf:(IsSeqOf:IsIntPos)))
(pols::(IsSeqOf:(IsSeqOf:IsIntPos))) → IsAnimPol

Function mapping A (only internal) variation MAPC of the MAP primitive operator
can be similarly animated, by . . .

MAPC (fun::((IsSeqOf:IsNum) → IsAnimBehaviourOf:(IsSeqOf:IsFun)))
(pol::IsPol) → IsAnimPol

Simple examples

In this section we show some simple animation examples based on CS sampling.
In each case the moving object must be defined as a function of its degrees of
freedom. When some animPolComplex value is exported, an animated VRML file is
appropriately generated. In particular, the VRML animation will produce a piecewise
linear interpolation of adjacent configuration space points.

If a non-linear behavior is needed, i.e., if the object motion must correspond either
to a non-linear CS path or to a non-uniform velocity, then it is always possible to
linearly approximate the desired behavior with arbitrary precision by either generating
a uniform point sampling of a nonlinear CS curve, or by using a non-uniform time
sampling for equally spaced CS points, respectively.

Example 15.3.3 (Rotated cube (1))
A very simple animation example is given in Script 15.3.4, where the standard unit
cube is rotated about the z axis. In this case we have only 1 rotational DOF, associated
with the alpha parameter. In this case, the CS space is 1D, so that cube must be a
function of one real parameter, and we have (αi) = (0, π, 0) ⊂ CS, and (ti) = (0, 3, 6).
The animated VRML generated by the PLaSM interpreter gives a piecewise linear
interpolation between such CS points.

Script 15.3.4 (Rotated cube)
DEF cube (alpha::IsReal) = (R:<1,2>:alpha ∼ CUBOID):<1,1,1>;
DEF out = MOVE:cube:<0,PI,0>:<0,3,6>;

VRML:out:′out.wrl′;

It is very hard to give an appropriate rendering of an animation sequence in a
book. Figure 15.7 gives a frame sequence from a DV rendering of the animation of
Script 15.3.4 left to right and top to bottom.

MOTION MODELING 665

Figure 15.7 A sequence of frames from the animated rotation of the unit cube

about the z axis

A rotation axis parallel to z and passing for the cube centroid is used in Script 15.3.5.
The reader should notice that standard tensor composition applies, where only one
of the rotation parameters is used as an argument of the generating function cube,
according to the fact that the animation has only 1 degree of freedom.

Script 15.3.5 (Rotated cube (2))
DEF cube (alpha::IsReal) =

(R:<1,2>:alpha ∼ T:<1,2>:<-1/2,-1/2> ∼ CUBOID): <1,1,1>;
DEF out = MOVE:cube:<0,PI,0>:<0,3,6>;

VRML:out:′out.wrl′;

Example 15.3.4 (Planar robot arm)
The planar robot arm with 3 DOFs defined in Scripts 15.1.3 and 15.2.1 is animated
in Script 15.3.6 by using a CS path that is a piecewise approximation with 8 linear
segments of a cubic Bézier curve defined by four CS points. Notice that:

1. the expression Sampling:8 generates a sequence of 9 values in [0, 1];
2. the [ID] function transforms each of them in a 1D vector;
3. the above vectors are finally mapped by the CSpath function into a sequence

of CS points, according to the Bézier curve defined in Script 15.2.1.

Script 15.3.6 (2D arm)
DEF CSpoints = (AA:(CSpath ∼ [ID]) ∼ Sampling):8

DEF out = MOVE:arm:(CSpoints:(0..8));

VRML:out:′out.wrl′;

666 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Example 15.3.5 (Planar motion of cube)
A general planar motion with 3 degrees of freedom of the unit cube is produced by
Script 15.3.7, where the cube is translated along a circular path in 2D while rotated
about its own vertical axis. In particular, the CSpoints sequence used by the MOVE
primitive is generated by applying the function

CScurve : IR → IR3

to the elements of the number sequence in [0, 2π] produced when evaluating
the expression 2*PI scalarVectProd Sampling:16. The scalarVectProd operator,
given in Script 2.1.21 returns the product of a scalar times a vector, i.e. in this case:

2π (0, 1/16, . . . , 15/16, 1).

Analogously, TimePoints contains a sampling with 17 elements of the interval [0, 4],
so that the animation generated as value of the MOVE expression has a duration of 4
seconds. Notice, looking at the CScurve function, that

1. the circular path of the motion has radius r = 2;
2. the rotational parameter α is bound to the interval Ξα = [0,−4π].

Script 15.3.7 (Planar motion)
DEF movingCube (tx,ty,alpha::IsReal) = T:<1,2>:<tx,ty>:(cube:alpha);

DEF CScurve = [K:2 * COS, K:2 * SIN, - * K:2];
DEF CSpoints = AA: CScurve: (2*PI scalarVectProd Sampling:16);
DEF TimePoints = 4 scalarVectProd Sampling:16;
DEF WSpath = (polyline ∼ AA:[S1,S2,K:0]): CSpoints;

DEF out = STRUCT:<
MOVE: movingCube: CSpoints: TimePoints,
WSpath >;

VRML:out:′out.wrl′;

It is also important to note in this example that either STRUCT or ANIMATION
primitives could equally be used to define the AnimPolComplex out to be exported
to a VRML file.

Example 15.3.6 (Clock animation)
In Figure 15.9 we show four keyframes from the VRML animation generated by
Script 15.3.8.

The animPolComplex movie is generated using the clock3D function defined in
Script 6.4.4. The animation behavior is described in this case by two <h,m> (hour,
minute) pairs corresponding to the starting and ending configurations, to be assumed
at 0 and 10 seconds, respectively. We note the extreme ease of the PLaSM approach to
animation definition.

MOTION MODELING 667

Figure 15.8 A frame sequence from the rotating and translating cube animation

Figure 15.9 Ten minutes in ten seconds . . .

15.4 Motion coordination

The graph-theoretic model introduced in [BBC+99] for the design of complex
animations is discussed in this section. It provides both a computer representation for
the animation storyboard as an acyclic directed graph, and a computational technique
for time coordination of independently defined animation segments. The graph
representation and the timing algorithm make reference to the network programming
method known as pert (Program Evaluation and Revision Technique) [Rob63, Ste71]
and to the cpm (Critical Path Method), respectively. Both are management techniques
for complex projects that are well known to industrial engineers and production
managers.

15.4.1 Non-linear animation

Let us start by giving some definitions of terms that are useful to connect the
choreography approach for the control of very complex animations here presented
to the methods currently used in computer animation.

Script 15.3.8 (Clock animation)
DEF movie = MOVE: clock3D:<<2,10>,<2,20>>:<0,10>

VRML:movie:′out.wrl′;

668 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Background The scene part which is time-invariant is called the scene background.

Foreground The time-varying portion of an animated scene is called the scene
foreground.

Storyboard The high-level description of the animation behavior is called the
storyboard. It is represented as a hierarchical a-cyclic graph with only one node of
in-degree zero (called start or source node) and only one node of out-degree zero
(called end or sink node). The source node will represent the animation start. The
sink node will represent the animation end. The nodes and arcs of the storyboard are
also called events and animation segments (or simply segments), respectively.

Segment An animation segment is an arc of the storyboard. It represents a
foreground portion characterized by the fact that every interaction with the remaining
animation is concentrated on the starting and ending events.

Hierarchical animation Hence each segment may be modeled independently from
the others, by using a local coordinate frame for both space and time coordinates. The
concepts of storyboard and segment are interchangeable: each complex segment of an
animation can be modeled by using a local storyboard, which can be decomposed into
lower-level segments.

Event An event is a storyboard node. Segments starting from it may begin only
when all the segments ending in it have finished their execution.

Segment The segment configuration space is defined as

XCS = T × CS

where CS is the product space of the interval domains of segment DOFs, and
T = [0,∞) is the time domain.

Geometric model The geometric model of a segment is a description of both the
assembly structure and the geometry of its elementary parts.

Behavior A continuous curve in segment configuration space XCS is called a
behavior of the segment. Let

b : [0, 1] → XCS, with b(u) = (b0(u), b1(u), . . . , bd(u))

be a behavior curve. Then it must be

b0(uk) > b0(uh) for each uk > uh.

The d + 1 dimension of XCS is related to the number d of free parameters of the
geometric model of the segment. In order to represent a behavior, sampled curves or
splines of suitable degree, parametrized in the [0, 1] interval, are used. A simple and

MOTION MODELING 669

1 6

3 5

2 4

1

2

3

4

5

6

7

8

9

Figure 15.10 Storyboard representation as oriented graph

often useful choice is to use Bézier curves to represent behaviors. In such a case the
behavior is completely specified by a point subset in XCS. In particular, any Bézier
curve interpolates the first and last points and approximates the other ones. The curve
degree is defined by the number of points minus one. So a linear behavior will simply
be described by giving two extreme points in XCS.

Actor We call an animation actor (or character) a connected chain of segments
with the same geometric model and with different behaviors. So, at each given time
each actor has a unique fixed set of parameters, i.e. a unique configuration.

Choreography In order to independently edit the developed animation segments
as a whole, network programming techniques are used. In particular, the dynamic
programming algorithm of critical path method is used to compute minimal and
maximal times of events as well the completing time of the whole animation clip. Such
an algorithm is used to compute the timing of actors in each animation segment.

15.4.2 Network programming

The pert (Program Evaluation and Review Technique) [Rob63, Ste71], also known as
Critical Path Method, is well-known for managing, i.e. programming and controlling,
very complex projects and in particular for scheduling and optimum allocation of
resources. Projects may have tens or hundred of thousands of activities and events.

Deterministic pert for computation of critical activities is probably the most well
known variation of network programming techniques, in which a bundle of inter-
dependent activities is represented as a directed acyclic graph. Such a graph model is
used as the computational basis for project analysis and forecasts.

Storyboard representation A storyboard is represented as a network, i.e. as a
directed acyclic graph with only one source node and one sink node. The source node
represents the animation start; the sink node the animation end. The arcs represent
animation segments; the nodes represent the events of completion of all the entering
arcs. Notice that segments (arcs) exiting from a node may start only when all the
segments (arcs) entering that node have finished.

Minimal and maximal spanning time The minimal spanning time (tk) of a node
k is the minimal time for completing the segments entering the node k. Notice that

670 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

ki

..

..
k i

..

..
t i

Tik t k
T iT k

Tki

time

T

Tj
t
i

ij ijS

Figure 15.11 (a) Predecessors and successors of the k event (b) Duration Ti,j and

slack Si,j of the (i, j) segment

such segments can be completed into this time. The maximal spanning time (Tk) of a
node k is the maximal time needed for completing the segments entering the node k.
Notice that such segments must be completed into this time.

The algorithm to compute both minimal and maximal spanning times of nodes is
very simple. The computational approach can be classified as an example of dynamic
programming. Formally we have:

tk = max
i∈ pred(k)

{ti + Tik}, Tk = min
i∈ succ(k)

{Ti − Tki} (15.1)

The corresponding algorithm can be decomposed into a forward computation step and
a backward computation step.

Forward and backward computation Forward computation of minimal times tk.
Let 0 be the (unique) source node of the network. Set t0 = 0. Then try to compute
the minimal time te of ending node, i.e. the completion time of the whole project. The
recursive formula allows computing of the minimal times tk of all nodes.

Backward computation of maximal times Tk. Let e be the (unique) sink node of the
network. Set Te = te. Then try to compute the maximal time T0 of starting node. The
recursive formula allows for computing the maximal times Tk of all nodes.

Segment slacks The slack Sij of the segment (i, j) is defined as the quantity of
time which may elapse without a corresponding slack of the completion time of the
animation. The segment slack Sij is given by the formula

Sij = (Tj − ti) − Tij,

where Tij is the expected duration of segment (i, j).
Notice that the so-called critical segments have null slacks, i.e. Sij = 0.

Implementation of CPM

A PLaSM implementation of CPM (Critical Path Method) is given in this section. We
start (1) by preparing a small toolbox of basic functions and predicates in Script 15.4.1,
then (2) we implement in Script 15.4.2 two operators inarcs and outarcs that
return, respectively, the inward and outward arcs of a given node, then (3) we give in
Script 15.4.3 two operators tmin and tmax to compute the minimum and maximum
spanning times of nodes; and finally (4) we provide the computation of a small
storyboard graph.

MOTION MODELING 671

The graph is represented as follows. It is supposed that only one arc is allowed
between each pair of nodes, so that the arc is identified by such ordered pair. We also
suppose that the graph contains only one node of indegree 0 (the storyboard start)
and only one node of outdegree 0 (the storyboard end).

The graph is here described as a set of triples, one-to-one associated with the arcs.
Each triplet (ni, nj, tij) respectively contains the indices of the starting ni and ending
nj node of the arc, and the scheduled duration tij of the associated animation segment.

Toolbox Binary predicates bigger, smaller, biggest and smallest respectively
return true if: (a) b is larger than a; (b) b is smaller than a; (c) b is the largest of seq
elements; (d) b is the smallest of seq elements. They return false otherwise. Let us
remember that the TREE primitive is a combinator that recursively applies a binary
function over a sequence of arguments of any length.

Script 15.4.1 (CPM toolbox)
DEF bigger (a,b::IsReal) = GT:a:b;

DEF smaller (a,b::IsReal) = LT:a:b;
DEF biggest (a,b::IsReal) = IF:< bigger, s2, s1 >:<a,b>;
DEF smallest (a,b::IsReal) = IF:< smaller, s2, s1 >:<a,b>;
DEF RMAX (seq::IsSeqOf:IsReal) = TREE: biggest: seq;
DEF RMIN (seq::IsSeqOf:IsReal) = TREE: smallest: seq;

Operators The partial function inarc:ni, when applied to arc ≡ <nk, ni, tki>
triplet, returns the sequence <nk, tki>, denoting the arc as entering ni, and the empty
sequence <> otherwise. Analogously, partial function outarc:ni, applied to arc ≡
<ni, nj, tij> triplet, returns the pair <nj , tij> for the outgoing arc, and <> otherwise.
The subsets of graph arcs entering or leaving ni is returned by the inarc:ni:graph
and outarc:ni:graph expressions, respectively.

The implementation in Script 15.4.2 was quick for the authors to write, but is pretty
inefficient, since its complexity is O(n2), where n is the number of graph nodes, so it
makes sense to use only on small graphs. The reader trained in computer science may
develop a more efficient solution.5

Script 15.4.2 (Network analysis)
DEF inarc (node::IsInt)(arc::IsSeq) =

IF:< C:EQ:node ∼ S2, [[s1,s3]], K:<> >:arc;
DEF outarc (node::IsInt)(arc::IsSeq) =

IF:< C:EQ:node ∼ S1, [[s2,s3]], K:<> >:arc;

DEF inarcs (node::IsInt)(graph::IsSeq) = (CAT ∼ AA:(inarc:node)):graph;
DEF outarcs (node::IsInt)(graph::IsSeq) = (CAT ∼ AA:(outarc:node)):graph;

5 Hint for the other readers: just sort the arcs on either the second or first nodes, respectively.

672 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Algorithm The recursive algorithms coded in Script 15.4.3 are just a direct PLaSM
translation of Formula (15.1) for the forward and the backward network computations.

Script 15.4.3 (Algorithm)
DEF tmin (graph::IsSeq)(node::IsInt) = RMAX:predecessorTimes

WHERE
predecessors = inarcs:node:graph,
predecessorTimes = IF:< C:EQ:0 ∼ LEN,

K:< Tstart >,
AA:(+ ∼ [tmin:graph ∼ S1,S2]) >:predecessors

END;

DEF tmax (graph::IsSeq)(node::IsInt) = RMIN:successortimes
WHERE

successors = outarcs:node:graph,
successorTimes = IF:< C:EQ:0 ∼ LEN,

K:< Tstop >,
AA:(- ∼ [tmax:graph ∼ S1,S2]) >: successors

END;

Example 15.4.1 (Storyboard)
The computation of the sequences of minimal and maximal spanning times (tk) and
(Tk) for the oriented graph coded by the storyBoard set of arc triples is provided
by Script 15.4.4. The explicit statement of the lastNode is needed, as well as the
statement of values for Tstart and Tstop times. Notice that there are some arcs
with scheduled duration zero. They are called dummy arcs and are used to introduce
coordination constraints. The reader should (1) draw the storyboard graph; (2) label
the arcs with their durations; and (3) annotate the nodes with the spanning times
computed below. Notice that the total duration of our storyboard is 19 time units.

Script 15.4.4 (Storyboard example)
DEF storyBoard = <<0,1,2>,<1,2,5>,<2,3,3>,<3,4,4>,<1,5,0>,<6,2,0>,

<2,7,0>,<8,3,0>,<5,6,10>,<6,7,5>,<7,8,2>>;

DEF lastNode = 4;
DEF Tstart = 0;
DEF Tstop = tmin:storyBoard:lastNode;

AA:(tmin:storyBoard):(0..8) ≡ < 0, 2, 12, 19, 23, 2, 12, 17, 19 >
AA:(tmax:storyBoard):(0..8) ≡ < 0, 2, 16, 19, 23, 2, 12, 17, 19 >

15.4.3 Modeling and animation cycle

Different clips can be edited (aggregated, time scaled and translated, looped, back-
looped, etc.) on the movie timeline using the high level animation primitives discussed
in Section 15.3.3. A simple but quite complete exercise with such editing primitives is

MOTION MODELING 673

given in Example 15.6.2.
The modeling and animation methodology summarized below concerns the single

animation clip.

1. Clip decomposition into animation segments, and definition of the clip
storyboard as a graph.

2. Modeling of geometry and behavior of the animation segments. Each segment
will be modeled, animated and tested independently from each other.

3. Non-linear editing of segments by describing their events and time
relationships. Segment coordination is computed by using the critical path
method.

4. Simulation and parameter calibration of the animation as a whole.
5. Feedback with possible storyboard editing.
6. Starting a new cycle of modeling, editing, calibration and feedback, until a

satisfying result is obtained.

Animated lamps

In this section a complete example of scene modeling and animation is discussed.
The example aims to resemble the famous Luxo lamp animation by Michael Kass and
Andrew Witkin (see Foley et al [FvDFH90]). In our case two simpler lamps are moving
together in animated VRML by describing a quite complex path in their configuration
spaces.

The geometric models of the lamp components are generated, and the lamp assembly
is defined in local coordinates. Then the storyboard of the animation is given, where
the movements of the two actors are both specified and coordinated. The specification
of a CS paths for one of animation segments is also given. Notice that the provided
code is a quite complete working example, that runs under a PLaSM interpreter. If the
reader provides the 6 missing CS curves, it may be exported to be displayed by a
VRML plug-in supporting the rendering of animations.6

Geometry modeling

First of all, some design parameters are defined in Script 15.4.5, in order to easily
parametrize the resulting models with respect to some important design dimensions.
The two lamps in our storyboard can be thus made different with respect to basis/
head ratio, as happens for humans depending on age.

Script 15.4.5 (Some design parameters)
DEF rodHeight = 20; DEF basisRadius = 20;

DEF rodSide = SQRT:2; DEF basisHeight = 2;

A small toolbox of operators is given in Script 15.4.6. The function convert
will transform a number sequence from degrees to radiants. The XCAT function is

6 A complete coding may be found in the installed folder plasm/examples/anim/luxo.psm

674 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

a generalized version of the CAT concatenation operator. A further variation of the
circle definition allows generation of circle arcs with variable angle a, radius r and
number of approximating segments n. The truncated cone generator TrunCone depends
on the bottom and top radiuses r1, r2 and on the height h, as well as on the number
n of approximating facets. In addition, the Q generalized shortcut for QUOTE given in
Script 1.5.5 is also used in the following scripts.

Script 15.4.6 (Toolbox)
DEF XCAT = CAT ∼ AA:(IF:<IsSeq,ID,LIST>);

DEF convert (seq::IsSeq) = (AA:* ∼ DISTL):< PI/180, seq >;
DEF circlesector (a::IsReal) (r::IsReal) (n::IsInt) =

(S:<1,2>:<r,r>∼JOIN):(MAP:([cos,sin]∼s1): (intervals:a:n);

DEF TrunCone (r1,r2,h::IsReal)(n::IsInt) =
MAP:[x * cos ∼ s2, x * sin ∼ s2, z]:

(QUOTE:<1> * (QUOTE ∼ #:n):(2*PI/n))
WHERE

x = K:r1 + s1 * (K:r2 - K:r1),
y = K:0,
z = s1 * K:h

END;

Then the geometric model of both the maleJoint and femaleJoint and the doubly
JointedRod of the lamp are specified in Script 15.4.7, starting from the 2D halfcircular
shape of halfHinge2D. Notice that the chain of infix operators in JointedRod is left-
associative.

Script 15.4.7 (Subcomponent modeling)
DEF halfHinge2D = circlesector:PI:1:12;

DEF hinge2D = STRUCT:< halfHinge2D, T:<1,2>:<-1,-3>,Q:2 * Q:3 >;
DEF hinge = (MKPOL ∼ UKPOL):(hinge2D * Q:0.5);
DEF DoubleHinge = STRUCT:<hinge, T:3:1.2, hinge>;
DEF hbasis = circle:1.2:<24,1> * Q:2;
DEF femaleJoint = STRUCT:<

T:3:-5:hbasis, T:2:0.85,R:<2,3>:(PI/2):DoubleHinge>;
DEF maleJoint = STRUCT:< R:<2,3>:PI,

T:3:-5:hbasis, T:2:0.25,R:<2,3>:(PI/2):Hinge>;
DEF rod = T:<1,2>:<rodSide/-2,rodSide/-2>:

(CUBOID:<rodSide,rodSide,rodHeight>);
DEF JointedRod = maleJoint TOP rod TOP femaleJoint COLOR GREEN;

The basis object and the head generating function are given in Script 15.4.8.
The function head depends on the integer parameter that specifies the number of
approximating facets of TrunCone. The strange design choices of specifying basis and
head so much differently, is motivated by the desire to show the great pervasiveness of
AnimBehaviour type parameters (see Setion 15.3.3) through the language constructs.

And finally the Luxo generating function depending on three joint angles a1, a2

MOTION MODELING 675

Script 15.4.8 (Part modeling)
DEF basis =

(circle:basisRadius:<32,1> * Q:basisHeight)
TOP femaleJoint;

DEF head = STRUCT ∼ [K:maleJoint, K:(T:3:5),
embed:1 ∼ circlesector:(2*PI):4,
TrunCone:<4,4,8>, K:(T:3:8),
TrunCone:<4,20,20>];

Figure 15.12 (a) The lamp configuration generated by (Luxo ∼
convert):<-90,90,90>) (b) Some superimposed key-frames

and a3 and with red basis and white head is given in Script 15.4.9 and displayed
in Figure 15.12. Remember that convert provides the degrees to radians numeric
conversion.

Script 15.4.9 (Lamp assembly modeling)
DEF Luxo (a1,a2,a3::IsReal) = STRUCT:<

basis COLOR RED,
T:3:(basisHeight+5), R:<1,3>:a1, JointedRod,
T:3:(rodHeight+10), R:<1,3>:a2, JointedRod,
T:3:(rodHeight+10), R:<1,3>:a3, head:32 COLOR WHITE

>;

DEF out = Luxo:(convert:<-90,90,90>);
VRML:out:′out.wrl′

Motion modeling

Actor definition As we know, a mobile object on the plane has 3 degrees of freedom:
a rotation and two translations, to be applied in this order. The other 3 degrees
of freedom are the internal joint angles. The two actors of our clip are defined in
Script 15.4.10. Notice that the scaling tensor in LuxoSon is applied to the lamp model

676 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

5 6 7 8

0 41 32

Figure 15.13 Storyboard representation as oriented graph. Dummy arcs (tij = 0)

are dashed

before applying the rotation and translation tensors.

Script 15.4.10 (Mobile lamps)
DEF LuxoFather (a1,a2,a3, a4,a5,a6::IsReal) = STRUCT:<

T:1:a1, T:2:a2, R:<1,2>:a3, Luxo:<a4,a5,a6>
>;

DEF LuxoSon (a1,a2,a3, a4,a5,a6::IsReal) = STRUCT:<
T:1:a1, T:2:a2, R:<1,2>:a3, S:<1,2,3>:<0.7,0.7,0.7>, Luxo:<a4,a5,a6>

>;

Storyboard definition The clip storyboard is given as an oriented acyclic graph,
with animation segments associated with the arcs and (coordination) events associated
with the nodes. The expected duration of some animation segments are directly
given as PLaSM definitions. In Figure 15.13 the storyboard representation as an
abstract directed graph is given. A projection in IE2 of the storyboard embedded in
configuration space, corresponding to the 2 translational degrees of freedom, is given
in Figure 15.13.

Script 15.4.11 (Segment durations)
DEF Time 0 1 = 3; DEF Time 5 6 = 10;

DEF Time 1 2 = 5; DEF Time 6 7 = 5;
DEF Time 2 3 = 3; DEF Time 7 8 = 2;
DEF Time 3 4 = 4;

Animation timing The minimal spanning times ti needed for starting and ending
animation segments are denoted as t0, . . . ,t8; The maximal spanning times Tj are
denoted as tt0, . . . ,tt8.

Forward computation of minimal spanning times of coordination events is given
in Script 15.4.12, where RMAX, RMIN are pre-defined PLaSM operators to compute
maximum and minimum values of a set of reals, and are defined in Script 15.4.1. The
maximal spanning times Ti of nodes may be analogously computed by the functional
environment of the language. The use of an explicit cpm implementation, given in
Section 15.4.2, is not actually needed for moderately simple animation projects.

MOTION MODELING 677

Script 15.4.12 (Min forward and max backward times)
DEF t0 = 0; DEF tt0 = tt1 - Time 0 1;

DEF t1 = t0 + Time 0 1 ; DEF tt1 = RMIN:<tt2 - Time 1 2, tt5>;
DEF t2 = RMAX:<t1 + Time 1 2, t6>; DEF tt2 = RMIN:<tt3 - Time 2 3, tt7>;
DEF t3 = RMAX:<t2 + Time 2 3, t8>; DEF tt3 = tt4 - Time 3 4;
DEF t4 = t3 + Time 3 4 ; DEF tt4 = t4;
DEF t5 = t1; DEF tt5 = tt6 - Time 5 6;
DEF t6 = t5 + Time 5 6 ; DEF tt6 = RMIN:<tt7 - Time 6 7, tt2>;
DEF t7 = RMAX:<t6 + Time 6 7, t2>; DEF tt7 = tt8 - Time 7 8;
DEF t8 = t7 + Time 7 8 ; DEF tt8 = tt3;

0

2

13

5

6

7

8
0

1

2

3

4
5

6

7

8

Figure 15.14 Projection of CS paths in the coordinate subspace of basis

translation parameters

Fluidity constraint A smooth and gracefully flowing of all animation segments
in a clip is achieved if we use as starting and ending times of each MOVE expression
the averages tmi of minimal and maximal spanning times of nodes. Such a fluidity
constraint of the whole animation clip holds for every possible choice of scheduled
durations of animation segments [BBC+99]. Such average times are computed
explicitly in Script 15.4.13. This approach greatly helps in designing complex
choreographies by using independently developed actors.

Script 15.4.13 (Scheduled times)
DEF tm0 = (t0 + tt0) / 2; DEF tm5 = (t5 + tt5) / 2;

DEF tm1 = (t1 + tt1) / 2; DEF tm6 = (t6 + tt6) / 2;
DEF tm2 = (t2 + tt2) / 2; DEF tm7 = (t7 + tt7) / 2;
DEF tm3 = (t3 + tt3) / 2; DEF tm8 = (t8 + tt8) / 2;
DEF tm4 = (t4 + tt4) / 2;

Segment’s CS paths For each animation segment the configuration space path
must be given. This can be done, e.g., as a Bézier curve. One of them, for segment
(0, 1), is given in Script 15.4.14. The other CS paths can be specified similarly, by

678 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

giving some points in 6-dimensional configuration space of the animation. The reader
is challenged in giving by itself such paths for each non-dummy arc in animation graph,
and by looking carefully at the clip results. Notice that the CS 0 1 object given below
is a Bézier generating function of degree 3.

Script 15.4.14 (CS paths)
DEF CS 0 1 = AA:((Bezier:S1 ∼ AA:XCAT):<

<100,0, convert:<0, 0,0,0> >,
<150,0, convert:<30, 30,0,-10> >,
<200,50, convert:<-150, -20,90,0> >,
<200,100, convert:<90+180, -60,105,60> >

>);

Clip definition Our Luxo’s clip concerning both mobile lamps is exported to vrml
by the last expression of Script 15.4.15. Notice that the xtime function is used to
transform a sequence of time points into a sampling of the 1D Bézier curve generated
by that points. Notice also that each non-dummy segment of the storyboard shown in
Figure 15.13 corresponds to a MOVE expression in the ANIMATION container.

Script 15.4.15 (Animation scripting)
DEF xtime (tseq::IsSeqOf:IsReal) = (CAT ∼ AA:(Bezier:(AA:LIST:tseq)));

DEF father = MOVE:LuxoFather;
DEF son = MOVE:LuxoSon;
DEF points = sampling:10;

DEF clip = ANIMATION:<
father:(CS 0 1:points):(xtime:<tm0,tm1>:points),
father:(CS 1 2:points):(xtime:<tm1,tm2>:points),
father:(CS 2 3:points):(xtime:<tm2,tm3>:points),
father:(CS 3 4:points):(xtime:<tm3,tm4>:points),

son:(CS 5 6:points):(xtime:<tm5,tm6>:points),
son:(CS 6 7:points):(xtime:<tm6,tm7>:points),
son:(CS 7 8:points):(xtime:<tm7,tm7+0.6*(tm8-tm7),

tm7+0.8*(tm8-tm7),tm8>:points)
>;

The VRML exporting of the Luxo’s clip mounted over a static and textured plane
support is done in Script 15.4.16. Both TEXTURE and SIMPLETEXTURE operators are
contained in the psmlib/colors.psm library. Some frames from the rendering of
the exported VRML clip are given in Figure 15.15. The reader should notice that
ANIMATION and STRUCT primitives may be freely nested into each other. The path of
the file gioconda.jpg is relative to the plasm folder installed on the user machine. It
should be suitably changed if the user has no writing permissions on the plasm folder,
where the luxo.wrl is going to be exported by Script 15.4.16.

MOTION MODELING 679

Figure 15.15 Some frames of our Luxo’s parody over Mona Lisa. In one on frames

the widget for interactive control of the animation rendering is also shown. The

animated VRML code generated by PLaSM is displayed using on MacOS X the

Cortona plug-in by Parallelographics and Microsoft’s Internet Explorer.

680 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Script 15.4.16 (VRML exporting)
DEF Gioconda = SIMPLETEXTURE:′examples/color/img/gioconda.jpg′;

DEF out = STRUCT:< clip,
(T:<1,2,3>:<-8,-12,-1> ∼ S:<1,2>:<16,24> ∼ CUBOID):<1,1,1>
TEXTURE Gioconda >;

VRML:out:′luxo.wrl′;

15.5 Extended Configuration Space

In this section we discuss, implement and exemplify a general and simple geometrical
method for solving a difficult problem: the computation of a polyhedral approximation
of the free configuration space FP for a robot system R moving in a working space
containing obstacles E. This method was introduced in [Pao89].

15.5.1 Introduction

Let the mobile system R ∪ E ⊂ IEd be composed of a set R = {Ri} of mobile rigid
parts with k degrees of freedom, that we will call the robot, and a set E = {Ei} of
rigid obstacles. Both the robot and the obstacles are usually 2D or 3D. If the obstacles
move along known trajectories, the whole system can be statically modeled taking
time into account as an additional dimension, and by embedding the system in a 3D
or 4D spacetime, respectively.

The symbol P d will be used to refer to both Ri and Ei, being them represented as
d–dimensional polyhedra.

Consider the configuration space CS ⊆ IRk and the working space WS ⊆ IEd of the
robot. We define the extended configuration space map as a function

ECS : WS → WS × CS ⊆ IRd+k.

The set FP of free positions of R may be straightforwardly computed when ECS(R)
and ECS(E) are provided. The first term is a polyhedral encoding of all the possible
placements of R allowed by its degrees of freedom, whereas the second term is the
result of a straight k-extrusion of obstacles, which do not depend on the degrees of
freedom.

We like to remark that the distinction between robot and obstacles is softened in
this approach. It does not make any difference if either the polyhedron P d is part of an
articulated manipulator or it is an obstacle: the distinctive property is the association
between objects in the scene and degrees of freedom.

15.5.2 Rationale of the method

The extrusion operations are defined in such a way that the point

q = (x1, . . . , xd, t1, . . . , tk) ∈ IRd+k

belongs to ECS(P d) = P d+k if and only if the projection of q within the workspace,
denoted as Πws(q) = (x1, . . . , xd), belongs to the placement of P d corresponding to

MOTION MODELING 681

the parameters value (t1, . . . , tk). We can write:

q ∈ P d+k ⇐⇒ Πws(q) ∈ P d |(t1,... ,tk)

It follows that, if the ECS images P d+k
i and P d+k

j of P d
i , P d

j ∈ R ∪E have a common
point q, then P d

i and P d
j overlap or touch in the configurations corresponding to the

last k coordinates of q:

q ∈ P d+k
i ∩ P d+k

j ⇐⇒ Πws(q) ∈ P d
i

∣

∣

(t1,... ,tk)
∩ P d

j

∣

∣

(t1,... ,tk)

Imagine computing the intersection set of each pair

(P d+k
i , P d+k

j) ∈ ECS(R ∪ E) × ECS(R ∪E),

to project such sets onto CS and to take the union of the projections. This yields the
configuration space obstacles CSO, i.e. the set of points in configuration space which
correspond to prohibited configurations of the system. Recalling that free configuration
space FP coincides with the difference between configuration space and configuration
space obstacles, we conclude that FP can be computed by looking for intersections in
ECS, and then by subtracting their projection from configuration space [Pao89].

In a single formula we can write:

FP = CS − CSO = CS −
⋃

i,j

Πcs(ECS(P d
i) ∩ ECS(P d

j))

15.5.3 ECS algorithm

The conceptual skeleton of the ECS method for the computation of the free
configuration space is summarized in Figure 15.16. A more detailed statement of the
algorithm follows.

Polyhedral modeling of R ∪ E
↓

Suitable extrusions in ECS
↓

Computation of intersections in ECS
↓

Projection of non-empty intersections in CS
↓

Difference between CS and such sets
↓

FP

Figure 15.16 Conceptual skeleton of the ECS method.

682 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Modeling step A suitable solid model of R ∪ E is given in the workspace WS.
Convex decompositions are used to represent the system; this choice allows us to
easily compute the ECS image of each part in the scene though the convex hulls
generated by the JOIN operator.

Extrusion step The image of each P d ∈ R ∪ E in the Extended Configuration
Space is computed. This results in a set of higher dimensional polyhedra P d+k, where
for each P d+k a convex decomposition within ECS is available.

Intersection step The set intersection of each pair P d+k
i , P d+k

j is computed. Such
sets correspond either to auto-intersections of an articulated robot or to intersections
of the latter with obstacles. Since a quasi-disjoint decomposition of the operands is
given, intersection can be distributed and performed by pairwise intersecting convex
cells. The intersection of convexes is a convex set, so that this step results in a set of
quasi-disjoint convex cells, {cd+k

i |cd+k
i ⊂ ECS}.

Projection step Each convex cell cd+k
i ⊂ ECS is projected onto CS. This process

can be thought of as a sequence of d elementary projections, each one performed along
a coordinate direction. The result is the set

{

ck
i |ck

i = Πcs(cd+k
i)

}

.

Since the projection of a convex set is convex, a collection of convex sets in
configuration space is obtained. Unfortunately, these are no longer quasi-disjoint, but
give a set covering of configuration space obstacles.

Difference step The free configuration space for the moving system R∪E is finally
obtained as:

FP = CS −
⋃

i

ck
i .

15.5.4 Encoding degrees of freedom

In this subsection it is discussed how to generate ECS(R) and ECS(E), i.e. how to
encode the degrees of freedom of the mobile polyhedral system and the polyhedral
scene itself within higher dimensional polyhedra.

Each one of the rigid parts which compose the robot, say P d, may move according
either to translational degrees of freedom only, or to rotational only, or to both
translational and rotational degrees of freedom. If the position of P d depends on the
value of a parameter ti (αi), we say that P d is subject to ti (αi). The representation
P d+k of P d, which encodes the whole set of k degrees of freedom, is computed by
performing an appropriate sequence of k suitable extrusion operations.

Types of extrusion

A definition of straight, linear and screw extrusions, recalled from [PBCF93], is given
in the following. For each translational degree of freedom (with parameter ti) and for

MOTION MODELING 683

each rotational degree of freedom (with parameter αi) in the scene, the following rules
are applied:

1. If P d is subject to ti, then an appropriate linear extrusion is required, which
generates the whole set of positions corresponding to the translational degree
of freedom (see Figure 15.17b).

2. If P d is subject to αi, an appropriate screw extrusion is performed, which
generates the whole set of positions and orientations corresponding to the
rotational degree of freedom (see Figure 15.17c).

3. If P d is subject neither to ti nor to αi, an appropriate straight extrusion is
required, which encodes the independency of P d from the considered degree
of freedom (see Figure 15.17a).

Figure 15.17 3D polyhedral encoding of a degree of freedom of a 2D object: (a)

straight extrusion (independence on parameter) (b) linear extrusion (translational

DOF) (c) screw extrusion (rotational DOF)

Notice that, according to the above rules, the sequence of extrusions to be applied
to P d is partly determined by the degrees of freedom of P d itself, and partly by the
degrees of freedom of other bodies in the scene.

Definitions of the straight, linear and screw extrusion operators (Eh, LEv,h and
SEθ,i,j,h, respectively), are given below. As is shown, a linear extrusion can be
computed by composition of a straight extrusion and of an affine transformation.

Straight extrusion A straight extrusion is a mapping

E : Pd,d → Pd+1,d+1

between polyhedral spaces, such that P d 1→ P d × [0, 1].

Linear extrusion A linear extrusion is a mapping

LE : Pd,d × IR → Pd+1,d+1

684 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

such that (P d, ti) 1→ (Hd+1(ti) ◦ E)(P d), where Hd+1(ti) ∈ lin (IRd+1) is a shearing
tensor with matrix (ηij), where:7

ηij =







ti, i = 1, j = d + 1

δij , (Kröneker symbol) elsewhere
(15.2)

Screw extrusion A screw extrusion is a mapping

SE : IR × N+ × Pd,d → Pd+1,d+1

where N+ is the set of positive integers, and such that

(α, h, P d) 1→ SE(P d) = P d+1,

where SE(P d) is produced by the algorithm given below.

Algorithm A sequence of computations needed to generate the dimension-
independent screw extrusion SE(P d) of the P d polyhedron is discussed in the
following.

First, the set of polyhedra

Sd,d+1 = P d ×
{

i

h
, i = 0, . . . , h

}

,

with Sd,d+1 ⊂ Pd,d+1, called a set of polyhedral d-slices in IEd+1 space, is subject to
the action of a discrete family of parametric rotation tensors

R = {Rd−1,d

(

α
i

h

)

, i = 0, . . . , h}

depending on the same parameter i, thus giving rise to the family of rotated d-slices

RSd,d+1 = {Qd
i = Rd−1,d

(

α
i

h

) (

P d ×
{

i

h

})

, i = 0, . . . , h} ⊂ Pd,d+1 .

Second, a joinCells operation is applied to each element of the set of pairs of rotated
slices with adjacent indices, thus generating a set of solid (d + 1)-dimensional layers
Sd+1

i as the pairwise convex hulls of convex cells belonging to different hyperplanes:

Sd+1,d+1 = {Sd+1
i = joinCells(Qd

i , Qd
i+1), i = 0, . . . , h − 1} ⊂ Pd+1,d+1 .

Finally, the screw-extruded polyhedron SE(P d) is generated by quasi-disjoint union
of solid (d + 1)-slices:

SE(P d) =
⋃

Sd+1,d+1 ∈ Pd+1,d+1 .

7 For the Kröneker symbol see Section 3.3.3.

MOTION MODELING 685

Implementation (1) A dimension-independent implementation of the set of
extrusion operators defined above is implemented in Scripts 15.5.1 and 15.5.2.

A slightly different strategy is used in the implementation of the SE operator.
In particular, the input pol is decomposed into a set {ck} of convex cells by the
SpliCells operator given in Script 10.8.4, and a single

slice = {ck, k = 1, . . . , ik} × {0}

is produced. Then a single solid layer is generated by pairwise JOIN of corresponding
cells of slice and of a copy of it properly rotated and translated by a suitable
tensor. Finally, the polyhedral result is obtained by STRUCT aggregation of properly
rotated and translated copies of the single layer, exploiting at this purpose the STRUCT
semantics.

The (homogeneous version of) shearing tensor Hd+1(ti) ∈ lin (IRd+1) described by
equation (15.2), and needed to implement the LE operator, is quite straightforwardly
given by the Shear function. The IDNT operator, that yields the identity matrices of
arbitrary dimensions, is given in Script 3.3.5.

Script 15.5.1 (Extrusion toolbox)
DEF Extrusion (angle::IsReal)(h::IsInt)(pol::Ispol) =

(STRUCT ∼ CAT ∼ #:h):< layer, tensor >
WHERE

slice = (AA:(EMBED:1) ∼ SpliCells):pol,
tensor = T:(d+1):(1/h) ∼ R:< d - 1,d >:(angle/h),
layer = (STRUCT ∼ AA:JOIN ∼ TRANS ∼ [ID, AA:tensor]):slice,
d = DIM:pol

END;

DEF Shear (t::Isreal)(pol::Ispol) = (MAT ∼ Update ∼ IDNT):(d+1):pol
WHERE

update = < S1, newrow > (CONS ∼ CAT) AA:SEL:(3..d+1),
newrow = K:(<0,1> CAT #:(d - 2):0 AR t),
d = DIM:pol

END;

Implementation (2) A revised definition of the straight, linear and screw extrusion
operators is used for the implementation of EX, LEX and SEX operators given in
Script 15.5.2. The purpose is to directly allow for encoding the degrees of freedom in a
non-normalized fashion, using directly the joint limits associated with each feasibility
interval [ξmin

i , ξmax
i] of the ti or αi parameters. Therefore we have:

EX : IR2 ×Pd,d → Pd+1,d+1

such that ((ξmin
i , ξmax

i), P d) 1→ (T d+1(ξmin
i) ◦ Sd+1(ξmax

i − ξmin
i) ◦ E)(P d), where

T n(a) and Sn(b) respectively denote the translation and scaling tensors along the
n-th coordinate direction. Analogously, for the linear extrusion we set

LEX : IR2 × Pd,d → Pd+1,d+1

686 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

such that ((ξmin
i , ξmax

i), P d) 1→ (T d+1(ξmin
i)◦Sd+1(ξmax

i −ξmin
i)◦Hd+1(ξmax

i −ξmin
i)◦

E)(P d), where Hn(a) is the shearing tensor (15.2). Finally, the screw extrusion is
redefined as:

SEX : IR2 × N+ ×Pd,d → Pd+1,d+1

such that ((ξmin
i , ξmax

i), h, P d) 1→ (Rd−1,d(ξmin
i) ◦ Sd+1(ξmax

i − ξmin
i) ◦ SE)(ξmax

i −
ξmin
i , h, P d).
The above definitions of the EX, LEX and SEX operators are implemented very easily

in Script 15.5.3. The reader should remember that a sequence of compositions is
applied, as always, in reverse order.

Script 15.5.2 (Extrusion operators)
DEF EX (x1,x2::IsReal)(pol::Ispol) =

(T:(DIM:pol+1):x1
∼ S:(DIM:pol+1):(x2 - x1)
∼ Extrusion:0:1): pol;

DEF LEX (x1,x2::IsReal)(pol::Ispol) = (MKPOL ∼ UKPOL
∼ T:(DIM:pol+1):x1
∼ S:(DIM:pol+1):(x2 - x1)
∼ shear:(x2 - x1)
∼ Extrusion:0:1): pol;

DEF SEX (x1,x2::IsReal)(h::IsIntPos)(pol::Ispol) =
(R:<d, d - 1>:x1
∼ S:(d + 1):(x2 - x1)
∼ Extrusion:(x2 - x1):h): pol

WHERE d = DIM:pol END;

Example 15.5.1 (Straight, linear and screw extrusion)
Three simple examples of straight, linear and screw extrusion of an empty square are
produced by Script 15.5.3 and are displayed in Figure 15.18.

Script 15.5.3
DEF pol1 = (T:<1,2>:<-5,-5> ∼ CUBOID):<10,10>;

DEF pol2 = S:<1,2>:<0.9,0.9>: pol1;
DEF pol3 = pol1 - pol2;

VRML:(EX:<0,10>: pol3):′out1.wrl′;
VRML:(LEX:<0,10>: pol3):′out2.wrl′;
VRML:(SEX:<0,PI>:16: pol3):′out3.wrl′;

15.5.5 Computation of FP

In this section we discuss and implement some examples of FP computation where
dim ECS = d + k is equal to 3, 4 and 5, respectively. In actual cases the embedding

MOTION MODELING 687

Figure 15.18 Encoding of a DOF via straight, linear and screw extrusions

produced by EX, LEX and SEX operators

geometrical space has dimension d ≤ 4, where d = 4 arises when modeling with a
spacetime approach. Conversely, k = dim CS may take an arbitrary (small) value,
depending on the structure of the moving system.

1D moving system (d = 1, k = 2)

Let us consider a one-dimensional moving system R = {R1, R2}, with both elements
equal to the unit segment [0, 1] ⊂ IR, and constrained to translate inside the interval
Ξ = [0, 4] of the x axis. Such a system has 2 degrees of freedom, defined by the
translations t1 and t2 of the first point of the segments.

ECS representation A representation of this system in the extended space
(x, t1, t2) is obtained as follows. The set of placements of the R1 segment is given
on the plane (x, t1) by a parallelogram generated by linear extrusion of R1. Since
it does not depend on t2, its extended representation in (x, t1, t2) space is given by
straight extrusion.

The computer representation with PLaSM is produced in Script 15.5.4 by applying a
suitable shearing tensor to the parallelepiped of size <1,4,4>. The dimetric projections
of the volumes S(R1),S(R1) ⊂ ECS are produced by the last two expressions of the
script, having provided the loading of the viewmodels library.

Script 15.5.4 (ECS example (1))
DEF shear1 = MAT:<<1,0,0,0>,<0,1,3/4,0>,<0,0,1,0>,<0,0,0,1>>;

DEF shear2 = MAT:<<1,0,0,0>,<0,1,0,3/4>,<0,0,1,0>,<0,0,0,1>>;
DEF R1 = (shear1 ∼ CUBOID):<1,4,4>;
DEF R2 = (shear2 ∼ CUBOID):<1,4,4>;

projection:parallel:dimetric:R1;
projection:parallel:dimetric:R2;

A projected view of the polyhedral volume encoding the whole set of placements of
R1 is shown in Figure 15.19a. The polyhedral encoding of the set of placements of R2

is derived analogously, and is shown in Figure 15.19b.
A parallel projection of the set union and intersection of extended objects S(R1)

and S(R2), produced by Script 15.5.5, respectively, is given in Figure 15.20.
Finally, in Script 15.5.5 a polyhedral representation of free positions FP is generated,

by set difference of configuration space CS and the intersections of extended obstacles

688 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

x
t

t

1

2

x
t

t

1

2

1R

2R

Figure 15.19 Representations S(R1),S(R2) ⊂ ECS of the moving elements R1

and R2

x x

tt

t t

1 1

2 2

Figure 15.20 Set union and intersection of extended objects S(R1) and S(R2)

projected in CS. The project operator, used to project a higher dimensional object
onto the coordinate subspace defined by the coords subset of coordinate indices is
also given in Script 15.5.6. The resulting FP is shown in Figure 15.21.

1D moving system with obstacle (k = 2)

Finally, we compute FP with the same approach in presence of a 1D obstacle in
working space WS = [0, 4]. First, we assume as obstacle the interval [2, 2.5] ⊂ WS,
whose extended representation in WS × CS is given by the extended configuration
space obstacle ECSO of Script 15.5.7. The union of intersections between the (extended
representations of) mobile components and between them and ECSO is given by UFP.
This extended representation of unfeasible positions is shown in Figure 15.22.

The FP set is finally computed in Script 15.5.7 and shown in Figure 15.23a for the
[2, 2.5] obstacle and in Figure 15.23b for the [2.25, 2.75] obstacle.

Script 15.5.5 (ECS example (2))
projection:parallel:dimetric:(R1 + R2);

projection:parallel:dimetric:(R1 & R2);

MOTION MODELING 689

Script 15.5.6 (ECS example (3))
DEF project (coords::IsSeq) =

MKPOL ∼ [AA:((CONS ∼ AA:SEL):coords) ∼ S1, S2, S3] ∼ UKPOL;

DEF CS = CUBOID:<4,4>;
DEF FP = CS - project:<2,3>:(R1 & R2);

VRML:((STRUCT ∼ [ID, @1]):FP):′out.wrl′;

t

t1

2

0 1 2

Figure 15.21 Free configuration space FP (the white areas) for the unconstrained

1D example.

15.6 Examples

Some simple examples of animation and motion planning are given in this section. In
particular we discuss: (a) a possible animation of or the umbrella modeling that we
developed through the book; (b) a fast modeling of a non-holonomic, i.e. with non
independent degrees of freedom, planar motion of a car; (c) the motion modeling of
an anthropomorphic robot with several DOFs; (d) the motion planning problem that
arises when solving a 2D labyrinth, by using the extended configuration space method;

15.6.1 Umbrella modeling (5): animation

An animation of the umbrella model defined in Script 8.5.14, and later refined in 11.5.2
and 12.6.1, is given in Script 15.6.1. Some keyframes from the generated movie are
shown in Figure 15.24.

We believe it may be interesting to note that the animation effects of the umbrella
model, including the extension of surface canvas and the changing curvature of rod
curves, are obtained from the second line of the script, by animating only the umbrella
opening angle, and without any change to the umbrella defining code given in the above

Script 15.5.7 (ECS example (4))
DEF ECSO = (T:1:2 ∼ CUBOID):<0.5,4,4>;

DEF UFP = (R1 & R2) + (R1 & ECSO) + (R2 & ECSO);
DEF FP = CS - project:<2,3>: UFP;

VRML:(FP):′out.wrl′;

690 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Figure 15.22 Extended configuration space representation of unfeasible
configurations: UFP = ECS(CSO)

Figure 15.23 Free configuration space FP (the white areas) for the constrained

example: (a) 1D obstacle located at x = 2 (b) obstacle at x = 2.25

mentioned scripts. Such effects are due to the pervasiveness of values of animBehaviour
type trough the PLaSM code at evaluation time. We remember that the rods were
defined as Bézier curves depending on cortrol points depending in turn from the
opening angle, and analogously the canvas are Coons’ patches defined by boundary
Bézier curves that are functions of the umbrella opening angle.

Figure 15.24 A sequence of frames from the animated umbrella opening

15.6.2 Non-holonomic planar motion

The example discussed in this section is aimed at illustrating a quite frequent case
of planar motion, where the degrees of freedom are non-independent. In this type of

MOTION MODELING 691

Script 15.6.1 (Singing in the rain)
DEF clip = MOVE:(umbrella ∼ [K:10, ID]):<10,50,70,80>:<0,1,2,3>;

DEF movie = (LOOP:10 ∼ ANIMATION): < clip, SHIFT:3, WARP:-1:clip >;

VRML:movie:′out.wrl′;

motion, typical of cars, the orientation of the moving body depends on the derivative
of the displacement vector, i.e. on the direction of the velocity vector.

In other words, the orientation of the body, i.e. the rotational degree α(u) along the
body’s trajectory, depends on the derivative of the translational degrees (cx(u), cy(u)),
seen as the smooth coordinate functions of a point-valued map c(u) of a real parameter,
i.e. as a smooth curve. In particular, we have:

c : [0, 1] → IR2, with c(u) = (cx(u), cy(u)), and (φ ◦ c′)(u) = α(u)

where

φ : IR2 → [−π, π], with φ(c(u)) = sign
(

c′y(u)
||c(u)||

)

acos
(

c′x(u)
||c(u)||

)

.

Implementation The PLaSM implementation of this kind of planar motion is
quite easy, and is given in Script 15.6.2. The Vect2DToAngle operator is a direct
implementation of the φ function above. When φ is applied to a vector in IR2, it
returns the angle that the vector gives with the x axis. Notice that the UnitVect
operator is given in Script 3.2.4, and that the ACOS predefined function returns the
angle whose cosine is equal to the actual function argument.

The tangent operator, where D is the Fréchet derivative given in Script 5.2.15, when
applied to a sequence of coordinate functions of a curve map, returns the sequence of
coordinate functions of the derivate map.

Finally, the Curve2CSpath operator, which stands for “from curve to configuration
space path”, when applied to a 2D curve generating sequence c, returns a function
that, applied to some u point in [0, 1], gives back the (α(u), cx(u), cy(u)) configuration
space point.

Script 15.6.2 (From 2D curve to CS)
DEF Vect2DToAngle = SIGN ∼ S2 * ACOS∼S1 ∼ UnitVect;

DEF tangent (f::IsSeqOf:IsFun)(a::IsSeqOf:IsReal) = CONS:(D:f:a):<1>;
DEF Curve2CSpath (curve::IsSeqOf:IsFun) =

AL ∼ [Vect2DToAngle ∼ tangent:curve, CONS:curve];

Note We note that the Curve2CSpath operator, when applied to some arbitrary
2D curve generating sequence c, returns the vector-valued function (φ ◦ c′, c) : IR →
IR3, such that (φ ◦ c′, c)(u) ∈ CS for each u ∈ [0, 1]. In conclusion, we can say
that the discussed planar non-holonomic motion is completely modeled by the map

692 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Curve2CSpath given below, from the set of trajectory curves in working space8 to the
set of CS curves:

Curve2CSpath ≡ (φ ◦D, id) : ([0, 1] → IR2) → ([0, 1] → IR3),

where D is the derivative operator.

Example 15.6.1 (Our red “Ferrari”)
A (very) simplified dream car is modeled and animated in Scripts 15.6.3 and 15.6.4,
respectively. In particular, Ferrari is the mobile object generating function depending
on three real parameters, where mover is a properly transformed instance of the
extruded car defined in Script 6.2.5. In this case the reader is asked to give his/her own
implementation of the mobile object, since the Curve2CSpath operator suitably applies
to every planar motion of a rigid body. The background object is a container for the
image of the trajectory, given in Script 15.6.4, and a supporting white rectangle.

Script 15.6.3 (Ferrari example (1))
DEF Ferrari (alpha,tx,ty::IsReal) =

(T:<1,2>:<tx,ty> ∼ R:<1,2>:alpha):mover
WHERE

mover = (T:2:0.15∼R:<2,3>:(PI/2)∼S:<1,2>:<-1/8,1/8>∼T:1:-1.5):car
END;

DEF background = STRUCT:<
(T:<1,2>:<-1,-1> ∼ CUBOID):<7,5> COLOR WHITE,
MAP:trajectory:(Intervals:1:40)

>;

Figure 15.25 A frame sequence from the motion of a planar mover (our red

“Ferrari”) on a given trajectory

The motion of our red Ferrari is modeled in Script 15.6.4, where the animated

8 Here we use the Robotics term for the space where the mover acts.

MOTION MODELING 693

polyhedral complex produced by the evaluation of the out symbol is exported into
the VRML file named out.wrl. A sequence of frames from the animation rendering
produced by the Cortona Plug-in and MS Internet Explorer is shown in Figure 15.25.

The example trajectory is a Bezier curve of degree 5 generated by six 2D points.
The CSpath is a piecewise linear approximation with 20 segments of the corresponding
CS curve. The sampling operator is given and discussed in Script 15.2.1. Finally, the
uniform timing of the animation is specified by the Timepath real sequence, for a total
duration of 5 seconds. The scalarVectProd operator, for the product of a scalar times
a vector, is given in Script 2.1.20.

Script 15.6.4 (Ferrari example (2))
DEF trajectory = Bezier:S1:<<0,0>,<8,0>,<5,5>,<2,-3>,<0,8>,<0,0>>;

DEF CSpath = (AA:(Curve2CSPath:trajectory ∼ [ID]) ∼ Sampling):20;
DEF Timepath = 5 scalarVectProd Sampling:20;

DEF out = STRUCT:< background,
MOVE: Ferrari: CSpath: Timepath >;

VRML:out:′out.wrl′;

Project hint It might be interesting to note, as a project hint to the reader, that
by reparametrizing the trajectory for s ∈ [0, L], where s is the curvilinear abscissa
and

L =
∫

trajectory
ds

is the total length of the trajectory, the animation would linearly approximate the
actual speed of the mobile object, for every arbitrary time sampling distribution into
the increasing sequence Timepath.

15.6.3 Anthropomorphic robot with 29 degrees of freedom

The aim of this section is to show an easy strategy to reduce the number of parameters
that an animation depends on, and to discuss the very high-level PLaSM operators used
to develop a hierarchical animation (see Section 15.3.3). For this purpose we consider
a 3D articulated moving system with several degrees of freedom, say the Robot object
defined in Script 15.6.5, that we already introduced as the hierarchical body structure
given in Script 8.5.9.

Implementation The Robot function given in Script 15.6.5 is an explicitly
parametrized version of the body object of Script 8.5.9. In this case, each formal
parameter is a sequence of real numbers, denoting the subset of degrees of freedom
associated with each body joint. The reader is referred to Section 8.5.2 for a discussion
of the semantics of the articulated system. Just note here that the Torso is used as
root of the tree of Robot links, and that there are 5 kinematics chains. The functions
top limb, upper limb and lower limb can be found in Section 8.5.2.

694 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Script 15.6.5 (Robot definition)
DEF Robot(dofNeck, dofHead,

dofShoulderR, dofElbowR, dofWristR,
dofShoulderL, dofElbowL, dofWristL,
dofHipR, dofKneeR, dofAnkleR, dofToeR,
dofHipL, dofKneeL, dofAnkleL, dofToeL::IsSeqOf:IsNum) =

STRUCT:< torso,
(joint1 ∼ top limb):< dofNeck, dofHead >,
(joint2 ∼ upper limb):< dofShoulderR, dofElbowR, dofWristR >,
(joint3 ∼ upper limb):< dofShoulderL, dofElbowL, dofWristL >,
(joint4 ∼ lower limb):< dofHipR, dofKneeR, dofAnkleR, dofToeR >,
(joint5 ∼ lower limb):< dofHipL, dofKneeL, dofAnkleL, dofToeL >>

WHERE
torso = T:<1,2>:<-5,-5>:torso shape,
joint1 = T:3:30,
joint2 = T:<1,3>:<6,30>,
joint3 = T:<1,3>:<-6,30>,
joint4 = T:1:4,
joint5 = T:1:-4

END;

Interpolators In some animation system the variables, defining a mapping from
the standard unit interval to the interval of joint limits of some degree of freedom, are
called interpolators.

Actually, an interpolator can be seen as a higher-level degree of freedom, and a
complex motion, say a curve living in a high dimensional space CS = Ξk, can always
be reduced to a curve living in a lower-dimensional configuration space [0, 1]h defined
by h << k interpolators.

Two quite simple motions of our Robot with 29 degrees of freedom, specified by
using a single interpolator, are defined in the following Example 15.6.2. Clearly, a finer
control of the motion could be achieved by using an higher number of interpolators.9

Example 15.6.2 (Gymnastic exercises)
A function Exercise1 of a single real parameter cx is defined in Script 15.6.6 by
referencing the Robot function given in Script 15.6.5 with actual parameters depending
on cx, supposed to be in the interval [0, 1]. It is clear that cx is an interpolator variable,
as defined above. Notice that only 4 joint variables of Robot are affected by the cx
interpolator, whereas the other 25 are set to some fixed values, and in this case are
all set to zero. It is quite easy, by looking at Robot definition and at Figure 15.26 to
recognize the type of motion.

Another gymnastic exercise of our Robot is defined in Script 15.6.7, where a single
interpolator cx now defines a (linear) curve in a 16-dimensional CS subspace.

A hierarchical animation of the Robot generating function is defined bottom-up in
Script 15.6.8:

9 And, for the sake of animator’ happiness, by connecting them to interactive widgets in the
animation system interface.

MOTION MODELING 695

Script 15.6.6 (Exercise 1)
DEF Exercise1(cx::IsNum) = Robot:<

<0,0>,<0,0,0>,<0,150*cx,0>,<0,0>,<0>,<0,-150*cx,0>,<0,0>,<0>,
<0,45*cx,0>,<0>,<0>,<0>,<0,-45*cx,0>,<0>,<0>,<0> >;

Script 15.6.7 (Exercise 2)
DEF Exercise2(cx::IsNum) = Robot:<

<0,5*Cx>,<0,5*Cx,20 - 40*Cx>,<-30 + 60 * Cx,0,0>,<30 - 30*Cx,0>,<0>,
<30 - 60 * Cx,0,0>,<30 * Cx,0>,<0>,
<20 - 40 * Cx,0,0>,<-20 * Cx>,<-20 + 40 * Cx>,<20 * Cx>,
<-20 + 40 * Cx,0,0>,<-20 + 20 * Cx>,<20 - 40 * Cx>,<20 - 20 * Cx> >;

1. By setting, at the deepest hierarchical level, two clips of AnimPolComplex
type, called clip1 and clip2, by using the MOVE animation primitive.

2. Defining, at a higher level, two more complex clips, produced by joining,
within two adjacent time segments [0, 1] and [1, 2], one instance of clip1
and one back-reversed copy of it, and analogously for clip2. The reflection
of timeline is produced by the WARP primitive with -1 argument.

3. Each one of such double clips with timeline [0, 2] is looped 5 times, yielding
two longer clips with timeline [0, 10].

4. At the highest hierarchical level, three clips with timeline [0, 10], [0, 1] and
[0, 10], respectively, are mounted together. The second one is generated by
the FRAME primitive, locking the Robot for 1 seconds in the configuration
produced by Exercise1:0. The pasting of the three clips is performed by
the timeline translations produced by the SHIFT primitive.

Script 15.6.8 (Hierarchical animation)
DEF clip1 = MOVE: Exercise1 :<0,1>: <0,1>;

DEF clip2 = MOVE: Exercise2 :<1,0>: <0,1>;

DEF movie = LOOP:10:(
ANIMATION:<

LOOP:5:(
ANIMATION:< clip1, SHIFT:1, WARP:-1:clip1 >),

SHIFT:10,
FRAME:(Exercise1:0):<0,1>,
SHIFT:1,
LOOP:5:(

ANIMATION:< clip2, SHIFT:1, WARP:-1:clip2 >)
>);

VRML:movie:′out.wrl′;

Note It is important to remark that the semantics of the ANIMATION primitive closely
resembles the one of the STRUCT primitive.

696 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

In particular, a timeline transformation, say a SHIFT:t or WARP:t tensor, can
be either directly applied to a clip (animPolComplex), or inserted within the
sequence argument of some ANIMATION primitive. In the latter case each timeline
transformation applies to all clips that follow it in the sequence, exactly as done by
affine transformations within a STRUCT sequence. The animPolComplex object called
movie in Script 15.6.8 is a good example of this semantics.

Figure 15.26 A frame sequence from robot’s gymnastic exercises

15.6.4 Solving a 2D labyrinth

A 2D labyrinth, where a path connecting the entrance and the exit must be found,
provides an interesting example for planning the motion of a mobile object moving
amidst obstacles.

Labyrinth modeling

In Script 15.6.9 we give a general method to produce geometric models of rectangular
labyrinths by assembly predefined rectangular cells. In particular four cells models c1,
c2, c3 and c4 are defined, that are displayed in Figure 15.27. A coding matrix using
integers from {1, 2, 3, 4} is then given, that codifies the desired labyrinth layout. The
operators Q and optimize are defined in Scripts 1.5.5 and 6.5.2, respectively.

The transformation from the coding integer scheme to the 2D polyhedral complex

MOTION MODELING 697

1 2 3 4

Figure 15.27 The four cells used for labyrinth assembly

Script 15.6.9 (Labyrinth (1))
DEF c1 = STRUCT:< Q:10 * Q:1, Q:1 * Q:<-1,9> >;

DEF c2 = STRUCT:< Q:10 * Q:1, Q:1 * Q:<-1,3,-3,3> >;
DEF c3 = STRUCT:< Q:<4,-3,3> * Q:1, Q:1 * Q:<-1,9> >;
DEF c4 = STRUCT:< Q:<4,-3,3> * Q:1, Q:1 * Q:<-1,3,-3,3> >;

DEF cellTypes = <c1,c2,c3,c4>;

DEF coding = <
<1,1,4,2,4,1,2,1,2,2,3,1>,
<3,2,2,3,3,4,4,4,3,4,3,2>,
<2,1,2,2,2,3,3,1,2,1,2,1>,
<1,2,1,2,2,2,3,3,2,4,2,2>,
<3,4,2,4,3,4,1,1,4,3,3,2>,
<1,1,4,3,3,3,3,4,3,1,2,2>,
<2,2,2,3,3,3,2,3,3,1,4,2>,
<1,1,2,1,2,1,2,1,2,1,2,1>>;

Labyrinth is given in Script 15.6.10. In this case, the coding matrix is first
transformed into a CellArray matrix, whose elements are taken from the cellTypes
set. Then, a polyhedral complex Assembly is generated from CellArray, by suitably
inserting horizontal and vertical translation tensor generators T:1 and T:2 and STRUCT
operators between CellArray elements. Finally, the Labyrinth model is completed
by adding the topmost border1 and right-hand border2.

Script 15.6.10 (Labyrinth (2))
DEF CellArray = (CONS ∼ AA:(CONS ∼ AA:SEL)): coding: cellTypes;

DEF Assembly = (assemblyRows ∼ AA:singleRow): CellArray
WHERE

singleRow = STRUCT ∼ CAT ∼ AA:[ID, T:1 ∼ SIZE:1],
assemblyRows = STRUCT ∼ CAT ∼ AA:[ID, T:2 ∼ - ∼ SIZE:2]

END;

DEF border1 = Q:120 * Q:<-80,1>;
DEF border2 = Q:<-120,1> * Q:<34,-3,44>;
DEF Labyrinth = (optimize ∼ STRUCT):< border1, T:2:70:Assembly, border2 >;

VRML:Labyrinth:′out.wrl′

The PLaSM code in Script 15.6.10 can easily be abstracted to give labyrinths of
arbitrary dimensions starting from arbitrary sets of cells, with the only constraint
that cells on the same row have the same height. We leave this task to the advanced

698 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Figure 15.28 A 2D labyrinth (black) and the free configuration space (white) for a

moving rectangle CUBOID:<4,2> with 2 translational DOFs only. The gray areas are
the grown obstacles. The labyrinth’s entrances are unconnected in FP, hence an

admissible motion between them does not exist

reader of the book. We just note that the borders and the parameter of tensor T:2:70
must be suitably computed at this purpose.

Translational motion

An early geometric technique, was developed by Lozano-Perez and Wesley [LPW79] for
planning the collision-free motion of a 2D convex body translating amidst polygonal
obstacles. Their approach reduces to planning the motion of a single point moving
amidst a grown version of the obstacles, that is obtained as Minkowski sum of the
obstacles and the moving body.

In Section 14.6 we defined the OFFSET operator as the Minkowski sum of a polyhedral
complex with a rectangular parallelotope. Hence, if we suppose our mobile body
to be defined as CUBOID:<4,2>, we can compute the grown obstacles and the free
configuration space FP as done in Script 15.6.11.

Script 15.6.11 (Labyrinth (2))
DEF fp = (BOX:<1,2> - OFFSET:<-4,-2>):labyrinth ;

DEF out = STRUCT:< fp COLOR white, labyrinth COLOR black >;
VRML: out:′out.wrl′;

The resulting out object is shown in Figure 15.28. As it is easy to see, FP is not

MOTION MODELING 699

path-connected, so that no solution exists for a translational motion of our horizontal
rectangle with size 4 × 2. The reason is quite obvious: the width of the mobile body
is larger than the passages between vertically adjacent labyrinth cells, so that only
horizontal translations are allowed.

General 2D motion

Let us suppose now that our mobile rectangle is also allowed to rotate about its local
origin, with angle α ∈ [−π/2, +π/2], i.e. between −45 and +45 degrees. In this case
it will be able to pass across both horizontal and vertical doors in the labyrinth.

In Script 15.6.12 we compute FP under this new assumption. First, we compute
the extended representations ECSmover and ECSobstacles of the mobile body and
the Labyrinth, respectively. Then we compute by intersection the set UFP of unfeasible
positions. Finally, FP is given by subtracting from CS the projection of the unfeasible
position set.

The EX, LEX and SEX operators, for straight, linear and screw extrusion, respectively,
are given in Script 15.5.2. Every path in the path-connected FP component
between the labyrinth entrances gives a feasible motion between the start and goal
configurations of our mover object.

Script 15.6.12 (Labyrinth (3))
DEF ECSmover = (dof3 ∼ dof2 ∼ dof1): mover

WHERE
dof1 = R:<1,2>:(pi/-2) ∼ SEX:<pi/-2,pi/2>:6,
dof2 = LEX:<0,121>,
dof3 = LEX:<0,81>,
mover = CUBOID:<4,2>

END;

DEF ECSobstacles = (dof3 ∼ dof2 ∼ dof1):Labyrinth
WHERE

dof1 = EX:<pi/-2,pi/2>,
dof2 = EX:<0,121>,
dof3 = EX:<0,81>

END;

DEF UFP = ECSmover & ECSobstacles;
DEF CS = (T:3:(PI/-2) ∼ CUBOID):< 121, 81, PI >;
DEF FP = CS - project:<3,4,5>: UFP;

VRML:(FP struct @1:CS):′out.wrl′;

The reader should note that our result is only a polyhedral — and regularized —
approximation of the true FP set. Also, as it is well known to computer scientists and
computational geometers [HSS84, SS90], the FP computation is PSPACE hard for
an arbitrary number of moving rectangles. Thus, it remains tractable only for very
simple settings, such as the one discussed in this section.

