10
Viewing and rendering

This chapter is aimed at discussing the rendering process of a 3D scene on raster
devices like display monitors and ink-jet printers. In the first part of the chapter we
discuss how to choose the view models (i.e. suitable sets of parameters) in order to
generate either realistic images or technical drawings of the modeled scene or object.
For this purpose a detailed taxonomy of different types of projections is discussed,
and several examples are given. Then the attention is shifted to the rendering process
of realistic images, by discussing some main approaches to the hidden-surface removal
(HSR) problem, i.e. to the removal of hidden parts of the scene. A short presentation is
then given of lighting, shading and color models. Such techniques concern the computer
treatment of light behavior of surfaces, and their rendering to produce realistic images.
Some examples of VRML lighting, coloring and texturing PLaSM-generated models
finally are discussed.

10.1 View-model

As we already know from the previous chapter, every 2D picture of a 3D scene is
always obtained by projection from some projection center to some suitable projection
plane, also called the viewplane.

1. The projection is said to be perspective when the projection center is proper.
2. The projection is said to be parallel when the projection center is improper,
i.e. is set at infinity.

In the first case the bundle of lines that projects the scene points is a cone; in the
second case it is a cylinder. In other words, the lines projecting the scene from a center
at infinity are parallel.

Therefore, the first criterion used to distinguish between different types of projection
is the kind, either proper or improper, of projection center. The projections of a 3D
scene are then further classified depending on the position of center and on the attitude
of the viewplane. The taxonomy of projections discussed in the following sections is
summarized in Table 10.1.
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Table 10.1 Taxonomy of projections

Central (1-point)
Perspective | | Accidental (2-point)
Oblique (3-point)

: Simple
Orthographic Multiple
Parallel
Axonometric Ginthiozona)
Oblique

Perspective machines The perspective as a projection from a point, already known
to the Greek painters of theatrical backdrops, was rediscovered by the artists of the
Italian Renaissance. In particular, Brunelleschi and Alberti were the main theorists
of the new projection techniques. Some pictures of Diirer’s drawing machines, which
reproduce the geometric machinery of projection, are shown in Figure 10.1. They were
already known to Brunelleschi and Alberti. The books by Panofsky [Pan91, Pan71]
are the authoritative source for the history of perspective as well as for most later
explanations of those machines.

Figure 10.1 Diirer’s drawing machines
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Py 3

VPN

view plane

Figure 10.2 COPy3 definition in a reference frame parallel to wc3, and with
origin in VRP

10.1.1 View parameters

We are actually interested in computer-generated projections [CP78, Pao78, FvD82,
FvDFH90] of some computer model of the scene. This section is therefore aimed at
specifying how to produce some well-defined types of projection.

First we recall that the 3D scene is defined in world coordinates (wc3). The
scene parts which are possibly defined in local modeling coordinate systems must
be assembled in such a unique reference system before projecting.

The 2D picture of the scene is conversely generated with reference to a view reference
coordinate system (VRC), called also uvn system, with two axes (uv) on the viewplane
and the third axis (n) passing for the viewpoint.

We recall also, from Chapter 9, that such a VRC system is defined on the basis of
few vector parameters given in wc3. As a matter of fact, it has:

1. its origin in view reference point (VRP);

2. n axis parallel to viewplane normal (VPN);

3. v axis (vertical, upwards) on the viewplane, and oriented as the projection
of view-up vector (VUV);

4. u axis (horizontal, directed from left to right) normal to both v and n.

In Chapter 9 we have shown that, according to the PHIGS graphics standard, the
center of projection (COP), for central projections, and the direction of projection
(pop), for parallel projections, may be derived from the projection reference point
(PRP) given in VRC. In the present chapter, for this purpose of giving an easy way to
define correct perspectives, we use a slightly different approach:

1. Define VRP in W3, denoted as VRPy3, and use this point as the origin of a
new system wc3’ parallel to wc3.
2. Define COPyc3/ in this parallel system, so that

COPwc3 = VRPywc3 + COPy3.
3. Assume VPNyc3 = COPyce3/ .

This implies that the viewplane is orthogonal to the axis for VRPyc3 and COPy3, as
shown in Figure 10.2. This also implies, as shown by several examples in the remainder
of this chapter, that central, accidental or oblique perspectives — or 1-, 2- and 3-point
perspectives, according to computer graphics literature [CP78, FvD82, FvDFH90]—
are produced by COPyc3/ points with either 1, 2 or 3 non-zero coordinates, respectively.



370 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Figure 10.3 (a) Clipping at front plane (b) Clipping at back plane

Such an approach is clearly equivalent to the standard one, where the view
orientation transformation is defined by giving VRP and VPN (and vUV), and where
COP equates to the PRP in VRC. A set of “standard” PHIGS view models is given in
Example 10.2.1, and the corresponding pictures are shown in Figure 8.11.

10.1.2 View volume

As we know from the previous chapter, the view volume is the bounded portion of
w3 which contains the subset of scene data which are seen in a specified projection.
In particular, the subset of scene data which is outside the view volume must be
clipped by the graphics system, whereas the subset of inside data must be projected
and rendered on the output device.

Perspective projection The view volume of a perspective projection is a truncated
pyramid with the apex in cop, four side planes passing for cop and for the window
edges in the viewplane, and with two sides parallel to the viewplane and contained in
planes with VRC equations n = f and n = b. Such parallel planes are the front and
back planes, sometimes called hither and yon planes, respectively.

Parallel projection The view volume is a parallelepiped, not necessarily straight,
with four side edges parallel to DOP, four side faces for the window edges and front
and back faces with VRC equations n = f and n = b.

The view volume performs two different functions related to projection and clipping,
respectively.

1. The shape of view volume actually specifies the type of projection, because
the view mapping transformation must map this volume, as well as the inside
content, onto the 3D viewport in NPC system.

2. The inside content of the view volume is projected and rendered to produce
the actual picture of the scene. All the scene data that lie outside such a
volume are instead clipped, i.e. not rendered, by the graphics system.

In Figure 10.3 we show the images generated by activating the clipping to the front
and back planes, respectively, when the view volume intersects the scene model.
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10.2 Taxonomy of projections

In this section we discuss in depth the classification of projections established in the
military and engineering schools since the early times of descriptive geometry in the
Napoleonic age.! In particular, we aim to discuss how to define the set of vector
parameters that we collectively called view model, in order to obtain some well-specified
kinds of projection.

10.2.1 Perspective

As we already said, perspective projections are classified depending on the attitude
of viewplane with respect to the reference frame. In particular, the viewplane can be
either parallel to some coordinate plane, or parallel to some coordinate axes, or in a
general position. Correspondingly, the generated projection is said to be either 1- or
2- or 3-point perspective. Some examples of such projections from the art history are
given in Figure 10.4. The corresponding perspectives of the standard cube built on
the vectors of the Cartesian basis are shown in Figure 10.5.

Figure 10.4 (a) Piero della Francesca, The Baptism of Christ, 1459, National
Gallery, London (b) Raffaello, The Carrying of Christ (Pala Baglioni), 1507,
Borghese Gallery, Rome (¢) Caravaggio, The Crucifizion of Saint Peter, 1600, Cerasi
Chapel, Santa Maria del Popolo, Rome

l
e E—

Figure 10.5 Central (1-point), accidental (2-point) and oblique (3-point)
perspective

1 Gaspard Monge (1746-1818) was a teacher at the military school of Mézieres.
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One-point perspective

A central perspective is obtained when the viewplane is parallel to a coordinate plane.
In such a projection only one of the improper points of coordinate axes has finite
projection. In other words, the perspective has only one accidental point, also called
a vanishing point, so it is often called 1-point perspective.

Notice that in this projection the images of parallel straight lines which are also
parallel to one of two coordinate axes remain parallel. The images of lines which are
parallel to the coordinate axis perpendicular to the viewplane, conversely converge in
the vanishing point. This effect is actually visible only when the scene to be projected
is parallel to the reference frame.

| 1O ol

Figure 10.6 View models for one-point perspectives with center of projection set
on the ground (VRP, = cop, = 0)

oo ;

Figure 10.7 Central perspectives from the directions of coordinate axes

7 [

Two-point perspective

When the viewplane is parallel to a coordinate axis we obtain an accidental perspective.
In such a projection two of the improper points of coordinate axes have finite
perspective. In other words, the accidental perspective has two vanishing points for
the coordinate axes. This projection is also called 2-point perspective.

The parallelism of the bundle of coordinate axis parallel to view plane is conserved
by the projection. The images of lines in the two bundles parallel to the other two
axes, instead converge in two finite vanishing points.

Such two vanishing points define the horizon line on the view plane. This line
contains the perspective of the improper points of every bundle of lines parallel to the
ground plane z = 0. The horizon line is the perspective of the line at infinity of the
bundle of planes parallel to the ground.
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Figure 10.8 Accidental perspectives: (a) VRP on the ground (b) VRP above of the
ground

Three-point perspective

The more realistic type of perspective picture is obtained by the 3-point perspective,
where all improper points of coordinate axes have finite projection.

Such a projection is also called “with sloping cadre” or oblique perspective or
photographic perspective, since it reproduces the behavior of the camera, that can
be placed in any position and with any orientation with respect to the scene when
taking a picture.

Figure 10.9 Two oblique (photographic)

erspectives

il

Remarks In order to generate well-specified types of perspective it may be useful
to take into account the following points:

1. If the viewplane is vertical, i.e. parallel to the z-axes, and VRP, = cop, = 0,
then the horizon line coincides with the ground line (see Figure 10.6). The
first one is the image of the line at infinity of the plane bundle parallel to
z = 0; the second one is the intersection of the viewplane with z = 0.

2. To force the non-coincidence of horizon and ground lines, it is necessary to
put the camera’s target above the ground, i.e. to have VRP, # 0. Usually
VRP is set equal to the viewer’s height.

3. It is very easy to specify the kind of perspective if COP is given in the wc3’
system. In particular, the perspective is central if only one component of
COP is not zero; it is accidental if two components are non-zero; it is oblique
(photographic) if they are all non-zero.

Interior perspective In Figure 10.10 we show two perspective pictures from outside
and inside our usual scene. In order to obtain an image of the interior of the scene
without inducing some overturning of the visual cone relative to the scene part on the
viewer’s back, it is necessary to activate the scene clipping at the front plane, often
coinciding with the viewplane, or very close to it.
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Figure 10.10 Perspective inside the scene, clipped to the front plane

10.2.2 Parallel

We remember that a projection is said to be parallel when the center of projection
is improper. This implies that the projecting lines are a bundle of parallel lines. The
parallel projections are classified as either orthographic or axonometric.

Orthographic

A parallel projection is said to be orthographic when (a) the projection plane is a
coordinate plane, and (b) the direction of projection is parallel to the orthogonal
coordinate axis.

Clearly, there are only three different orthographic projections. The projection from
the direction of z-axis is called the plan view or planimetry. The projections from the
directions of z-axis or y-axis are called either front view or side view depending on
the orientation of the scene with respect to the reference frame.

In every case, the viewplane normal must be parallel to the direction of projection.
The easiest choice is to set VPN = DOP.

In all sorts of parallel projections, the generated image does not depend on the
choice of the VRP. In fact, because the parallelism of projecting lines, the projected
image is the same on each element of a bundle of parallel planes. For the sake of
simplicity we choose VRP = ( 0 0 O )T.

Multiple orthographic

A multiple orthographic projection, where either two or three orthographic projections
are simultaneously generated and assembled, is known as Monge’s projection, after
Gaspard Monge, one of the inventors of descriptive geometry at the beginning of XIX
century. In his work, every 3D geometric element, i.e. points, curves and surfaces, is
described by two or more corresponding orthographic projections.

The reader should notice, from the view model of Figure 10.11c, that the plan view
of a Monge’s projection has the image of y-axis vertical but oriented downwards.
Consequently, the image of z-axis is horizontal but oriented towards left. In 2D
graphics we are conversely used to see such axes upwards and from left to right,
respectively. This effect is obtained simply by setting vuv = ( 0 -1 0 )T.

In most graphical user interface of CAD systems, such multiple orthographic
projections are used together with a further view of the scene or object at hand. Usually
some orthogonal axonometric projection, described in the following sections, is used for
this purpose, as shown in Figure 10.11. That picture, as well most of the images of this
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Inn

Figure 10.11 Monge’s orthographic projections, and axonometric projection

section, was produced by using the solid modeler Minerva, developed at the University
of Rome “La Sapienza” by the CAD Group in second part of 10980s [PRS89, PM89).
Minerva was, to the knowledge of the authors, the first solid modeler implemented
on a personal computer, since it worked on the IBM PC in ‘86 and on the Apple
Macintosh in ‘87.

Axonometric

All the parallel projections that use projection planes which are not normal to a
coordinate axis are called axonometric projections. They are classified into two main
classes, depending on the existence or not of a parallelism between the direction of
projection and the viewplane normal. The first ones are called orthogonal axonometric
projections; the second ones are called oblique axonometric projections.

Ny
DOP = VPN = | mny
Ny
m .
Ng = cos(g—ozx) = sinag
m .
ny = cos(g—ay) = sinaq,
. ™ .
Sy n, = cos(g—az) = sina,

Figure 10.12 Geometric model of the orthogonal axonometric projection

Orthogonal axonometric When the direction of projection is orthogonal to the
viewplane the projection is called orthogonal axonometric projection. In this case the
DOP and VPN vectors are parallel by definition, and often are set equal each other. In
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the history of graphics techniques three standard orthogonal axonometric projections
are well defined. They are called respectively:

1. isometric projection
2. dimetric projection
3. trimetric projection

depending on the relationship between the sizes of the projected images of the
Cartesian basis of the wc3 system, as discussed in the following.

Geometry of orthogonal projections In Figure 10.12 we give a conceptual model
of geometry of orthogonal axonometric projections, where the axis OO’ is directed as
the DOP vector, and where the projection plane is chosen as passing for points P, @
and R. Notice that O’ is the projection of the origin, and that O'P, O’Q and O'R are
the images of the reference system on the viewplane.

It is easy to verify that a unit vector n parallel to OO’ has components
( cos B, cosfBy, cosp, )T, where 3., 3, and 3, are the angles between n and the
Cartesian axes. We remember from analytic geometry that such numbers are called
director cosines of the plane. If we consider the right-angled triangles OO’ P, OO’Q
and OO'R and the angles o, = § — 3, ay = 5 — 3, and o, = § — (3;, that the
projection plane makes with the axes, then we can conclude that in any orthogonal
axonometric projection:

sin a,
DOP = VPN =n = | sinaq,
sin o,

Isometric orthogonal projection This axonometric projection get its name from
the fact that all the images of unit basis vectors have the same size (from iso = same,
and metric = measure, size). The image of any pair of reference axes also includes the
same angle of 120°.

We could actually distinguish between eight different orthogonal isometric
projections, one for each octant where to choose the direction of projection. Anyway
the standard isometric projection is that with n, = n, = n, > 0. For this projection
we have:

Qy = ay = a, = 35°20/,

but in this case it is certainly easier to choose DOP = VPN = ( 1 11 )T.

The orthogonal isometric projection is largely used both in mechanical and in
architectural drawings. It may sometimes be a little confusing, because the projection
of the standard cube appears as a regular hexagon. An example of isometric orthogonal
projection is given in Figure 10.13.

Dimetric projection The name dimetric is used because the projections of the unit
basis vectors have two different sizes. From some handbooks of drawing techniques we
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Figure 10.14 Dimetric orthogonal projection

get the values of the director angles of the projection plane, i.e. the angles between
this plane and the coordinate axes, for the dimetric projection:

a, =19°32, a, =61°50', a, =19°32".

Actually there is an infinite number of different dimetric projections; the one given
above should be more properly called the standard dimetric projection. An example is
given in Figure 10.14.

Figure 10.15 Trimetric orthogonal projection

Trimetric projection The trimetric projection is so called because the projections
of the unit basis vectors have three different sizes. Clearly, there are infinite trimetric
projections, each one obtained by choosing any DOP and any non-parallel VPN. The
standard trimetric projection is obtained by the following values of director angles:

ay =27°30",  a, =60°30, a,=9°50'

The trimetric projection of our usual scene model is shown in Figure 10.15.

Oblique axonometric The axonometric projections where the DOP vector is
not normal to the projection plane are called oblique projections. As an obvious
consequence of this definition, DOP and VPN cannot be equal nor parallel. Some special
types of oblique projection are often used. In particular:
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1. cavalier® projections are oblique projections where the view plane is parallel
to a coordinate plane;

2. military cavalier projections are isometric cavalier;

3. cabinet projections are dimetric cavalier.

The cavalier projections are largely used by European architects. They are easy to
draw with the traditional draftsman tools, since these projections do not change
the geometric figures that lie on planes parallel to a coordinate plane. The cabinet
projection is also quite realistic. Last but not least, such projections may be directly
used in a workshop or building yard since they represent exactly the plan or front
views of the artifact.

Figure 10.16 Geometric model of the cavalier projections

In every cavalier projection, the images of two Cartesian basis vectors have unit size
and enclose a straight angle. This a consequence of the fact that a parallel projection
on a plane of two parallel segments does not change either their sizes or their angle.

Hence, if we choose a projection plane at unit distance from the origin, then the
number |O’R|, i.e. the size of the projection of the unit segment OR (see Figure 10.16),
determines the projection type. In particular, an isometric cavalier is generated when
|O'R| = 1, otherwise a dimetric cavalier is obtained. This is called a cabinet projection
when |O'R| = 1.

Also, it becomes very easy to specify the DOP vector. Looking at Figure 10.16, we
may assume

|O'R| cos
DoP = | |O'R|sind |,
1

where § is the angle between the projections of x and z axes.

Notice that there are oo? different cavalier projections, when the orientation of the
projection plane is fixed, since they depend on the angle § and on the number |O’R].
Both military cavalier and cabinet projections are parametrized by the § angle.

Military cavalier In this kind of projection the projection plane is parallel to a
coordinate plane, usually the z = 0 plane.

2 From the Italian mathematician Bonaventura Cavalieri (1599-1647), fellow of Galileo.
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Here the DOP vector has an angle a, = 7 to the z-axis, so that the projection of e3
basis vector results of unit size. The images of e; and es have also unit size because
of their parallel projection on a parallel plane. Al we already said, a military cavalier
projection is isometric.

The more common military projections, called standard and shown in Figure 10.17,
have angle § of the image of xz-axis to the vertical line equal to 30°, 45° and 60°,
respectively.

Figure 10.17 Left, centered and right standard military projections

Standard military projections are often used in architecture and interior decoration.
In these applications an orientation of the picture different form the standard one may
be needed. Such a requirement is easy to satisfy. The picture orientation of Figure 10.17
is given by VUV = eg; the orientations in Figure 10.18 and Figure 10.19 are generated
by VUV = —ey and VUV = ey, respectively.

e WV oms Vo

Figure 10.18 Standard military projections with vov = —es

Side and front cavalier Two very unusual and interesting military projections
may be generated by choosing the DOP vector in a coordinate plane. The effect of such
projections is a proper assembling of plan view and either front or side views, with no
deformation or scaling. Such projections, shown in Figure 10.20, are sometimes used
by architects, mainly in interior decoration drawings.

To understand the pictures generated by such projections we must look at the
images of basis vectors. They appear as shown in Figure 10.20b. In particular, the
image of es is parallel to the image of either e; or es, respectively, but has opposite
orientation. The images of e; and ey are neither scaled nor change their angle, since
the projection plane is parallel to their plane.

It is interesting to notice, by looking at Figure 10.20a, that it is possible to
reconstruct all the measures of our scene model from such projections, assuming that
each one of the small squares on the ground plane has unit side. The PLaSM coding of
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) (=
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Figure 10.19 Standard military projections with vUv = e2 and DOP in third and
first octant, respectively

v
i
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Figure 10.20 (a) Front and side military projections, with DOP in the zz and yz
plane, respectively (b) Projected images of basis vectors

such a model is actually given in Section 10.8.

] AN
-

Figure 10.21 Standard cabinet projection with vertical viewplane

Standard cabinet As we know, in every cavalier projection the viewplane is parallel
to a coordinate plane. Hence the images of the two basis vectors spanning this plane
have unit size. In a cabinet projection, the DOP vector is chosen in such a way that
the image of the basis vector parallel to VPN gets size %

For each given attitude of the viewplane there is an infinite number of different
cabinet projections. The so-called standard cabinet has VPN = ey, size % of the ey
image and angle 45° from this one to the horizontal line. A standard cabinet projection
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is shown in Figure 10.21.

Example 10.2.1 (Standard view models)

A detailed definition of all significant standard viewmodels is given in Script 10.2.1,
according to the PHIGS specification, i.e., with vrp, vpn, vuv given in WC3, and prp,
window, front and back given in VRC.

Notice that the arc function produces an argument conversion from degrees to
radians. The onepoint, twopoints and threepoints definitions produce perspective
view models, whereas all the other definitions clearly produce parallel view models.

Use examples of such models and the display of produced projections, exported as
Flash files, are given in Figure 8.11 and Script 8.5.22, respectively.

Script 10.2.1 (Standard view models)

DEF ViewModel (vrp, vpn, vuv, prp, window::IsSeq; front, back::IsReal)
= < vrp, vpn, vuv, prp, window, front, back >;

DEF arc (degrees, cents::IsReal) = (degrees + cents/60) * PI / 180;

DEF onepoint = ViewModel: <<0,5,4>, <1,0,0>, <0,0,1>, <0,0,35>,
<-1,-1,1,1>, 0, -1 >;

DEF twopoints = ViewModel: <<0,0,4>,<3,2,0>,<0,0,1>,<0,0,35>,
<-1,-1,1,1>, 0, -1 >;

DEF threepoints = ViewModel: <<0,0,4>,<3,2,1>,<0,0,1>,<0,0,35>,
<-1,-1,1,1>, 0, -1 >;

DEF orthox = ViewModel: <<0,0,0>,<1,0,0>,<0,0,1>,
<0,0,1>,<-1,-1,1,1>,1,-1 >;

DEF orthoy = ViewModel: <<0,0,0>,<0,1,0>,<0,0,1>,
<0,0,1>,<-1,-1,1,1>,1,-1 >;

DEF orthoz = ViewModel: <<0,0,0>,<0,0,1>,<0,-1,0>,
<0,0,1>,<-1,-1,1,1>,1,-1 >;

DEF isometric = ViewModel: <<0,0,0>, AA: (SIN arc):<<35,20>,<35,20>,
<35,20>>, <0,0,1>, <0,0,25>,<-1,-1,1,1>,1,-1 >;

DEF dimetric = ViewModel: <<0,0,0>, AA:(SIN arc):<<19,32>,<61,50>,
<19,32>>, <0,0,1>,<0,0,25>,<-1,-1,1,1>,1,-1 >;

DEF trimetric = ViewModel: <<0,0,0>, AA:(SIN arc) :<<27,30>,<60,30>,
<9,50>>, <0,0,1>, <0,0,25>,<-1,-1,1,1>,1,-1 >;

DEF centralCavalier = ViewModel: <<0,0,0>,<0,0,1>,<-1,-1,0><0,-1,1>,
<-1,-1,1,1>,1,-1 >;

DEF leftCavalier = ViewModel: <<0,0,0>,<0,0,1>,<-1/2,SQRT:3/-2,0>,
<0,-1,1>,<-1,-1,1,1>,1,-1 >;

DEF rightCavalier = ViewModel: <<0,0,0>,<0,0,1>,<SQRT:3/-2,-1/2,0>,
<0,-1,1>,<-1,-1,1,1>,1,-1 >;

DEF cabinet = ViewModel: <<0,0,0>,<0,1,0>,<0,0,1>,
<SQRT:2/-4,SQRT:2/4,1>,<-1,-1,1,1>,1,-1 >;

DEF xCavalier = ViewModel: <<0,0,0>,<0,0,1>,<0,-1,0>,
<0,-1,1>,<-1,-1,1,1>,1,-1 >;

DEF yCavalier = ViewModel: <<0,0,0>,<0,0,1>,<-1,0,0>,
<0,-1,1>,<-1,-1,1,1>,1,-1 >;
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10.3 Hidden-surface removal

The photorealistic rendering of 3D scenes requires (a) the hidden-surface removal from
the scene; (b) the color shading of visible surfaces depending on position, intensity,
color, shape and orientation of lighting sources as well as on reflectance properties of
surface materials; and (c) the texture mapping on 3D surfaces of a proper projective
image of some 2D picture of material they are made. All such three points greatly
enhance the realism of computer rendering of the modeled scene or object. Methods
and algorithms for hidden-surface removal, illumination, color shading and texture
mapping are the subject of this section and the subsequent sections of this chapter.
Without loss of generality we suppose the geometry of the scene is described as a set
of 3D polygons.

10.3.1 Introduction

The hidden-surface removal (HSR) is a major step in realistic graphics rendering of
3D scenes. It is usually assumed the the objects in the scene are dull, so that they
cannot be traversed by light rays. As a consequence, not all parts of an object, as well
as not all objects in the scene, are visible to the viewer. It is customary to distinguish
between direct (or internal) and indirect (or external) wvisibility.

In recent years, when speaking of hidden-parts removal, we usually mean the removal
of hidden-surfaces, more than the removal of hidden lines, i.e. of the portions of
the boundary edges which are not seen by the viewer, depending on the greater
practical importance of raster graphics with respect to vector graphics. Anyway, some
algorithms used for removal of hidden-surfaces may be also used to remove their
boundary edges.

Even the computation of shades generated by a given assignment of light sources
may be reduced to the solution of a set of HSR problems.

Taxonomy of algorithms The algorithms for HSR are usually classified, following
the early survey [SSS74] by Sutherland, Sproull and Schumacker, into two classes:3

1. object space (or exact) algorithms, where the problem is solved using real
coordinates, usually in NPC;

2. image space (or approzimated) algorithms, where the computation is done
in integer coordinates, usually in DC3, while rasterizing the picture with a
resolution dependent on the available quantity of video RAM.

The first approach was used when using vector devices like pen plotters, which today
have disappeared from the market. The second kind of approach is the standard
nowadays with raster devices, and is usually implemented in firmware on graphics
cards.

It is easy to see that a set of n polygons may produce, in the worst case, a hidden-
surface removed scene with O(n?) visible polygon parts. An optimal algorithm with
quadratic complexity is given in [McK87].

3 Foley and others [FvDFH90] refer to such two classes as object-precision and image-precision
algorithms, respectively.
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10.3.2  Pre-processing

Interactive visualization of large geometric data sets with high depth-complexity has
long been a major problem within computer graphics. In particular, to efficiently solve
the HSR problem always requires some pre-processing, including

hierarchical graph culling;
perspective transformation;
view volume clipping;
back-face culling;

occlusion culling.

The word culling stands for something picked out from others, especially something
rejected because of inferior quality. The root is from Latin colligere.

The aim of the above computations is to reduce the dimension of input, i.e. the
number of processed polygons, while at the same time reducing the complexity of
fundamental tests performed on each projected polygon.

Graph culling and view-volume clipping If the viewpoint is close or inside the
scene, so that only a data subset is actually visible, then it becomes highly useful to
discard the scene portion outside the view-volume. This clipping is mandatory when
the viewer is positioned inside the scene data, in order to prevent the projection of
polygons on the viewpoint’s back.

It is often possible to distinguish between a gross and a detailed clipping to the view
volume.

A gross clipping is performed when traversing the hierarchical scene graph (or
structure network — see Section 8.2), and is usually called hierarchical graph culling.
It is implemented as an intersection between the containment boxes of the current
subgraph and the view volume. If such boxes have an empty intersection, then traversal
of the subgraph stops. Otherwise, recursive traversal continues. In order to perform a
graph culling the containment box of subgraph data must be stored and maintained
in each graph node.

The view-volume clipping is executed only on the data which passed the graph
culling previously described. Such detailed clipping is performed using either NPC or
DC3 coordinates, depending on the architecture of the whole rendering pipeline.

It may be useful to notice that the performance of a 3D browser of textscvrml
data is strongly improved when the “world” description is enriched with information
regarding the bounding boxes of world elements. Also, depending on the graph culling,
the animation of a “walk-through” in a complex architectural scene may be much faster
than the presentation of the whole scene from an external viewpoint.

Perspective transformation To remove the hidden-surfaces of a scene requires
discovering the polygons or their parts which are unseen from the viewpoint position.
A wisibility test on pairs of points must be often performed for this purpose. This may
be defined as follows:

1. given two points p and g, discover if they are aligned with the viewpoint o;
2. given three aligned points p, g and o, determine if either p or g is closer to o.
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A simple geometric approach to visibility test requires computing if
(p—o0)x(g—0)=0, (10.1)

i.e. verifying that three 2 x 2 determinants are zero, and then testing if p is closer to
o than q:

lp—o| <|g—o (10.2)

i.e., in components:
(mp - xo)Q + (yp - yo)2 + (Zp - Zo)2 < (xq - xo)Q + (yq - yo)2 + (Zq - 30)2-

It is very useful, from a computational viewpoint, to perform the visibility test
using NPC coordinates where the perspective transformation, already discussed in
Section 9.2.6, has been included in the 3D pipeline.

Using such coordinates, the visibility test is algebraically reduced to the following
much simpler formulation, where the condition

Tp =2 and yp =1y,
is tested rather than equation (10.1), and the condition
zp < 2q,

is tested rather than equation (10.2).

Clearly, only two numeric comparisons are executed for the first point, rather than
the computation of three determinants, and just one comparison is executed for the
second point rather than 6 products, 6 differences and four additions.

Netscape: Netscape:

Figure 10.22 Viewing pipeline: (a) scene and view volume in world coordinates
(we3); (b) in view reference coordinates (VRC); (c¢) in normalized projection
coordinates (NPC) before perspective transformation

Hence, when using NPC or DC3 coordinates, the z coordinate may correctly be called
perspective depth of points and used to directly compare the relative position of two
points respective to the viewer when they have the same x and y coordinates. Last
but not least, this approach allows for a unified treatment of perspective and parallel
projections when removing the hidden-surfaces of the scene. Some images from the
viewing pipelines are given in Figure 10.22.
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Back-face culling This operation removes the surfaces of solids which cannot be
seen because they reflect or diffuse the light rays in directions that cannot reach the
viewer’s eye. Such polygons are called back-faces. Their external normal gives an angle
greater than 7 to the DOP or COP vectors.

Let us consider that the viewpoint is mapped, by the perspective transformation, to
the point at infinity of z-axis. Assuming a right-handed NPC system, the back-faces are
easily recognized depending on the negative sign of the z-component of their external
normal. This is a further computational benefit of perspective transformation.

The HSR problem is hence easy to solve for single and convex objects in NPC or DC3
coordinates. In such case it is sufficient to cull away the polygon faces whose external
normal 7 gives an angle greater than 7 to the view direction, i.e. to the z-axes. It is
easy to see that this condition is satisfied when n, < 0.

Therefore, given a data set of complexity measured by the number n of uniformly
distributed faces, it is possible to assert that an average number § of polygons is
removed by back-face culling. If the scene contains only one convex object, then the
back-face culling completely solves the visibility problem. Some examples of this fact
are given in Figure 10.23.

Example 10.3.1 (Back-face culling)

An example is given here of a PLaSM program generating a convex solid by intersection
of three rotated instances of another convex solid. The generating function is called
Jewel in Script 10.3.1. The three intersected instances are subject to a rotation of

a = 7 about an axis of the reference frame. The Jewel operator is used twice, so

generating the convex2 and convex3 objects, starting from the translated unit cube.

Script 10.3.1 (Back-face culling)
DEF Jewel (arg::IsPol) = argl & arg2 & arg3
WHERE
argl = R:<2,3>:(PI/4):arg,
arg2 = R:<3,1>:(PI/4):arg,
arg3 = R:<1,2>:(PI/4):arg
END;

DEF convexl = T:<1,2,3>:<-0.5,-0.5,-0.5>: (CUBOID:<1,1,1>);
Jewel:convexl;

DEF convex3 = Jewel:convex2;

DEF convex2

The pictures resulting from hidden-surface removal by back-face culling of the
geometric values obtained by evaluating the symbols convex1, convex2 and convex3
are shown in Figure 10.23.

Occlusion culling Although graphics hardware has improved greatly in recent
years, advances have not been able to keep up with the rapid growth of model
complexity. Occlusion culling is a popular technique for reducing the number of
polygons to be processed by the rendering engine by culling away those portions of
the geometry which are hidden from the viewer by other geometry.
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Figure 10.23 Hidden-surface removal via back-face culling

An interesting and simple approach to this problem was recently presented by
Bernardini and others [BKES00]. In a pre-processing stage, they approximate the
input model with a hierarchical data structure and compute simple view-dependent
polygonal occluders to replace the complex input geometry in subsequent visibility
queries. When the user is inspecting and visualizing the input model, the computed
occluders are used to avoid rendering geometry which cannot be seen.

Their Directional Discretized Occluders (DDOs) approach, as most of techniques
to accelerate the rendering, involves a pre-processing phase where an object-
space hierarchical data structure — an octree in their current implementation, see
Section 13.2.2 — is generated. The actual scene geometry is stored with the leaf nodes
of the octree, and nodes are recursively subdivided so that a bounded number of
primitives per leaf node is obtained. Each square, axis-aligned face is a view-dependent
polygonal occluder that can be used in place of the original geometry in subsequent
visibility queries.

When the user is inspecting and visualizing the input model, the rendering algorithm
visits the octree data structure in a top-down, front-to-back order. Valid occluders
found during the traversal are projected and added to a two-dimensional data
structure. Each octree node is first tested against the current collection of projected
occluders: if the node is not visible, traversal of its subtree stops. Otherwise, recursion
continues and if a visible leaf node is reached, its geometry is rendered.

This method has several advantages which allow it to perform conservative visibility
queries efficiently and it does not require any special graphics hardware.

10.3.8 Scene coherence

Before analyzing a few paradigmatic HSR algorithms in some detail, it is worth
discussing the scene coherence relationship used to increase the efficiency of most
object-space algorithms.

For this purpose, let consider a simple scene with two sole objects, i.e. two sole space
polygons. We want to understand under what conditions the viewpoint may see both
polygons, or better, under what conditions none of them may cover the other making
it (or some its parts) non-visible from the viewpoint. The aim is to find some formal
conditions allowing dividing the HSR problem into subproblems that can be solved
independently.

Visibility relation Given a pair of 3D polygons, every plane such that the polygons
lie in different halfspaces is called separation plane of such polygons. We define as
follows a binary wvisibility relation <1 on the set of 3D polygons:
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Figure 10.24 Three possible arrangements of two polygons and a separating plane

Definition The notation a <1 b, where a and b are polygons, means that “a cannot
cover b” with respect to viewpoint. We state that

a<b

if there exists a separation plane that either (a) contains the viewpoint or (b) has a
and the viewpoint in opposite halfspaces.

We can read the expression a <1b as “a not covers b”, or better as “a beyond b —
clearly with respect to viewpoint. First of all, let remember that in NPC the viewpoint
is coincident with the point at the infinity of the z-axis. Then consider that, given
two polygons p, ¢ and a separation plane II, there are three possible cases, as shown
in Figure 10.24:

1. the plane II contains the viewpoint, i.e. is parallel to the z-axis;
2. the viewpoint lies in the same halfspace of p;
3. the viewpoint lies in the same halfspace of q.

Hence, in case (1) we have both p <1 ¢, and ¢ <1 p; in case (2) we have ¢ <Ip; in case (3)
we have p < q.

Visibility graph Let a scene description as a set of space polygons be given, and also
suppose that a viewpoint position has been fixed. The graph of the visibility relation
on a set of space polygons is called the wvisibility graph. Unfortunately the visibility
relation is not a partial order. In fact, in general it is neither antisymmetric nor
transitive. Anyway, the object-space algorithms must normally compute some partial
ordering of polygons, according to such relation. To make the relation antisymmetric
is easy. For any double pair a <b and b < a it is just sufficient to choose one pair. It is
more difficult to make the relation transitive. For this purpose it is necessary to “open
the cycles” of the kind a <b < ¢ < a. In this case it is sufficient to fragment a polygon
within the visibility cycle, e.g. as shown by Figure 10.25.

Figure 10.25 Opening a cycle in the beyond relation by fragmenting a polygon

A total ordering derived from the visibility graph is called depth ordering, and the
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relative constructive algorithm is called depth sort. It often constitutes an important
point of exact solutions to HSR, problem.

Depth-sort

HSR algorithms in object-space are strongly based on the visibility relation, also
called object coherence [FvDFHO90], that is used to depth-sort [NNS72] or to depth-
merge [SPGR93] the scene polygons, and on the subsequent rendering the polygons
either in back-to-front or in front-to-back order, as discussed by the following
subsections.

The so-called depth-sort, also known as Newell’s algorithm, is actually due to Newell,
Newell and Sacha [NNS72]. It is one of best known approaches to HSR problem.

On the set of polygons which results from pre-processing steps seen in Section 10.3.2,
this algorithm computes a depth ordering and then generates the resulting picture by
back-to-front rasterization.

Such a depth ordering is not exactly a sort on z, because each polygon is a set with
infinite points, usually with variable z. More precisely, it is a total ordering compatible
with the visibility relation previously discussed, so that it takes the name of depth-sort.

A black-box description of depth-sort follows:

1. (Input) culled, clipped and NPC-mapped but unordered scene polygons;
2. (Output) depth-ordered scene polygons.

Such an algorithm is based on a set of nested tests used to check the pairs of a
preliminary total ordering of polygons produced by a z-sort. It may be described as
constituted by two main steps, called pre-sort and depth-sort, respectively.

Let us denote with s, sy, s, the -, y- and z-extensions of the s polygon, i.e. the
polygon projections upon the coordinate axes, and with hs the plane of s.

Sorting on z The polygons of the scene are preliminary ordered on the values of
their minimal z coordinate. Any kind of sorting algorithm may be used for this aim.

Depth-Sorting The algorithm is a variation of a bubble-sort, where a quite complex
test is used to compare if the generic pair of polygons is either already ordered or not.

Let p be the polygon currently ordered, i.e. whose space position is currently
compared against those of polygons in the already ordered subset, according to the
usual strategy of bubble-sort. Let us also assume that p must be currently compared
against the ¢ polygon.

We formally describe in Script 10.3.2 the comparison test on the pair (p, ¢) by using
some pseudo-code.

The intersection tests on the coordinate projections of polygons are easily reduced
to number comparisons. For example,

(P N gz = 0) = (2maz (@) < 2min(P)) V (2maz (p) < 2min(q)), (10.3)

and so on for the other coordinates. When using a z-sort as pre-processing, the above
test may be simplified to the rightmost clause.
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Script 10.3.2 (Depth-Test)
Algorithm DepthTest (p, q :: IsPolDim :< 2,3 >)
{
ifp,Ng, =0, thenp<gq
else if p, Nq, =0 then p<iq
else if p, N g, =0 then p < g
else if o and p are into opposite halfspaces of h, then p < ¢
else if 0 and ¢ are into the same halfspace of h, then p < ¢
else if If p,, N ¢y =0 then p < g
else Swap(p, q)

The notation p,, and g, stands for the projection of p and ¢ in the zy plane,
respectively. To test if geometric objects o and p live in opposite halfspaces of the
plane hg, we may substitute a point into the plane, test for sign and multiply the signs
generated by two substitutions. If the result is 1, then the two objects live in the same
halfspace; if the result is instead —1, then they live in opposite halfspaces.

If the DepthTest also fails with respect to the converse pair (g, p), then none of the
two pairs may belong to the output ordering, because there is a cycle in the visibility
relation. So, it is necessary to fragment one of the two polygons, e.g. by using the
plane of the other for the cut.

Implementation

The depth-sort algorithm based on the Newell’s visibility test is implemented here. As
we know, the PLaSM language does its best when used in a declarative fashion. But it
can be also usefully employed to quickly prototype complex geometric algorithms, as
we show in this section.

There is a major difference between our implementation and the original formulation
of the algorithm previously discussed. Instead of using the above variation of the
bubble-sort, we make use of the SORT function already implemented in Script 2.1.30,
which is a proper applicative implementation of the standard merge-sort.

It is well-known [AU92] that a bubble-sort has a worst case complexity O(n?), when
its input is in reverse order. Conversely, the best behavior is reached when the input
is already ordered. The pre-sort in the z-direction is hence performed with the aim
of giving a quasi-ordered input to the proper depth-sort. Such pre-processing is not
needed when a merge-sort algorithm is used, whose performance is O(nlogn) for any
possible input.

Toolbox The geometric functions needed are given in Script 10.3.3:

1. mixedProd computes the mixed product a x b - ¢ of vectors a, b and c;

2. box_int:i:<p, ¢> predicate computes the test of equation (10.3) between the
projections of polygons p and g along the i-th coordinate axis;

3. three_points returns the first three points from the first convex cell of (the
unique polyhedral cell of) its input polygon. Such points are used to make
geometric tests against the affine hull of the polygon;
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4. onPlane, given three points p;,p,,p; and a further point g, returns the
signed value of the mixed product of vectors

P> —P1, P3s—P1, 49— DP1-

This value is zero when g belongs to the affine hull of p;, py, p5; otherwise
its sign characterizes the set-membership of g to the affine halfspaces;

5. plane_vs_points returns the product of signs of numbers generated when
checking two points for set-membership with a plane.

Few vector functions are also used, which are not collected here, including vectDiff,
vectProd and innerProd. They were discussed in Chapter 3. The SORT function is
defined in Script 2.1.30.

Script 10.3.3 (Toolbox)
DEF mixedProd (a,b,c::IsVect) = a vectProd b innerProd c;

DEF box_int (coord::IsInt) (p,q::IsPol) = OR:<
GT: (MAX:coord:p) : (MIN:coord:q),
GT: (MAX:coord:q) : (MIN:coord:p) >;

DEF three_points (polygon::IsPol) =
(APPLY ~ [CONS ~ AA:SEL ~ [S1,82,S3] ~ S1 ~ 82,S1] ~ UKPOL) :polygon;

DEF onPlane (p1,p2,p3::IsPoint)(q::IsPoint) =
(mixedProd ~ AA:vectDiff ~ DISTR): <<p2,p3,q>, pl>;

DEF plane_vs_points (a,b::IsFun;p::IsPoint) =
* ~ AA:(SIGN ~ APPLY) ~ DISTL ~ [onPlane ~ a,[S1 ~ b, K:pl];

Newell’s pre-sort The pre-processing step is not mandatory in our implementation,
but it is given anyway, to stress the pattern of use of the SORT operator with different
predicates. In this approach the input polygons are paired with their minimum z
values, and the pairs are then sorted using the z_pred predicate to check if the generic
couple of pairs is either already ordered or not.

Script 10.3.4 (Pre-sort)
DEF z_pred (a,b::ispair) = GT:(82:a):(82:Db);

DEF presort (polygons::IsSeq0f: (IsPolDim:<2,3>)) = (S1
~ TRANS
~ SORT:z_pred
~ TRANS
~ [ID,AA: (MIN:3)] ): polygons;
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Visibility test The depth_test predicate given in Script 10.3.5 is a direct
translation of the Newell’s visibility test on 3D polygon pairs already discussed. It
is written as a sequence of five cascaded tests, and works assuming that there are no
cycles in the visibility relation. We also assume that there are no intersections between
polygons. This assumption is certainly true when they came from the boundary of
non-intersecting solid bodies.

For sake of numerical robustness we enforce the precondition that pairs of polygons
cannot share any portion of their boundary. The satisfaction of this requirement is
guaranteed from the application of an explosion transformation, with parameters
slightly greater than 1, before the depth-sort. See the depth-sort definition in
Script 10.3.6.

Script 10.3.5 (Visibility test)
DEF depth_test = IF:< stepl, K:true, K:<> >

WHERE
stepl = IF:< box.int:3, K:true, step2 >,
step2 = IF:< box._int:1, K:true, step3 >,
step3 = IF:< box._int:2, K:true, step4 >,
step4 = IF:< (C:EQ:-1):(planevs_points:<q,p,0>), K:true, step5 >,

stepb = IF:< (C:EQ: 1):(planevs_points:<p,q,0>), K:true, K:<> >,
p = threepoints ~ 81,
q = three points ~ 82,
o=<0, 0, 1E6 >
END;

Depth-Sort A set of 3D polygons is extracted from the polyhedral scene by the
extract_polygons function, defined in Script 10.8.4. Then, before depth ordering,
such polygons are mutually disconnected by the function explode:< 1.001, 1.001,
1.001 > in order to put them in general position with respect to each other. The
inverse explosion transformation is applied after the ordering has been produced by
the depth_sort function.

The computational pipeline previously described is coded in Script 10.3.6 by the
function called depth_sort, which is applied to the input scene. Notice that the pre-
processing step is not mandatory in this approach. The explode function is given in
Script 10.8.6.

Script 10.3.6 (Depth-Sort)
DEF depth_sort (scene::IsPol) =
( explode:< 1/1.001, 1/1.001, 1/1.001 >
~ SORT:depth test
~ presort
~ explode:< 1.001, 1.001, 1.001 >
~ extract_polygons
): scene;
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The algorithm has been written as above for sake of readability and compactness. A
strong optimization of performance could be obtained, after the polygons extraction
from the scene and their separation through the slight explosion, by pairing each
polygon with its containment box and with the triplet of points used to construct its
affine hull.

10.83.4 Back-to-front and front-to-back

The algorithms that are depth-sort based may be classified depending on the order
of presentation of polygons on the output device. Both total orders generated from
depth-sort, from furthest to nearest to the viewpoint, and its reverse, are used.

Back-to-front presentation When the input polygons have been depth-ordered,
the Newell’s algorithm generates the hidden parts removed picture by rasterizing the
furthest polygon first. Then the second one in decreasing distance from the viewpoint
is rasterized, where this one may cover some parts of the previous, and so on, until the
polygon nearest to the viewpoint is presented on the device. When the presentation
of depth-ordered polygons is finished, the only scene portions seen from the viewpoint
are displayed. This strategy is called back-to-front presentation. Notice that a raster
device is needed to execute this algorithm. Such a strategy, requiring drawing some
picture areas more and more times, cannot be used on a vector device.

This method has some drawbacks. First, it can be used only with raster devices.
Second, although the rasterization is very quick, when storing or moving a picture
of a complex scene across a computer network, e.g. converted in Postscript, the size
of data may become a problem, especially when we consider that most of polygons
cannot be seen from the viewpoint.

Front-to-back presentation This name is given to the opposite strategy, where
the picture of the scene is generated by drawing the depth-sorted polygons starting
with the nearest polygon and ending with the furthest one.

In this case the whole first polygon is drawn and assumed as initial value of the so-
called apparent boundary of the scene, i.e. the current boundary of the picture. Such
an “occluder” is then subtracted from each following polygon in the depth-ordered
sequence. Each non-empty result of such subtractions is drawn, since it is visible from
the viewpoint. At the same time, the picture boundary is modified by union with
each drawn polygon fragment. This procedure, repeated for each element in the input
sequence, is described by using pseudo-code in Script 10.3.7.

This approach, which is perfect for vector devices, may also be used for presentations
on raster devices. When used before a Postscript conversion of a vectorized scene
picture, it may reduce some orders of magnitude the size of graphics data.

10.3.5 Binary Space Partition

The BSP algorithm removes the hidden parts of the scene by working in object
space and does not require any specialized hardware. It was often used to generate
animations in computer games (e.g. in the famous DOOM) as well as in real-time
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Script 10.3.7 (Front-to-back)
Algorithm Front-to-back (input :: IsSeqOf : (IsPolDim :< 2,3 >))
{

reverse the input sequence;

B :=0; (initialize the apparent boundary)

for each polygon p € input:

{

p=p—B;
draw or rasterize p;
B :=BUp;

}
}

walks-through architectural models.

This algorithm builds in a pre-processing step a specialized data structure, which
is a sort of spatial index. This binary tree is called Binary Space Partition tree, or
simply BSP-tree. Using this data structure, for each possible viewpoint position a
depth-ordering is generated in linear time with the number of polygons. Due to this
performance, the algorithm is sufficiently fast to allow the animation of quite complex
scenes using non-specialized graphics hardware.

It is worth noting — if the scene is static and only the observer is moving —
that the same BSP-tree may be used for ordering the polygons in all the possible
views. Furthermore, a new depth-order must actually be computed only when the
viewpoint leaves the current cell of the space partition induced by the BSP-tree.
Various subsequent frames of an animation can thus be rendered without computing a
new polygon ordering. Such a major property of computer animations was discovered
in the 1970s under the name of scene coherence.

Approach It may be useful to distinguish three main phases with the BSP-
algorithm:

1. construction of the BSP-tree;
2. BSP-tree traversal, with generation of a depth-ordering;
3. rendering of the sorted list of polygons.

So, the BSP-tree construction step is needed only once when the scene is static.
Conversely, a traversal of the BSP-tree is necessary for each space cell crossed by
the viewpoint trajectory, if any. If such a trajectory is predefined, then all the tree
traversals can be computed in advance with respect to the proper animation. The
rendering of the scene is clearly demanded by the 3D pipeline, and is not considered
part of the realm of HSR algorithms, because it is necessary to compute for each frame
the position of data in device space.

The BSP algorithm can be described in a dimension-independent way. We choose
this approach because it will allow us to discuss BSP-trees with reference to various
applications, including HSR, solid modeling, and representation of polygons, polyhedra
and geometric manifolds of higher dimensions.



394 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Definitions

Given a set of hyperplanes in Euclidean space E?, a BSP-tree defined on such
hyperplanes establishes a hierarchical partitioning of the E¢ space.

A node v of such a binary tree represents a convex and possibly unbounded region
of E% denoted as R,. The two sons of an internal node v are denoted as below(r) and
above(v), respectively. Leaves correspond to unpartitioned regions, which are called
either empty (OUT) or full (IN) cells. Each internal node v of the tree is associated
with a partitioning hyperplane h,, which intersects the interior of R,. The hyperplane
h, partitionates R, into three subsets:

1. the subregion Rg = R, N h, of dimension d — 1;

2. the subregion R, = R, N h, where h, is the negative halfspace of h,. The
halfspace h;, is associated with the tree edge (v, below(v)). The region R, is
associated with the below subtree, i.e. R = Ryciow(v);

3. the subregion R} = R, N h} where h} is the positive halfspace of h,. The
halfspace h; is associated with the tree edge (v, above(v)). The region R} is
associated with the above subtree, i.e. R} = Rapove(r);

For any node v in a BSP tree, the region R, is the intersection of the closed halfspaces
on the path from the root to v. The region described by any node v is:

R,= () he

e€E(v)

where E(v) is the edge set on the path from the root to v and h. is the halfspace
associated with the edge e.

Tree construction

The BSP pre-processing consists of the scene tree construction. Such construction is
executed in O(n?) in the worst case. Actually some heuristics are used to reach a near
O(n?) complexity, to the cost of some sub-optimal increasing of scene storage.

Algorithm The planes used are those which contain the scene polygons. The binary
tree is built inductively. The root plane v is suitably chosen and is associated with its
polygon. Such a root polygon p(v) is thus eliminated from the list of scene polygons.
This list is then split into two sublists associated with the above and below subtrees.
The first one contains the polygons in RJ; the second one contains the polygons in
R;;. Polygons which are crossed by v are split and their fragments are associated to
the proper subtree. Such process is repeated on each subtree until each sublist contains
just one element.

Analysis It is essential for pre-processing efficiency that each root plane is chosen in
such a way that (a) it crosses and splits the least possible number of polygons, so that
their total number grows as small as possible, and that (b) the generated above and
below subsets of polygons are relatively balanced, so that the subdivision process may
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continue over subsets of near half cardinality. If both such constraints are satisfied at
each step, then the algorithm works efficiently.

When the number of output polygons equates the number n of input polygons, such
pre-processing has a cost variable between O(n?), for a completely unbalanced tree,
and O(n?logn), for a perfectly balanced tree.

Actually, the total number of polygons may increase at each step depending on the
choice of the root polygon, so that some satisfying compromise between the storage
and time costs is heuristically searched.

Usually, each root plane is chosen in linear time, by comparing the size of the above
and below sublists associated with some fixed number, usually between 4 and 8, of
randomly chosen planes. Experimentally, this approach gives a pre-processing time
between O(n?) and O(nlogn), and a storage cost ranging between 1 and 4 times the
size of input data.

The paper [PY90] by Paterson and Yao gives an algorithm for efficient binary space
partitioning. It is efficient in the sense that, for an input space of n polygons, a naive
partioning scheme will result in a BSP tree of size O(n3) while this algorithm yields
paritions of size O(n?).

Tree traversal

Some kind of inorder traversal [AHUS3] is used to traverse a BSP tree. Remember
that, if a binary tree is a single node, then the node is added to the output list;
otherwise one of its subtrees is first traversed in inorder, then the root is processed,
then the other subtree is traversed in inorder.

The node processing consists in determining if the viewpoint is either in the above
or below subspace of the current plane. Such a processing is done in constant time,
by substituting the viewpoint coordinates in the plane equation, and looking for the
sign of the resulting number. Since the node processing requires a constant time, the
whole tree traversal requires a linear time.

Script 10.3.8 (Traverse back-to-front)
Algorithm TraverseB2F (v : BSPtree) {
if IsLeaf () then Output( v )
else {
if o € R} then {
TraverseB2F (below(v))
Output( v )
TraverseB2F (above(v)) }
else {
TraverseB2F (above(v))
Output( v )
TraverseB2F (below(v)) }

The descent ordering in the two subtrees may vary in each node, depending on the
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type of depth ordering to compute, which may be either back-to-front, say going from
the plane which is further from the viewpoint to the closest plane, or front-to-back,
say, going from the nearest to the more distant plane.

Back-to-front ordering According to the inorder traversal, if the node is a leaf,
then the associated polygon is put in the output list. Otherwise: (a) the viewpoint
position with respect to the current plane is evaluated; (b) the subtree associated
with the subspace which does not contain the viewpoint is traversed in inorder; (c)
the node is put in the output list, and (d) the subtree corresponding to the subspace
which contains the viewpoint is finally traversed in preorder.

The geometric idea used here concerns the visibility relation. As we already know,
no one polygon in the subspace which does not contain the viewpoint may cover the
polygons in the viewpoint subspace. The back-to-front traversal algorithm is given in
Script 10.3.8.

Front-to-back ordering If the node is a leaf, the polygon is put in the output list.
Otherwise: (a) the viewpoint position with respect to the current plane is evaluated;
(b) the subtree associated with the subspace which contains the viewpoint is traversed
in inorder; (c) the node is put in the output list, and (d) the subtree corresponding
to the subspace which does not contain the viewpoint is traversed in preorder. The
front-to-back traversal algorithm is described using pseudo-code in Script 10.3.9.

Script 10.3.9 (Traverse front-to-back)
Algorithm TraverseF2B (v : BSPtree) {
if IsLeaf () then Output( v )
else {
if o € R} then {
TraverseF2B (above(v))
Output( v )
TraverseF2B (below(v)) }
else {
TraverseF2B (below(v))
Output( v )
TraverseF2B (above(rv)) }

10.3.6 HSR algorithms in image-space

Image-space algorithms are traditionally classified according to the type of raster
subset they focus on. Three main classes are usually considered, respectively with
pixel-based algorithms (z-buffer and ray-casting), line-based algorithms (including
various scan-line algorithms), and area-based algorithms (including Warnock’s
algorithm and others). In the following of this section we only discuss the z-buffer
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algorithm, because some variation of this algorithm is adopted today by the totality
of 3D graphics accelerators.

z-buffer algorithm

A main aspect of this algorithm is that it does not need any preliminary ordering of
the scene polygons. The algorithm efficiency is strongly affected by this fact.

Input/output The input to the algorithm is the unordered set of 3D polygons of
the scene, already transformed in DC3 coordinates. The output is constituted by the
final contents of the frame buffer, which contains a rasterized picture of the scene parts
visible from the viewpoint.

Storage structures Two storage arrays are used, respectively denoted as frame-
buffer and z-buffer. Such arrays have the same number of rows and columns, and
their elements are associated to the pixels of the viewport on the display device.
The frame-buffer contains a color value, usually either a composite RGB value or an
index to some color look-up table. The z-buffer contains the discrete value of the z
coordinate associated to the centroid of the polygon portion represented on a given
pixel. Corresponding elements on the frame-buffer and on the z-buffer, say on the
same row and column, are associated to the same polygon portion.

Notice that the z-buffer elements hold integer numbers, in a range of values
depending on the number of bits per element, often equal to 24. Of course, the depth
resolution of the algorithm depends on the quantity of RAM available for the z-buffer.
This resolution may strongly affect the output quality when rastering 3D scenes of
high geometric complexity.

Algorithm The algorithm initialization can be distinguished from the algorithm
core. In the initialization step the frame-buffer is set to the background color, and
the z-buffer is set to the minimum representable value, in the hypothesis that a right-
handed frame is used for the DC3 coordinates. The view direction is that of positive z
axis.

In the algorithm core the scene polygons are rasterized in any order. Let us consider
the processing of the generic polygon. A covering with a discrete set of pixels at integer
DC3 coordinates is produced, and the discrete z for each pixel is also computed. Such
set of pixels give a minimal covering of the polygon image, but only a pixel subset is
usually stored, according to their current visibility from the viewpoint.

Each polygon is rasterized by rows. For each generated pixel we need to decide if
either it must be stored in the frame buffer and in the z-buffer, or not. Such a decision
is positive if the pixel already stored in memory at the same zy address (i.e. at the
same <column, row> pair) is further from the observer than the current pixel or vice
versa. It is considered further when the integer value stored in the z-buffer is smaller
than the z of the current pixel.

When all the scene polygons have been rasterized, the frame buffer will contain the
scene picture really perceived from the viewpoint.

The generic rasterization step requires the computation of the z coordinate of the
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current pixel starting from the known z of the previous pixel.

Let p, = (x,yx) be the current pixel, belonging to the y; row and to the xy
column of the device space. The z coordinate in p; and p;,,; pixels may be computed
by substituting the ordinate and abscissa of the two points into the plane equation of
their polygon:

axg + byy +czp +d = 0,
aTr4+1 + byr41 + ez +d =

In other terms:

1
2 = _E(d + axg + byk),
1
Zh41 = _E(d + azp41 + byk+1),
and hence
a
Az =241 — 2k = —E($k+1 — ) — E(yk+1 - Yk)-

But yx+1 —yx = 0 and xx41 — 2, = 1, so that

Zh41 = 2k + Az =z — a. (10.4)
c

By comparing 241 with the value already stored in position (241, yr+1) of z-buffer,
it is possible to decide whether to store the pixel depth zjy; or not. If the z value
is stored, then the pixel color is also computed and stored. For this purpose other
computations may be required, including normal interpolation and/or color shading,
as discussed in the following sections.

Analysis It may be interesting to note that, as shown by equation (10.4), the
computation of the z increment from the previous pixel only requires a subtraction by
a constant number. This algorithm, which is extremely simple, is easily implemented
in firmware on 3D graphics accelerators. Notice that the generation time of the hidden-
surface removed picture depends linearly on the average area of polygons and on their
number.

10.4 Illumination models

To generate realistic images by computer it is necessary both to remove the hidden-
surfaces of the scene and to render the visible ones by taking into account the physical
principles which regulate the diffusion and reflectance of light rays that incise on the
external surfaces of bodies in the scene to be rendered. In particular, we need to take
into account not only the geometry of the scene, but also some optical and physiologic
aspects related to the diffusion, reflection and perception of light.

In this section we aim to discuss how the surfaces reflect and diffuse the incident
light radiation. Let us first remember from optics that the light intensity incident on
the exterior of a body may be
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1. absorbed;
2. transmitted;
3. reflected, both diffusely and specularly,

in percentages that depend both on the body material and on the nature of the fixture
of its exterior surface.

Lighting models The terms “lighting” or “illumination models” are used to denote
the choice of some particular equation to compute the light intensity in a space point,
as a function of the intensity of the incident radiation and the geometric and physical
properties of the surface the point belongs to. The goal when using lighting models
is to compute the light intensity on the surfaces of the scene, given some assigned
distribution and configuration of light sources and some assigned material properties
of the surfaces.

Sources When we model a scene, we have to give both its geometry and some
suitable light sources. Such sources may be either set at infinity or at some finite
position. As a consequence, light rays will be either parallel or divergent, respectively.
Light sources may be geometrically shaped either as point sources or as distributed,
i.e. extended, sources. Depending on requirements, we may have scenes with only one
light source or with several sources. Also, we may imagine that the emitted light has
the same intensity in all the directions, or that a source shines in a preferred direction.
Such sources are called directional light sources.

Absorbed radiation The portion of incident radiation which is absorbed by a body
is transformed into heat and produces an increase in temperature. Notice that if the
body had absorbed all the incident light, then it would be not visible. Such perfectly
absorbent body is called “black body”. The absorbed radiation is not interesting for
our purposes, but it may be useful to note that different bodies do not absorb the
different wave lengths in the same way. For this reason the different materials look as
if they have different colors when exposed to the daylight.

Transmitted radiation The incident radiation is partly transmitted inside the
body when this is transparent. This case will not be considered in the remainder of
the text. On this point we will only discuss how to set the percentage of transparency
when stating the material properties in VRML.

Diffusely reflected radiation The diffuse radiation can be thought to be due to
the portion of incident radiation which is absorbed by the external layer of the body,
and then is uttered in all directions allowed by the position and orientation of the
external surfaces. We will see that, at least in computing the diffuse intensity using
the simplest diffusion model, it is not necessary to consider the viewpoint position,
since the body, in the case of perfect light diffusion, behaves exactly as an emitter
body.
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Specularly reflected radiation We may imagine that the specularly reflected
portion of the incident radiation does not traverse the external layer of the body,
but is directly reflected in the plane defined by the direction of the normal to the
surface in the considered point and by the direction of the incident light. In this
case we need to compute how much reflected intensity may geometrically reach the
viewpoint position.

10.4.1 Diffuse light

We know that the incident light on a opaque body may be partly diffused, partly
reflected and partly absorbed by the body. Let us consider the simplest lighting
model, where only the diffused light intensity is taken into account. The involved
vector quantities are shown in Figure 10.26, where we have

1. p = point on the body surface;

2. n = normal unit vector to the surface in p;

3. £ = direction of incident light, given by the difference between the source
position, supposed point-shaped, and p;

4. 6 = angle between vectors £ and n.

Lambert’s diffuse intensity The physical phenomenon is regulated by the
following Lambert’s cosine law. If a body is a perfect diffuser, then the diffused intensity
I4(p) from a point p of its surface is proportional to the incident light intensity and
to the cosine of the angle 6:

Ii(p) = Kqlycos b, (10.5)

where Iy is the light intensity incident in p. The factor Ky is called diffusion constant.
The 0 angle must necessarily vary between 0 and 7.

Figure 10.26 Lambert’s cosine model of diffused reflection

The model described by equation 10.5 is the simplest lighting model, with a single
light source which illuminates a single opaque body. For 6 greater than 7, we have
I4(p) = 0, where no light would be available since the p point would not be visible
from the source.

Such a single assumption is too strong, because it would render as black all the
surface portions where 7 < 6. In other words, when using this simple model, we should
render as black all the scene polygons which are not presently visible from both the
viewpoint and the light source. Such a result would be actually unacceptable.

Ambient diffuse intensity The problem of black surfaces discussed above may be
easily solved by considering that in any scene there is some diffused lighting due to
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surrounding environment. For this purpose it is sufficient to assume that on each body
surface there is also some, usually small, quantity of light not directly received from a
light source but coming from the ambient surroundings of the scene. In other terms,
it is assumed that each body will diffuse a constant portion of the ambient lighting.
An additive ambient term K,I, is hence introduced in the diffusion equation 10.5,
depending on the average ambient lighting I,, characteristic of the ambient of the
scene, and on the ambient diffusion constant K, characteristic of the body material:

Id(p) = Kglycos0+ K, 1, (106)

Notice that black surfaces may appear again, as soon as either K, or I, are equal
to zero. But also this simple model has some important drawbacks. Consider in fact
two parallel polygons made with the same material and located at different distances
from the viewpoint. By using the above equation they would have the some light
intensity in each point (and hence exactly the same color), so that, in case of partial
visual occlusion with respect to the viewpoint, it would be actually impossible for the
observer to distinguish the first surface from the second surface.

Depth attenuation of intensity To get more realistic results it is necessary to
take into account the intensity attenuation as a function of depth. In particular, we
should consider as appropriate physical parameter the intensity flow, defined as the
energy which crosses the unit surface. This parameter would be measured at distance
d by the intensity diffused in p, over the area 47wd? of the spherical surface centered
in p. The intensity attenuation should be hence made proportional to the inverse of
the squared distance.

But dividing the first term of equation (10.6) by the square of the viewpoint distance
gives results which do not experimentally match the user experience. In particular it
is possible to notice that by varying the intensity (i.e. the color) with the inverse of
the square of the viewpoint distance produces a too strong variation between points
belonging to surfaces located at relatively small distances from each other.

Conversely, some good visual results are given by the equation:

Cd+ K

where d is the viewpoint distance from p and K is an additive constant which gives
a “fine-tuning” of the lighting behavior of surfaces, until to make them look realistic.
Notice that d cannot be interpreted as the distance from viewpoint if this one is at
infinity. In such a case d is assumed as the z difference between p and the scene point
with maximum z.

Li(p)

Iycosb + K, I, (10.7)

10.4.2  Specular reflection

If a body is perfectly reflective, say, a perfect mirror, then all the radiation incident
on p, which is not absorbed or transmitted, is reflected along the symmetric direction
of £ with respect to m, i.e. along the reflection vector r. See Figure 10.27.

With a perfectly reflective body, the observer would see the considered point only if
located along the reflection direction. Actually, real bodies do not behave like perfect
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ones, and do not reflect the light only along the reflection direction. Conversely, the
reflected intensity is spatially distributed around r. Hence the viewer, located on the
view direction v, may in any case get a perception of some portion of the reflected
light, and can see p when 0 + a < 3.

In particular, the reflected light intensity perceived along v is a function of the angle
« between v and 7, as shown in Figure 10.27. Notice that the view direction v is not
necessarily coplanar with the £, n and r vectors.

Figure 10.27 Specular reflection from a point source

The quantity of specularly reflected energy strongly depends in a quite complex
way both on the wavelength A of the incident light and on the angle o between the
reflection and view directions.

Phong’s reflection model A simplified description of the phenomenon is due to
Phong Bui-Tuong [Pho75]. In this model it is assumed that the specularly reflected
intensity Ls(p) is proportional to (a) the incident radiation I, as well as to (b) the
n-th power of cosine of angle e between the reflection and the view directions, through
a function w(@, \) which depends on the incidence angle § and on the wavelength .

Ls(p) = w(0, \) Iy cos™ «

The n parameter depends on the body material. In Figure 10.28 we show the graph
of cos™ a function, as generated by Script PLaSM 10.4.1.

Figure 10.28 Graph of function cos” , for —% < a < &, and with samples of n
between 1 and 80

In Figure 10.28 are shown the effects of various values of n on cos™ o and hence on
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the spatial distribution of energy. The exponent n is low with no reflective material,
e.g. paper, and can reach values between 50 and 100 with very reflective materials,
such as metals with surface polished as a mirror.

Script 10.4.1 (Graphs of cos™ «)
DEF graph(n::IsIntpos) = MAP:[sl, **x ~ [cos ~ S1, K:n]]l:
((T:1:(-:PI/6) ~ intervals:(pi/3):40);
DEF COSnGraphs = (STRUCT ~ AA:Graph):< 1, 2, 5, 10, 20, 40, 80 >;

Simplified model of specular reflection The w function of Phong’s model, which
takes into account both the incidence angle 6 and the incident wavelength ), is actually
very complex, and can only be given empirically. It is usually substituted by a constant
K, called the specular reflection constant, so that we have the simplified reflection
model:

Ly(p) = Kol cos™ a.

The material properties are thus incorporated in the parameter n, whereas the
geometric (incidence angle) and physical (wavelength) properties of the incident light
are summarized by the K, constant. Since the aspects already discussed for the diffused
intensity continue to hold, the following better expression is usually adopted for the
specularly reflected intensity:

K
I(p) = = lecos™ o+ Kal. (10.8)

Aggregated reflection models In summary, the expressions already seen for
diffuse and specularly reflected intensities can be aggregated, since common bodies
usually behave both as light diffusers and as mirrors. The aggregated model for the
reflected light intensity is

1
I(p) = CZ—F—EK(KdCOSH_FKS cos" ) + Kyl (10.9)
where K4, Ks and n are material properties, Iy depends on the light source, and
«,0, K and d are characteristics of the geometric configuration of the surface. The
geometric parameters of the illumination model are better “highlighted” (!) by using
inner products of unit vectors rather than cosines of angles:

T d+ K

I(p) (Kgl-n+ Ks(r-v)") + K.I,. (10.10)

More in general, several light sources may appear on the stage, with different
incident light intensities and properties. Hence, for the reflected intensity I(p) in a
point illuminated by various sources we can write
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Iy
I(p) = Z [d—:lK' (Kgl; n+ K (r;-v)")| + Kul,. (10.11)

%

Geometry of reflection models Vectors £, and v are independent variables of
the geometric problem. In particular, £ can be obtained by normalizing the point
difference between the source location and the considered point p. The v vector is
computed analogously, by normalizing the point difference between the viewpoint and
p.
The normal vector m is constant on each planar surface. In a polygon it can be
computed by the vector product of two consecutive edges with an internal angle less
than 3. Such a convex internal angle always exists, for both convex and concave
polygons, where the common vertex of two edges is extremum with respect to one
coordinate, e.g. is the point with either maximal or minimal z, provided that the
polygon does not lie on a plane with equation z = c.

The computation of the direction of reflection 7 is a bit more complex. In this case it
is necessary to compute a rototranslation tensor ¢ which maps p in the origin and the
normal unit vector n in the basis vector ez of the z axis. So we have, in homogeneous
coordinates:

r= Q_lsxy(_la _1) Q Ea

where S;,(—1,—1) is the scaling tensor that reverses the sign of the z and y
coordinates.

10.5 Color models

In this section we quickly present the more important concepts about color as
individual perception of colored lights. We also discuss the additive and subtractive
color theories, needed to understand the production of colored pictures done by
computer monitors and printers, respectively, and some common models of color
spaces.

Additive and subtractive color The term color stands for the cerebral sensation
produced when the human eye is hit by electromagnetic radiation in the wvisible
spectrum, i.e. in the range of wavelengths between 400 and 700 nm (nanometers),
with 1nm = 10~° meters.

When discussing the perception of color it is necessary to take into account both
physical-optical and psycho-physiologic factors. In particular, some experimental
apparatus is needed to define the concept of “visible color”. In fact, the observer
might get the same color perception even in the presence of sources emitting light
radiations with different distributions of frequency.

Hermann von Helmholtz, a nineteenth-century German physiologist and physicist,
proposed the well-accepted theory where he postulated that the human eye contains
three physiologic structures which are able to perceive only the so-called fundamental
colors red, green and blue.
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Every different color is hence individually perceived as a proper summation
of appropriate quantities of the three fundamental colors. The additive theory of
perception of colored lights is built on such a very basic assumption. Conversely, to
explain the color perceived by eyes/brain when receiving light reflected by materials
which do not emit any radiation, such as e.g. press inks or colored clothes, the so-
called subtractive color theory is used. In this case it is postulated that fabric material
would subtract (by absorbing them) some part of fundamental colors from the incident
daylight.

Frequency distribution spectrum The average daylight is sometimes called white
or natural light. This light, when observed through a prism or spectroscope, appears to
be composed of some different colored lights, that we collectively call the spectrum of
visible light, and is shown in Figure 10.29. To the extremes of the visible spectrum there
are the minimum and maximum wavelengths perceivable by a human, corresponding
to violet (400 nm) and red (700 nm).

violet indigo blue green yellow orange red

400 nm 700 nm

Figure 10.29 Schematic representation of the visible spectrum

In the first half of the twentieth century several empirical experiments were
done to define the concept of wisible color, in particular by using an experimental
machinery where a light of unknown color is compared with suitable triples of lights
of fundamental colors. See Figure 10.30.

In particular, let us imagine red, green, blue light sources and a further source of
light of an unknown color, where some potentiometers allow control of the intensity
of fundamental lights. Such fundamental colors are summed and the observer may
change their individual intensities until they “match” the unknown light. If such a
match is possible, then it makes sense to state that

1(C) = I(R) + I(G) + I(B).

It is on the basis of several successful experiments that the additivity of fundamental
color lights was postulated.

red

®

green S —

matching @

unknown

s

Figure 10.30 Experimental machinery for unknown color “matching” with
fundamental colors

Actually, it is not always possible to sum three monochromatic lights and to
match the unknown colored light. To understand why it is sufficient to consider that
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monochromatic lights, like any other light, have some distribution on the frequency
spectrum, and hence they contain also some portion of the two other monochromatic
lights. Another problem comes from the fact that the same subjective color perception
might be obtained from totally different spectra. A frequency spectrum was hence
considered not useful for color characterization.

Normalized representation of color The Comité Internationale de l’Eclaimge
(CIE) in 1931 adopted the additive color theory, and the so-called normalized
representation of color. The color system is assumed to be linear and purely
additive. Three primary spectrum distributions, called X, Y and Z, respectively,
were substituted to red, green and blue in the “matching” process. Each other color
intensity can be expressed as a sum of primary intensities I(X), I(Y") and I(Z). Three
normalized ratios, called chromaticity values, are defined as

B 1(X)

T IX) + 1Y)+ 1(2)
B I(Y)

YT IX) 1Y) £ 1(2)
B 1(Z)

T I+ 1Y)+ 1(2)

By definition, the sum of chromaticity values is hence unitary:
r+y+z=1,

and each value is non-negative. Thus, two of such parameters are independent, and
their values may be represented in a two-dimensional plane. In particular, each triplet
(x,y, z) can be represented as a point in the unit triangle with vertex (0, 0), (1,0) and
(0,1), as shown in Figure 10.31. The chromaticity values (x,y, z) can be considered
to be the convex coordinates of points in such a triangle.

Chromatic diagram The average experimental results of the matching process can
be represented as points in the unit triangle of chromaticity values. Such points give a
representation of how an average observer perceives the visible colors. Even the pure
colors in the daylight spectrum become points in such a diagram, and are distributed
along a curve which resembles the shape of a boot sole. We may orderly recognize
red, i.e. the radiation at 700 nm, followed by yellow, green, cyan, blue, violet, i.e. the
radiation at 400 nm. Since it is assumed that the phenomenon is linearly additive,
it is worth considering each visible color as represented by a point on the segment
which connects two component colors. Analogously, if any triplet of colors is fixed,
their triangle gives all the visible colors which are obtainable by their combination.
In particular, the centroid of the triangle of primary colors is the point where the
intensities of primary colored lights are equal, and corresponds to the white color.
This diagram is called chromaticity diagram or standard chromaticity diagram.
It is the result of a quite complex standardization work. In particular, a standard
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Figure 10.31 Standard chromaticity diagram by CIE

distribution was defined for three primary lights. The colors of the spectrum of
daylight, called pure or saturated colors, are distributed on the boundary of the
diagram. Each other wisible color on this diagram, as an effect of the linearity
assumption, can be considered to be obtained by mixing a saturated color with
white. The corresponding coefficient is called the degree of saturation of the color.
In particular, a color is saturated when it approximates to some pure color.

For each color c¢ let us trace the segment passing for it and the white w, until to
encounter the pure color p on the boundary of the chromaticity diagram. In this case
we can write:

c=(1-a)w+ap, 0<a<l.

where the saturation of color c¢ is defined as the « coefficient of the convex combination
of p and w, or, in other words, as the ratio of distances of ¢ from p and w. Usually,
the color saturation is expressed as a percentage, so that a color saturated at 100% is
pure, whereas one saturated at 0% coincides with white color.

Complementary colors Take any color c¢. The color b such that its summation
with ¢ gives the white w:

bt+tec=w

is called the complementary color of c. The complementary color of ¢ is easily computed
by considering the straight line for ¢ and w, and getting the color point at same
saturation on the halfline opposite to ¢ with respect to w. Notice that the complement
of a pure color is a pure color. The names of complementary colors of additive primaries
are given in Table 10.2.

The standard chromatic diagram is closed by a segment joining the two extreme
pure colors of daylight, thus enclosing the area shown as gray in Figure 10.31, where we
have the pure colors. Such a “closure line”, called the purple line, is only obtainable
by convex combinations of the two extremes of the line, i.e. of red and wiolet. The
internal points of such a diagram represent the set of wvisible colors, also called the
perceivable colors.
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Table 10.2 Mapping between primary additive colors and complementary colors

| Primary color | Complementary color |

Red Cyan
Green Magenta
Blue Yellow

Gamout of a monitor The screen of a monitor device cannot generate the whole
set of visible colors. Actually each screen is able to generate only a triangular subset
of colors. This set of colors realizable from a monitor screen is called the monitor
gamout. For each monitor a triplet of points in the chromaticity diagram is assumed
to be representative of red, green and blue lights. See Figure 10.32.

The design of a monitor screen is thus characterized by a triplet of pairs of
chromaticity values in the CIE chromaticity diagram. This triangle is also called the
RGB (red, green, blue) triangle of the screen. The area of this triangle is a good index
of the screen quality. The wider is the area, the better is the quality.

y
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Figure 10.32 Typical monitor gamout, representative of the set of realizable
colors

RGB color model In the chromaticity diagram the light intensity is not taken into
account. For this purpose a three-dimensional diagram is introduced and used as a
model of realizable colors, where the intensity is explicitly considered. In particular,
the intensities of primary colors, normalized between 0 and 1, are associated with the
axes of a 3D reference frame. Each realizable colored light is thus associated with the
points of the standard unit cube. This model is called the RGB cube or RGB color
model.

In this model each color point is represented by a triplet in [0,1], by varying
the intensities of primary colors. So, the point R = (1,0, 0) represents the red color
at maximum intensity and analogously the point G = (0,1,0) identifies the green
color; the point B = (0,0, 1) gives the blue color. The origin O = (0,0,0) with zero
intensity for each primary light is associated with the black color. Analogously the
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point W = (1,1,1) corresponds to the white color. Each other point on the line
segment between black and white is a triplet of equal numbers. Such a segment is
called line of grays.

Other interesting points of the RGB model are the vertices where two coordinates are
unitary and one is null. They correspond to complementary colors cyan C = (1,1, 0),
magenta M = (0,1,1) and yellow Y = (1,1,0). The RGB color model is quite
important because it closely resembles the way color is stored in memory. Triples
of integers corresponding to intensities of primary colors are usually stored, with
a number of bits depending on the number of available colors. As we will see in
Section 10.7.2, the RGB model is used in VRML to specify the values of type SFColor.

M

Figure 10.33 RGB cube with both primary (red, green, blue) and complementary
(cyan, magenta, yellow) colors in the cube vertices. The remaining vertices are
associated with black and white

Example 10.5.1 (RGB color cube generation)

An interesting example of color representation by embedding, written exploiting the
dimension-independent geometry representation of the PLaSM language is given here.
For this purpose it is sufficient to repeat each triplet of coordinates of vertices of the
unit standard cube [0, 1]® as coordinates in RGB color space.

Script 10.5.1 (RGB color cube)
DEF RGBcube = MKPOL:<<
<0,0,0, 0,0,0>, <1,0,0,
<0,0,1, 0,0,1>, <1,0,1
>,<1..8>,<<1>>>;

>

VRML : RGBcube:‘out . wrl’;
VRML: (@1 :RGBcube) :‘out . wrl’;

It may be interesting to note that the intrinsic dimension of RGBcube object
generated by Script 10.5.1 is 3, whereas the dimension of its embedding space (i.e. the
number of its coordinates) is 6. As a matter of fact, we have:

RGBcube = A-Polyhedral-Complex{3,6}

Since the output object has a number of coordinates comprised between 3 and 6,
the generated VRML file contains a color per vertexr representation of the polyhedral
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parameter. According to the number of coordinates, the VRML file may contain either
a representation with colors per vertex, or with normals per vertex, or both.

The results of exporting the geometric values generated by the expressions RGBcube
and @1:RGBcube are shown in Figures 10.34a and 10.34b, respectively. Notice
that the skeleton extractor function handles correctly a wire-frame model with
color-per-vertex encoding.

Figure 10.34 (a) VRML rendering of the 3D object RGBcube embedded in 6D
space according to Script 10.5.1 (b) 1D skeleton of RGBcube

Prismatic HSV color model For user interaction the so-called hue, saturation,
value (HSV) color model is probably more interesting to the standard user. This color
model is based on the saturation of a pure color (hue) with the white, and on the
variation of intensity.

In particular, the intensity value (V) is associated with an axis labeled with numbers
in [0, 1]. On the plane V' = 1 is given a hexagon with a unit radius of the circumscribed
circle. The hexagon vertices are orderly labeled with pure colors red, yellow, green,
cyan, blue and magenta.

The edges of such a hexagon correspond to the colors which are generated by a
convex combination of the two colors associated with the edge vertices. The angular
parameter, called hue (H) (also called tint or intrinsic color), which clearly varies in
the interval [0, 27], gives a description of the pure colors. By convention, the red color
is associated with H = 0.

The radial parameter S ranging in [0,1] is called saturation. The color point
associated with S = 0 and V' = 1 is the white; the one associated with S = 0 and
V =0 is the black. The segment between such points is called the line of gray, as in
the RGB model.

Example 10.5.2 (HSV color prism generation)

An embedding technique similar to that of Example 10.5.1 may be used to create
a VRML model of the HSV color prism through the MKPOL primitive, as provided in
Script 10.5.2. The generated VRML model is shown in Figure 10.36. Notice that in this
case a polyhedral cell made of six tetrahedral cells is defined. A direct construction as
a single convex cell made by either seven or eight IE® points is not possible, because
the convex hull of such points would have intrinsic dimension 4.
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Figure 10.35 HSV prism color model with labeled verticeso

Script 10.5.2 (HSV color prism)
DEF HSVprism = MKPOL:<<

< 0,0,0, 0,0,0 >, % black %
<0,0,1, 1,1,1 >, % white %
<1,0,1, 1,0,0 >, % red yA
< €0S:(PI/3),SIN:(P1/3),1, 1,1,0 >, % yellow %
< CO0S: (2%PI/3),SIN: (2%P1/3),1, 0,1,0 >, % green Y%
< -1,0,1, 0,1,1 >, % cyan %
< CO0S:(4%PI/3),SIN: (4*PI/3),1, 0,0,1 >, % blue yA
< CO0S:(5%PI/3),SIN: (6%PI/3),1, 1,0,1 > % magenta %
>,<
<1,2,3,4>, <1,2,4,5>, <1,2,5,6>,
<1,2,6,7>, <1,2,7,8>, <1,2,8,3>
>,<1..6>>;

VRML:HSVprism:'out.wrl’;

The HSV prism is often transformed into a cone, and sometimes into a cylinder. To
generate such models may be an interesting exercise for the reader. Hint: use the MAP
primitive to apply a suitable coordinate transformation to some properly decomposed
3D domain embedded in 6D.

CMY color model The cyan, magenta, yellow (CMY) model of primary subtractive
colors is particularly suited to color management of printing devices, which do not use
light sources, such as screen monitors, or print inks. Such materials reflect the incident
daylight after having absorbed the frequencies of the complementary additive primary
color. Hence, e.g., the cyan ink, which is the complementary color of red absorbs from
the daylight, which is a mixture of red, gree and blue, its red frequencies, so reflecting
a light which is a mixture of green and blue. Analogously, the magenta and yellow inks
respectively reflect (a) a mixture of red and blue and (b) a mixture of red and green.

When two primary subtractive inks are blended together, their mixture will
subtract the frequencies of two additive primaries from the white light, thus reflecting
the remaining additive primary color. Therefore, the mix of cyan and magenta
will subtract red and green from the daylight and reflect the only frequencies of
blue. Analogously for the other combinations. Consequently, the mixing of all three
subtractive primary inks will subtract all the frequencies from daylight, thus giving
black.



GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Figure 10.36 VRML color rendering: (a) object HSVprism generated in 6D space
by PLaSM (b) view from below

The corresponding CMY color model is a cube analogous to the RGB model. But
in this case we have C = (1,0,0), M = (0,1,0) and Y = (0,0, 1). Black and white
clearly are exchanged: W = (0,0,0) e Black = (1,1, 1). The transformation between
the two color cubes is affine, and corresponds to a reflection with respect to the three
coordinate planes, followed by a translation which moves the point (—1,—1,—1) to
the origin. Thus, in homogenous coordinates we have:

C

M

Y
1

=T(1,1,1) §(-1,-1,-1) (10.12)

= A

And, in non-homogeneous coordinates:

C 1 R
M |=1]-| G
Y 1 B

R 1 C
G|l=|1|-| M
B 1 Y

Such transformations between color models are clearly very easy to write in PLaSM.
For this purpose we just have to write two lines of code, as given in Script 10.5.3. Notice
that, according to textscvrml documentation, some virtual reality browsers, such as
e.g. Cosmo Player, do not like the scaling transformations with negative coefficients,
so that the result of the visualization is partly unpredictable, or better depends on
the browser.

10.6 Shading models

In most practical cases the light intensity in a point of a visible surface is not computed
for each pixel using the appropriate illumination model, but is computed only for a



VIEWING AND RENDERING 413

Script 10.5.3 (CMY cube)
DEF CMYcube = (T:<1,2,3>:<1,1,1> ~ S:<1,2,3>:<-1,-1,-1>) :RGBcube;

VRML : CMYcube: out . wrl’;

suitable subset of points. Such points usually correspond either to the vertices of the
surface (polygon) or to those of some triangulation of its interior. The computation of
the intensities in other points is then done by convex interpolation of known values.
This process is called either color shading or normal shading depending on the subject
of the interpolation.

Intensity interpolation

For each RGB color component, the values on vertices of a triangle are interpolated
in the discrete set of internal points, i.e. in the internal pixels. Such a method is called
Gouraud’s shading.

Let us consider as known the primary intensities I, Iy, I. of a color component given
on vertices a, b and c of a triangle, as shown in Figure 10.38a. The intensity I, of a
point p on the horizontal line between two points r and s on the triangle boundary
can be computed as:

Ip) = (A=pI(r)+7I(s), 0<y<1, (10.13)

where
I(r) = (1-a)l,+al, 0<a<l, (10.14)
Is) = (—P)l+pl, 0<B<L (10.15)

Example 10.6.1 (Color shading)

In Script 10.6.1 two colored triangles are generated and exported as VRML using color
per vertex representation. Their images as rendered by Cosmo Player®© are shown in
Figure 10.37. Notice that the centroid of the first triangle does not give the white, and
the centroid of the second one does not give the black. Is something wrong here? The
answer is no. The matter here is not the additive or subtractive theory, but the color
shading. The interpolated RGB values for the two centroids are (%, %, %) and (%, %, %),
i.e. darker and lighter gray respectively, according to Figure 10.37.

Normal-vector interpolation

We have seen the interpolation of color intensity of vertices, computed on those points
by using a suitable illumination model. If, conversely, the interpolated entities are the
normal vectors of surfaces computed on the vertices, then it is possible to use the
illumination models pointwise, by using the appropriate model and the interpolated
values of the normals. Such interpolation of normals per vertex, followed by a local use
of illumination models to compute the lighting cnd color intensities, is called Phong’s
shading model.
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Script 10.6.1 (Color shading)
DEF color_triangle (c11,c12,c13, c21,c22,c23, ¢31,c32,c33::IsReal) =
MKPOL: <<
< 0,0, ci11,c12,c13 >,
< 1,0, c21,c22,c23 >,
< C0S:(PI1/3),SIN:(PI/3), c31,c32,c33 >
>,<1..3>,<<1>>>;

DEF RGB_triangle = color_triangle:< 1,0,0, 0,1,0, 0,0,1
DEF CMY_triangle = color_triangle:< 0,1,1, 1,0,1, 1,1,0

VRML :RGB_triangle:’out.wrl’;
VRML:CMY triangle:’out.wrl’;

Figure 10.37 VRML rendering of two color shaded RGB_triangle and
CMY_triangle

In this case some vector equations similar to equations (10.13-10.15) are used to
compute the components of normal unit vector in the p point:

np) = (1-n(r) +mls), 0<y <1, (10.16)
n(r) = (1-a)n(l)+ an(2), 0<a<l, (10.17)
n(s) = (1-08)n(1)+pn(3), 0<p<1. (10.18)

Clearly, the illumination point must be applied pointwise to compute the light
intensity in each point. As we can see, Phong’s shading is much more realistic by
its precise rendering of specular reflection effects, but it is also considerably more
computationally intensive.

Example 10.6.2 (Normal per vertex)

Gouraud’s shading is used in VRML rendering when the user specifies a normal vector
for each model vertex. In Script 10.6.2 we generate a polyhedral approximation of the
sphere by the function Sphere with normals. It may be interesting to notice that the
dimension-independent of the language is exploited to accommodate the components
of the normal as added coordinates of each vertex. Notice on this point the dimensions
of the generated object, which is a 2-manifold embedded in 6D space:
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Figure 10.38 Bilinear interpolation: (a) Gouraud (b) Phong
Sphere withnormals:1:<12,24> = A-Polyhedral-Complex{2,6}

The VRML files exported by the two last expressions of Script 10.6.2 are shown in
Figures 10.39a and 10.39b, respectively.

Script 10.6.2 (Color shading)
DEF Spherewithnormals (radius::IsRealPos)(n,m::IsIntPos)
= MAP: [fx,fy,fz, fx,fy,fz] :domain

WHERE
fx = K:radius * - ~ SIN ~ S2 *x COS ~ S1,
fy = K:radius * COS ~ S1 * COS ~ 82,
fz = K:radius * SIN ~ S1,

domain = dom1D:<PI/-2,PI/2>:n * doml1D:<0,2*PI>:m
END;

VRML: (Sphere with normals:1:<12,24>) Jout . wrl’;
VRML: (MAP: [s1,s2,s83,K:-1,K:-1,K:-1,s1,s82,83]:
(Spherewithnormals:1:<12,24>)): ‘out .wrl’;

Example 10.6.3 (Crease angle)
Gouraud’s shading of model surfaces with average normal per vertex can be easily
generated by PLaSM programs, without actually generating the normal vectors, but
using the VRML attribute relative to the crease angle, as shown by Script 10.6.3. In
this case the torus function given in Script 5.2.13 with minor and major radiuses 1
and 3 is mapped on the domain [0, 27]?, thus giving the geometric value associated
with myTorus symbol.

The last two expressions of Script 10.6.3 produce the objects displayed in
Figures 10.40a and 10.40b, respectively. It is interesting to note that the polyhedral
approximation of the true surface is done at the same resolution in both cases!

Example 10.6.4 (Color sphere)
In this example we export a unit 3D sphere embedded in 6D space. A 3D
polyhedral approximation of such model is generated by the function Sphere given
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Figure 10.39 VRML rendering of spheres at the same resolution, without and with
Gouraud’s shading

Script 10.6.3 (Color shading)
DEF myTorus = MAP: (CONS: (torus:<1,3>)):(dom2D:<0,0,2+PI,2*PI>:<12,24>)

VRML :myTorus: ‘out . wrl’;
VRML: (myTorus CREASE (PI/2)) Jout.wrl’;

in Script 10.6.4. The added coordinates are here used as RGB coordinates. This
effect is obtained by suitably mapping the vector extractor function [S4,S5,S86] in
Script 10.6.4.

The boundary polygons of the exported sphere are Gouraud shaded, using implicitly
computed normal per vertex, because of the final invocation of the CREASE function.
Figure é0.41 shows what happens when browsing the exsported VRML file with Cosmo
Player®©.

Script 10.6.4 (Color sphere)
DEF vect = [S1,S2,S83];
DEF out = MAP: (CAT ~ [vect,vect]):(Sphere:1:<12,24>)
VRML: (out CREASE (PI/2)):'out.wrl’;

10.7 VRML rendering

As we have already seen in the previous examples, the rendering mechanism provided
by VRML may be quite refined, since the language allows modeling of both point-
shaped and directional lights with varying color and intensity, as well as the material
properties of surfaces to be modeled quite carefully. Furthermore, the VRML language
allows texture-mapping of 2D images on the 3D surfaces of the scene, thus greatly
enhancing the realism of visual rendering. The present section is hence devoted to
describing how lights, colors and textures may be specified in VRML, within the
theoretical framework we discussed in the previous sections.
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Figure 10.40 VRML rendering of toruses at the same resolution, without and with
Gouraud’s shading

Figure 10.41 VRML shading of the unit spere, using the normals as color values

10.7.1 Illumination

First of all, let us remember that VRML describes the scene as a hierarchical graph,
where nodes may describe geometry, grouping, transformations, lights, textures,
sounds, videos and so on. As a general rule, let us remember that each node applies
its effect on the subgraph rooted in it.

An illumination node describes how the subscene rooted in it should be illuminated.
Such a kind of node, in particular, specifies the position and orientation of the light
source, the light color and other lighting characteristic, such as the contribution of
the source to the diffuse lighting of the ambient. Conversely, a VRML illumination
node does not specify a geometric shape of light source. If necessary, a Shape node
can be assigned to the source with a suitable geometry and a high value of the field
emissiveColor in the Material node of the appearance field.

VRML lights do not produce shadows in the scene, but only specify the
characteristics of the radiation which would incise on the scene surfaces, as if they
were isolated. If shadow rendering is needed, in order to give an appropriate level
of realism to the scene, shadows can be simulated by using colors and/or textures.
The simulation of shadows can be very refined, if performed according to suitable
HSR computations, polygon fragmentation and possibly according to global radiosity
algorithms, which may generate the detailed geometric data.
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Lighting nodes In particular, three types of lighting nodes are available:

1. node DirectionalLight;
2. node PointLight;
3. node SpotLight.

The scope of a light of type PointLight or SpotLight is spherical and specified by
a field radius of SFFloat type. All the geometry outside the scope of a light is not
illuminated by it. Conversely, a node of type DirectionalLight has a hierarchical scope:
it will work only on nodes in the same group (i.e. with the same father node) and
on their descendants. In other words, a DirectionalLight node will illuminate only the
hierarchical subgraph rooted on its father.

Common fields The three illumination nodes have some common fields, whose
types and default values are given in the following.

on TRUE # SFBool
intensity 1 # SFFloat
ambientIntensity 0 # SFFloat
color 111 # SFcolor

The Boolean field on modifies the status of the light source. This value may be
modified at run time, by sending appropriate events to the node. The field color of RGB
value defines the light color emitted from the source. It interacts with Material nodes
to determine the color aspect of sources hit by light. The fields ambientIntensity and
intensity have a real value between 0 and 1. The scalar field intensity is a scaling factor
which multiplies the three color components to define the three intensity components
of the light source. The product of color components times both the intensity fields is
summated to color components of ambient light.

Attenuation An attenuation field is used by PointlLight and SpotLight nodes. It is a
single valued real field between 0 and 1 used to multiply the intensity field as well as
the distance of the considered point from the light source. The field attenuationField is
conversely of SFVec3f type, i.e. is a single field with a 3D vector of reals. The first term
is used as a multiplier for constant attenuation; it is functionally equivalent to the K
addendum at the denominator in the illumination model of equation (10.9). Second
and third components are used for linear and quadratic attenuation, respectively.

DirectionalLight The DirectionalLight node is used to define point-shaped sources
which project parallel light rays, coming from the point at infinity of the direction
vector. There is no attenuation field for directional lights, since it is not possible to
compute the distance of a point from the light source. The default definition is the
following:

DirectionalLight {
on TRUE # SFBool
intensity 1 # SFFloat
ambientIntensity 0 # SFFloat
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color 111 # SFcolor
direction 0 0 -1 # SFVec3f

The scope of a directional source is hierarchical. The source illuminates all the
“brother” nodes and the subgraphs rooted in them. It can be used, e.g. to open a
light in a room, where the adjacent rooms must remain in the dark. Not every browser
supports a hierarchical scope for lights. In order to maximize the portability of models
it is better to use directional lights at the root level of a VRML world.

PointLight The PointLight node is used to define non-directional and point-shaped
light sources. As for the other lighting nodes, it is defined in local coordinates by the
location field, which is affected by the action of the current transformation matrix at
the traversal of hierarchical scene graph.

PointLight {

on TRUE # SFBool

intensity 1 # SFFloat
ambientIntensity 0 # SFFloat
color 111 # SFcolor
location 000 # SFVec3f
radius 100 # SFFloat
attenuation 100 # SFVec3f

SpotLight The SpotlLight node is used to define point-shaped light sources with
a preferred direction of light and an action cone. This is defined around the axis of
the direction vector by two angles beamWidth and cutOffAngle given in radians. The
source is assumed to emit at maximum intensity within the angle beamWidth, and is
also assumed not to emit ouside the angle cutOffAngle. The types and default values
of the node fields are the following:

SpotLight {

on TRUE # SFBool

intensity 1 # SFFloat
ambientIntensity 0 # SFFloat
color 111 # SFcolor
location 000 # SFVec3f
radius 100 # SFFloat
attenuation 100 # SFVec3f
direction 0 0 -1 # SFVec3f
beamWidth 1.5707 # SFFloat
cutOffAngle 0.7853 # SFFloat
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10.7.2 Color

The VRML language uses the the RGB color model to describe colors. Thus, when
some node field has a value of type SFColor (Single Field Color), it must hold three
real components in [0, 1], to be interpreted as a point in the normalized RGB color
cube. In other words, fields of SFColor type must be specified as normalized RGB
triples.

Color information can be used both to assign a global color to some primitive
or subgraph and to give a local color to some portion of a geometric primitive,
respectively. The use of Color nodes is hence allowed within:

1. Material node;
2. DirectionalLight, PointLight and SpotLight nodes;
3. IndexedFaceSet, IndexedLineSet, PointSet and ElevationGrid nodes.

Material The Material node defines the material properties of surfaces in geometrical
nodes associated with it. In particular, the diffuseColor field defines the diffusion
constant K4 for each of the three primary color components, the field specularColor
defines the three constants of specular reflection K. The field emissiveColor is used to
specify the color of light emitted from a luminous body. It can be useful to simulate
the results of a radiosity computation, where some surfaces — e.g. the panes of a
window — are considered as emitting light.

The shininess field, normalized between 0 and 1, has a meaning similar to
the n coefficient of cos of the angle between reflection and viewing directions in
equation (10.8). Not all browsers actually support some partial transparency, as
specified in the VRML document.

The various possible fields of Material node, their types and the default values are
as follows:

Material {
diffuseColor 0.8 0.8 0.8 #SFcolor
ambientIntensity 0.2 #SFFloat
specularColor 0 O O #SFcolor
emissiveColor 0 O O #SFcolor
shininess 0.2 #SFFloat
transparency 0 #SFFloat

Color per face In geometric primitives of type IndexedFaceSet and ElevationGrid it
is possible to specify a field color of type SFnode bound to a Color node value, used to
specify a set of colors as RGB triples:

Color {
color [
0.8 0.8 0.8,
o o0 1

H H
N =

H
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}

If in the geometric primitive the field colorPerVertex is FALSE, then such colors are used
as face colors. Actually two different methods are available to make the association
between faces and colors:

1. By specifying so many colors as many faces. In this case an explicit association
is not necessary. The first face will be associated with the first color, the
second face with the second color, and so on.

2. By specifying any number of colors, usually less than the number of faces. In
this case the face colors must be explicitly given by using the field colorIndex,
which contains a sequence of integer references to the values in the Color
node, indexed by faces.

Color per vertex The colors to use with geometric primitives IndexedFaceSet and
ElevationGrid can be specified in greater detail. Such a detailed specification is used
when the field colorPerVertex maintains the default value TRUE. In this case the set
of polygons is rasterized by using the Gouraud’s shading method. Three types of
association of colors with vertices are possible here:

1. By giving as many colors as there are vertices specified in the field point of
node Coordinate of field coord. In this case the explicit association between
vertices and colors is not needed.

2. By giving colors of vertices as indices in field colorindex, with reference to
the triples contained in the Color node. Such references orderly correspond
to vertex numbers.

3. As above, but with color references in colorlndex organized by faces. In this
case there are as many lists in field colorindex as there are faces. Each list
will contain the reference to the color counterclockwise associated with the
vertices of the associated face, and is terminated by an element with -1 value.

Colored lines and points Both specification and rendering of colors with
primitives IndexedLineSet and PointSet are absolutely similar to what as already been
discussed for the IndexedFaceSet and ElevationGrid primitives. Gouraud’s shading is
used when colorPerVertex is TRUE (default). If colorPerVertex is FALSE, then a single
color is used for each line, with color values assigned by using any one of the two
specification methods seen for faces.

10.7.8 Shading

Without any light specification, the color of faces is assumed to be exactly equal
to the one specified in their Color node. Also, without any Material specification,
no lighting computations are executed at all. Conversely, if the geometric node is
subject to the action of some lighting node, then the normal vectors of the faces are
automatically generated and used to compute the face intensities, by using for this
purpose the reflectance information stored in the Material node.

The default shading method, used when only colors per face are specified, is the
flat shading. When specifying both normals and colors per face, a flat shading is again
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used. By giving normals per face and colors per vertices the Gouraud’s shading is
applied. Gouraud’s shading is also used when normal per vertices are given, because
Phong’s shading was considered to be too computationally expensive for use with
VRML browsers.

Normals per face In nodes IndexedFaceSet and ElevationGrid the user may give a
normal field of type SFnode, with value:

Normal {
vector [
0.267 0.535 0.801 , #1
0 0 1 s # 2

Notice from previous example that normals should always be defined as unit vectors,
i.e. as vectors with unit length. The node IndexesFaceSet has some specialized fields
for normals, i.e.: normal, normallndex and normalPerVertex. The normallndex field is
not acceptable within the ElevationGrid node.

Vectors in a Normal node are paired with faces if the normalPerVertex field is set to
FALSE. Such normals are used for lighting computations if there exists a Material node
acting on the geometric primitive. The methods that we have already seen to associate
colors and faces may be used to pairwise associate normals and faces. In particular:

1. the simplest but also more verbose method consists in giving as many normals
as there are faces. Remember that faces may be specified using the field
coordIndex.

2. the more efficient method consists in giving the normals, using the field
normallndex, as references to the values in the Normal node.

Shading with normals per vertex As we already said, normal vectors can
be associated with vertex points. In this case the intensities of primary colors are
computed on each vertex by using a complete reflectance model and the material
properties. Such intensities are then interpolated on each polygon by using Gouraud’s
shading.

The same vertex may even have several normals associated with it. In particular,
there can be as many normals on a vertex as there are faces incident on it. This
association requires that the normalPerVertex field is set to the default value TRUE. As
for the colors per vertex, there are three methods to specify the normals per vertex,
by respectively giving:

1. the same number of normals and vertices;

2. the normals in the field normallndex as references, indexed on wvertices, to
values in Normal node;

3. the normals in normallndex as references, indexed on faces, to values in Normal
node. In this case each list of normals in normallndex must be terminated by
-1, and must contain a reference to a normal vector for each vertex of the
counter-clockwise oriented face.
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10.7.4 Textures

The realism of 3D rendering may be greatly enhanced by using the texture mapping,
a graphics technique available in the past only in top-level graphics workstations.
Conversely, in the last few years graphics accelerators are common on the PC market
with hardware support for advanced operations, including texture mapping, at the
cost of few hundred dollars.

A Texture Map is a 2D raster image to be mapped on a 3D surface, and therefore
subject to be processed in the 3D pipeline consistently with the supporting geometric
data. In VRML 2.0 a texturing node allows specification of:

1. the texture, i.e. the raster picture (image) to map on the 3D surface;
2. the texture transformation, with a TextureTransform node;
3. some mapping rules and, in a certain sense, the type of mapping algorithm.

In VRML it is possible to choose between three types of textures, respectively
associated with different types of nodes:

1. The ImageTexture node contains as attribute the url of either a JPEG or a
PNG image file, so that it allows a photograph to be mapped on a surface.
Such a terture may be generated in any way, even by using a scanner on
the surface of a solid material. It becomes thus possible to visually simulate
with extreme realism the surface aspect of solid models, and also to emulate
geometric details that would be too expensive to model exactly.

2. The MovieTexture node contains the url of a MPEG-1 file, thus allowing
mapping a movie on some surface of the scene, possibly with synchronized
sound. In such a case a Sound node should be simultaneously used.

3. The PixelTexture node contains an explicit texture coding with hexadecimal
values.

Mapping algorithm FEvery geometric primitive, i.e. the Cube, Cylinder, Cone,
IndexedFaceSet and ElevationGrid nodes, requires a specific default algorithm to map
the texture on the surface of the primitive.

A mapping different from the default one may be specified by giving two
corresponding sets of points on the 2D texture and on the 3D target surface. For this
purpose, both the texture and the surface are triangulated using the corresponding
points, and a piecewise affine map (i.e. a simplicial map — see Section 2.2.2) is
accordingly built, that maps each texture triangle into the corresponding surface
triangle.

Texture components A texture is specified as an image defined in an s,t
bidimensional space, usually coincident with [0, 1]2. There are four types of VRML
textures:

1. With one component: the texture contains only intensity values. The only
PNG file format is allowed.

2. With two components: there are both intensity and transparency values. The
only PNG format is allowed.
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3. With three components: the texture contains RGB values. Either JPEG or
PNG or GIF file formats are allowed.

4. With four components: both RGB and transparency values are stored in this
case. Either PNG or GIF formats are allowed.

10.7.5 PLaSM lighting

PLaSM makes direct reference to the VRML lighting model. In particular, it provides
point, directional and spot light sources. The LIGHT binary operator must be used
for this purpose, and applied to a polyhedral complex and to a PLaSM object of
GenericLight type.

An object of this type is generated by applying the GenericLight function to
a triplet < type, appearance, geometry >, where type € { 0,1,2 } stands for
pointSource, directionalSource and spotSource, respectively. The appearance and
geometry values are generated by GenericLightAppearance and GenericLight-
Geometry functions, both built-in the 'colors’ library.

A generic light function In Script 10.7.1 we implement a generic light function
TheLight, that is able to generate a coloured light source of every type, depending on
the actual values of its parameters.

Notice that the parameters of GenericLightAppearance are color, intensity,
ambientIntensity and isOn, according to the VRML lighting model. The fields of
GenericLightGeometry are location, direction, attenuation, radius, beamWidth
and cutOffAngle, also in accordance with the VRML model.

Script 10.7.1 (Generic lights)
DEF TheLight (type::isInt) (theColor::TT) =
GenericLight:< type, appearance, geometry >
WHERE
appearance = GenericLightAppearance:
<color,intensity,ambientIntensity,isOn>,
color = theColor,
intensity = 1,
ambientIntensity = 0.4,
isOn = TRUE,

geometry = GenericLightGeometry:
<location,direction,attenuation,radius,beamWidth,cutOffAngle>,
location = <0,0,0>,
direction = <1,0,0>,
attenuation = <1,0,0>,
radius = 10,
beamWidth = (PI/4),
cut0ffAngle = (PI/6)
END;
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Example 10.7.1 (Point, directional and spot lights)

In Script 10.7.2 we produce a visual comparison, shown in Figure 10.42, of the types
of light source, by adding either a point, directional or spot MAGENTA light to a
suitable decomposition of a unit cube. A decomposition of the cube, produced by
grid3D:<10,10,10>:0.1, is used so that the VRML viewer may produce a better
rendering of the illuminated surfaces.

Figure 10.42 Light sources: (a) point (b) directional (c) spot

Script 10.7.2 (Point, directional and spot lights)
DEF cube = (T:1:1 ~ R:<1,2>:(PI/-6) ~ grid3D:<10,10,10> ):0.1;
DEF grid3D (m,n,p::IsIntPos)(a::IsRealPos) =
(@~ #:m) * (Q ~ #:n) * (Q ~ #:p)):a

DEF testl = CenteredCameras: (cube LIGHT TheLight:0:MAGENTA) ;
DEF test2 = CenteredCameras: (cube LIGHT TheLight:1:MAGENTA) ;
DEF test3 = CenteredCameras: (cube LIGHT TheLight:2:MAGENTA) ;

VRML:testl:'/path/lightl.wrl’;
VRML:test2:'/path/light2.wrl’;
VRML:test3:'/path/light3.wrl’;

Notice that the three lit cubes test1, test2 and test3 are generated and exported
with the associated camera nodes produced by the CenteredCameras operator
discussed in Section 9.4.1. This operator allowed us to produce the three images of
Figure 10.42 from exactly the same viewpoint. Notice also the color attenuation due
to distance with point source in Figure 10.42a, whereas no distance attenuation is
present with directional source in Figure 10.42b. Finally, notice that we set to off the
headlight automatically set on the viewpoint by the VRML viewer.

Example 10.7.2 (Colored spot lights)

RED, GREEN and BLUE spot lights are associated with a square without material
properties in Script 10.7.3. The images produced by a vrml VIEWER, without and with
a headlight, are shown in Figure 10.43. For this purpose a BASESPOTLIGHT operator is
used. Analogous BASEDIRLIGHT and BASEPOINTLIGHT operators are also available in
the ‘colors’ library. The unused fields, passed as null values <>, are suitably filled by
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the library itself.

Figure 10.43 Three spot coloured lights: (a) without headlight on the viewer
(b) with headlight

Notice that a useful Spot generator is defined in Script 10.7.3, depending only
on color, location and orientation parameters. It is instanced three times with
different colors and locations in our example. Notice also that the LIGHT binary
operator is used infix between its operands, and remember that binary operators
are left-associative.

Script 10.7.3 (Spot lights)
DEF grid2D (m,n::IsIntPos)(a::IsRealPos) = ((Q ~ #:m) * (Q ~ #:n)):a ;

DEF spot (color,location,orientation::TT) =

BASESPOTLIGHT:< spotAppearance, spotGeometry >
WHERE

spotAppearance = < color, <>, <>, <>>,

spotGeometry = < location, orientation, <>, 100, PI/16, PI/4 >
END;

DEF object = grid2D:<30,30>:1
LIGHT spot:< RED, <10,15,20>,<0,0,-1>>
LIGHT spot:< GREEN, <20,10,20>,<0,0,-1>>
LIGHT spot:< BLUE, <20,20,20>,<0,0,-1>>;

VRML:object:'out.wrl’;

10.7.6 PLaSM texturing

The syntax and semantics of texturing operators used in PLaSM to easily export VRML
files are described in this section. The main goal in designing the PLaSM exporting
interface was to be as close as possible to the VRML semantics.

In particular we have:

1. CREASE:< pol, o > = pol
where « is the lower limit of the angle between adjacent faces of pol complex,
used as the threshold value for the automatic computation of normals per
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vertices;
2. TEXTURE:< pol, texture > = pol, where

texture = < url,

< repeatS, repeatT >,
translationS, translationT >,
rotation >,
scalingS, scalingT >,
centerS, centerT >>

A ANRANEAS

with internal fields equivalent to the ones with the same name defined in
VRML nodes ImageTexture and TextureTransform;

3. SimpleTexture:'url’ = texture
where 'url’ is a string representing a local or web filename with extensions

jpg or pnc.

Example 10.7.3 (Textured Gioconda)

In this example we discuss the mapping of a jpeg image of Leonardo’s Mona Lisa
portrait (in the Louvre, Paris) over a cylinder, a sphere and a cube, respectively.
The PLaSM code which generates the VRML files displayed in Figure 10.44 is given in
Script 10.7.4.

First a mapping of “Gioconda” on the CYLINDER of radius 1 and height 2,
approximated with 12 lateral facets is generated, by using a “crease angle” attribute
with a = 7.

Notice that both the CREASE and the TEXTURE operations are binary operators, so
that they can be used infix to their operands. Remember also that a multiple infix
expression like argl opl arg2 op2 arg3 is evaluated in leftmost order.

Figure 10.44c is obtained by mapping the jpeg file on the 2-skeleton of the cube.
A direct mapping on a 3D object would give a different result, with a more “solid”

appearance.

Figure 10.44 The Gioconda’s image mapped on cylinder, sphere and cube,

respectively

Example 10.7.4 (Textured sun)
A 3D-textured model of the sun is produced in Script 10.7.5 and displayed in
Figure 10.45. In this case a unit Sphere is used as the target surface of the image
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Script 10.7.4
VRML: (CYLINDER:<1,2>:18
CREASE (PI/2) TEXTURE SimpleTexture:'gioconda.jpg’):’out.wrl’;

VRML: (Sphere:1:<12,24>
CREASE (PI/2) TEXTURE SimpleTexture:’gioconda.jpg’):’out.wrl’;

VRML: ((@2 ~ CUBOID):<1,1,1>
TEXTURE SimpleTexture:'gioconda.jpg’) :’out.wrl’;

texture contained in sun.jpg file. The Sphere generating function used here is
that given in Script 2.2.7. Notice that the VRML standard mapping algoritm for
IndexedFaceSet nodes with creaseAngle field (quite) correctly maps a circular
texture on the two halves of the sphere.

Figure 10.45 (a) and (c) 3D-textured model of the sun (b) 2D texture

Script 10.7.5
DEF mySphere = Sphere:1:<24,12>;

VRML: (mySphere CREASE (PI/2) TEXTURE SimpleTexture:’sun.jpg’):’out.wrl’;

Texture repetition and transformation The rules used for repeating a texture
on a surface are not difficult, but are sometimes puzzling. Therefore, we discuss this
point with some detail.

First of all, notice that texture and textureTransform are two fields of the
node Appearance, of type ImageTexture and TextureTransform, respectively. The
contents of such nodes and their default values follow.

appearance Appearance {
texture ImageTexture {
url "filename. jpg"
repeatS FALSE
repeatT FALSE
}
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textureTransform TextureTransform {
translation 0.0 0.0
rotation 0.0
scale 1.0 1.0
center 0.0 0.0

Aspect ratio of target surface First, the content of ImageTexture file is mapped
on the standard unit interval [0, 1]2, giving a normalized texture in (s,t) space. Then
this is mapped onto the containment box of the target surface.

Script 10.7.6 (Aspect ratio of target surface)
DEF picturel = CUBOID:<4,4> TEXTURE SimpleTexture:'gioconda.jpg’;
DEF picture2 = CUBOID:<3,4> TEXTURE SimpleTexture:'gioconda.jpg’;
DEF picture3 = CUBOID:<4,3> TEXTURE SimpleTexture:'gioconda.jpg’;

Figure 10.46 Mapping of texture on surfaces with different aspect ratios

So, how does one generate a correctly sized model of Leonardo’s masterpiece?
The correct result is obtained by combining the normalized texture mapping on a
square surface with a suitable modeling transformation, in this case a scaling in the y
direction:

Script 10.7.7 (3D Mona Lisa)
DEF aspectRatio = 404/600;
DEF MonaLisa = S:2:(1/aspectRatio):(CUBOID:<4,4>) * QUOTE:<0.5>
TEXTURE SimpleTexture:’gioconda.jpg’;

The aspectRatio parameter is the ratio of the number of horizontal pixels of the
texture to the number of vertical pixels. The geometric value associated with the
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MonaLisa symbol is shown in Figure 10.47.

Figure 10.47 The fascinating gaze of Leonardo’s Mona Lisa in 3D

Texture mapping on a polygon What happens when mapping a texture on a
polygon? The mapping algorithm is substantially unchanged, and may be described
as follows:

1. Texture is normalized.

2. Texture orientation and portion to be mapped are chosen with respect to the
aspect ratio of the containment box of the target polygon.

3. The normalized texture is accordingly mapped and clipped.

The last point actually corresponds to the user view of the process. In practice, there is
no texture clipping: at polygon rasterization time, for each rasterized pixel, a reverse
mapping from device coordinates to the normalized texture space is performed, in
order to compute the set of texels (i.e. texture elements) to map in that pixel, and to
compute their averaged color.

The PLaSM mapping of Mona Lisa on a 2D target polygon is coded in Script 10.7.8.
The geometric objects generated by the three last expressions are shown in
Figures 10.48 a, b and c, respectively.

Script 10.7.8 (Texture mapping on a polygon)
DEF target = triangleStripe:
<<0,0>,<1,4>,<1.5,2.5>,<3.5,4>,<3,2.5>,<4,0>,<3,1>,<1.5,1>,<1.5,2>>

target ;
target TEXTURE SimpleTexture:'gioconda.jpg’ ;
target * QUOTE:<0.5> TEXTURE SimpleTexture:’gioconda.jpg ;
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Figure 10.48 (a) Polygon generated by a triangleStrip (b) Texture mapping on
polygon; (c) polygon extrusion followed by texture mapping

Texture transformations As we have already seen, a 2D transformation X may
be applied to the normalized texture space s,t. This transformation is composite by
scaling and rotation about a fixed center, followed by translation. In formal terms, we
may write, for the texture applied to the geometric surface:

X(t87 tt7 «, Sg, Sty Cs,y Ct) = T(t87 tt) T(087 Ct) R(Oé) 5(887 St) T(_CS7 _Ct)

where (cs, ¢t) is the transformation center, i.e. the fixed point, (s, s¢) are the scaling
parameters, « is the rotation angle, and (¢, t;) is the final translation.

It is important to understand that the fields of the VRML TextureTransform node
actually contain the parameters of the inverse transformation X . This is the true
reason for the odd behavior of the TextureTransform VRML node, which makes its
correct usage very difficult for the naive user.

To give the correct values to the VRML TextureTransform node, it is actually very
easy, by remembering that the inverse of a scaling tensor has reciprocal parameters,
and the inverse of rotation and translation tensors have opposite parameters, according
to the discussion in Section 6.2.8. Thus, within the ‘colors’ library we have the
following settings:

< centerS, centerT > = < —cg, —C¢ >
rotation = —a ,
. . _ 11
< scalingS, scalingT > = < =, = >,
< translationS, translationT > = < —it,, —1; >,

and
repeatS, repeatT € { FALSE, TRUE } .

At this point it is easy to understand how the transformed textures of Figure 10.49
were produced by the VRML viewer.

1. The first texture has a rotation of & = —% around the center (cs,c;) =
(0.5,0.5) of normalized texture space, and no repetition.

2. The second one has same rotation and center, with a further scaling (cs, ¢;) =
(1, 3), and no repetition.

3. The third texture has the same transformation parameters of the previous
one, but the repetition is activated in both coordinate directions.

The defining PLaSM code is given in Script 10.7.9.
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Script 10.7.9 (Texture transformations)
DEF outl = CUBQID:<1,1> TEXTURE FullTexture:<'gioconda.jpg’, FALSE, FALSE,
<0.5, 0.5>, PI/-4, <1,1>, <0, 0>>;

DEF out2 = CUBQID:<4,4> TEXTURE FullTexture:<'gioconda.jpg’, FALSE, FALSE,
<0.5, 0.5>, PI/-4, <1/2,1/2>, <0, 0>>;

DEF out3 = CUBQID:<4,4> TEXTURE FullTexture:<'gioconda.jpg’, TRUE, TRUE,
<0.5, 0.5>, PI/-4, <1/2,1/2>, <0, 0>>;

Figure 10.49 (a) Texture rotation with center of normalized space as fixed point
(b) Rotation and scaling (c¢) Rotation and scaling with repeatS = repeatT = TRUE

Texture mapping with repetition The texture may be repeated on the target
surface by giving in VRML a TRUE value to Boolean fields repeatS and repeatT.

With the VRML approach to texture transformation previously described, the
scalingS and scalingT fields of TextureTransformnode have the role of repetition
parameters, since their reciprocal values give the number of columns and rows,
respectively, in the array of repeated texture instances within the normalized texture
space.

In Script 10.7.10 we show how to obtain a repeated texture with 3 x 2 and 2 x 3
undeformed image instances, respectively. Both the results and the intermediate
reasoning are displayed in Figure 10.50, which is produced by the STRUCT expression
of the script. The aspectRatio parameter for the Mona Lisa’s texture was defined in
Script 10.7.7.

Script 10.7.10 (Texture mapping with repetition)
DEF repeatedTexture (scaleS,scaleT::IsReal) = CUBOID:<1,1> TEXTURE
FullTexture:<gioconda.jngTRUE,TRUE,<0,0>,0,<sca1eS,scaleT>,<0,0>>;

DEF out = STRUCT:<
repeatedTexture:<1/3,1/2>, T:1:1.2,
repeatedTexture:<1/2,1/3>, T:1:1.2,
S:2:(1/aspectRatio) : (repeatedTexture:<1/2,1/3>), T:1:1.2,
S:<1,2>:<aspectRatio, 1/aspectRatio>:(repeatedTexture:<1/2,1/3>)
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Figure 10.50 Texture mapping with repetition

10.8 Examples
10.8.1 Orthogonal projection on any viewplane
We want to compute the view model that produces an orthogonal projection on the

plane of the Cartesian equation ax + by + cz + d = 0. The solution is straightforward:

a

VPN =DoP=| b |, VRP = 0.

Any vector value is feasible for vuv, provided that it is neither parallel to VPN nor
equal to 0. In other words, we must just guarantee that

VUV X VPN # 0.

10.8.2 Model of example house

Script 10.8.1 (Walls and ground model)

DEF front = MKPOL:< <<0,0>,<3,0>,<5,0>,<10,0>,<3,5>,<5,5>,
<6,5>,<9,5>,<0,7>,<5.5,7>,<10,7>,<6,2>,<9,2>>,
<<1,2,5,9>,<3,12,7,10,6>,<3,4,12,13>,<4,13,8,11>,
<5,6,9,10>,<7,8,10,11>>, <1..6>>;

DEF side = MKPQOL:< <<14,0>,<7,0>,<0,0>,<10,2>,<8,2>,<5,2>,<3,2>,
<10,5>,<8,5>,<5,5>,<3,5>,<14,7>,<7,7>,<0,7>>,
<<1,4,8,12>,<1,2,4,5>,<2,5,6,9,10,13>,<2,3,6,7>,
<3,7,11,14>,<8,9,12,13>,<10,11,13,14>>, <1..7>>;

DEF patternO (m::IsInt) = (QUOTE ~ ##:n):<1,-1>;
DEF patternl (n::IsInt) (QUOTE ~ ##:n):<-1,1>;

DEF ground = STRUCT:<
STRUCT:<pattern0:7 * patternO:5, patternl:7 * patternl:5> COLOR white,
STRUCT:<patternl:7 * patternO:5, pattern0:7 * patternl:5> COLOR blue >;
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The PLaSM definition of the simplified house model used in this chapter to show the
effects of different view models is given in Scripts 10.8.1 and 10.8.2. The front and
side symbols return 2D polyhedral values corresponding to the house main walls. The
ground symbol returns the 2D house floor with the checkerboard pattern.

Netscape:
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Figure 10.51 Browsing the VRML file produced when exporting the model value

Script 10.8.2 (Model of house scene)
DEF gold = RGBCOLOR:<0.73,0.6,0.1>;
DEF white = RGBCOLOR:<1,1,1>;
DEF blue = RGBCOLOR:<0,0,1>;

DEF housemodel = STRUCT:<
(T:1:14 ~ R:<1,2>:(PI/2) ~ R:<2,3>:(PI/2) ~ EMBED:1):front,
(R:<1,2>:(PI/2) ~ R:<2,3>:(PI/2) ~ EMBED:1 ~ CUBOID):<10,7>,
(T:2:10 ~ R:<2,3>:(PI/2) ~ EMBED:1):side,
(R:<2,3>:(PI/2) ~ EMBED:1):side,
EMBED:1:ground > COLOR gold;

house_model;

The 3D house_model is generated as an assembly of properly embedded and oriented
front, side and ground instances. Notice in particular that the gold color is applied
to the whole house model, but does not modify the subassemblies (such as the ground)
where specific colors were previously applied.

Some images taken from the screen during the browsing of the VRML model
generated when exporting the polyhedral value of the house model symbol are given
in Figure 10.51.

It may be interesting to notice that exactly the same result is obtained by
substituting the ground definition of Script 10.8.1, with the one given in Script 10.8.3,
where pattern. jpg contains the tiled image shown in Figure 10.52.
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Script 10.8.3 (Textured ground)
DEF ground = S:<1,2>:<14,10>: (CUBOID:<1,1> TEXTURE
FullTexture:<'pattern.jpg’, TRUE, TRUE, <0, 0>, 0, <7,5>, <0, 0>>) ;

Figure 10.52 Texture mapped on the ground of house model

10.8.8 Cell extraction

It can be quite important in various modeling problems to extract the cells of a
polyhedral complex, in order to make possible some ad hoc handling of individual
cells.

Therefore we show in Script 10.8.4 a SPLIT function from polyhedral complexes
to sequences of polyhedral complexes, which takes a complex as input and gives as
output the sequence of its convex cells, returned as isolated complexes. This function
may be further specialized to extract the cells of the 1-, 2- or 3-skeleton of the input
complex, as shown in the script.

The SplitCells implementation is quite simple. The input polyhedral scene is first
decomposed into the dataset triplet; its vertices are moved into the points object;
its cells are reconstructed as proper subsets of points. Finally, each element in the
cells sequence is transformed into an individual complex by the combined action of
functions [ID, [INTSTO ~ LEN],K:<<1>>] and MKPOL.

Script 10.8.4 (Convex cells)

DEF SplitCells (scene::IsPol) =
AA: (MKPOL ~ [ID, [INTSTO ~ LEN],K:<<1>>]):cells

WHERE
cells = ((CONS ~ AA:(CONS ~ AA:SEL) ~ S2):dataset):points,
points = Sl:dataset,
dataset = UKPOL:scene

END;

DEF extract_wires (scene::IsPol) = (SplitCells ~ @1):scene;
DEF extract_polygons (scene::IsPol) = (SplitCells ~ @2):scene;
DEF extract_bodies (scene::IsPol) = (SplitCells ~ @3):scene;

extract bodies: (ColRow:4);
extract_polygons: (ColRow:4) ;

The last two rows of Script 10.8.4 produce the geometric assemblies which are shown
exploded in Figure 10.53. The generating expression ColRow:4 of the input complex
was presented in Script 2.4.3 while discussing the Temple example.

The extraction of the components of a complex may usefully return the polyhedral
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Figure 10.53 (a) z-exploded view of solid cells (b) zyz-exploded view of boundary

polygons

cells. For this purpose it is sufficient to slightly modify, as shown in Script 10.8.5,
the SplitCells operator previously given. Two pictures showing an exploded view
of either convex or polyhedral extracted cells from the hole object given below is
shown in Figure 10.54. The definitions of triangleStrip and Q operators are given
in Scripts 7.2.17 and 6.4.4, respectively.

Script 10.8.5 (Polyhedral cells)
DEF SplitPols (scene::IsPol) =
(AA: (MKPOL ~ [S1,82, [INTSTO ~ LEN ~ S82]]) ~ DISTL):< points, pols >
WHERE
points = Sl:dataset,
pols = ((CONS ~ AA:(CONS ~ AA:SEL) ~ S3):dataset):(S2:dataset),
dataset = UKPOL:scene
END;

DEF hole = (triangleStrip * K:(Q:1)):
<<0,3>,<1,2>,<3,3>,<2,2>,<3,0>,<2,1>,<0,0>,<1,1>,<0,3>,<1,2>>;

DEF extract_polygons (scene::IsPol) = (SplitPols ~ @2):scene;
(STRUCT ~ explode:<1.2,1.2,1.5> ~ extract_polygons):hole;

Figure 10.54 xyz-exploded view of boundary: (a) convex cells (b) polyhedral cells
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10.8.4 Ezploded views

In several applications of mechanical and architectural CAD it may be very useful
to produce some exploded view of an assembly. The technique to use in this case is
quite simple. First, choose a triplet of scaling coefficients s;, sy,s. > 1 to apply to
some assembly points; then, for each object i in the input sequence do the following
operations:

choose an internal point p,, e.g. the centroid of the containment box;

apply a scaling tensor Sy, (sz, Sy, Sz) to p;, so generating its image p;;
T

compute the vector t; = p; — p, = ( ti, ti, ti. ) ;

finally apply the translation tensor T'.,.(ti,,%;,,t:.) to the object.

= w e

In Script 10.8.6 we give, through the function explode, an implementation of the
algorithm previously discussed. Such a function must be first applied to a triplet
sx, sy, sz of scaling coefficients. The input scene in entered as a sequence of polyhedral
complexes. The exploded views produced by the last two expressions of Script 10.8.6
are shown in Figure 10.53. Notice that a unit value of a scaling coefficient produces
no mutual translation of parts along the corresponding direction.

The MK and UK functions, used to transform a point into a 0-complex, are given
in Script 3.3.15; the function vectDiff, to compute the difference of two points or
vectors, is given in Script 3.1.2.

Script 10.8.6 (Exploded view)

DEF explode (sx,sy,sz::IsReal) (scene::IsSeqOf:IsPol) =
(AA:APPLY ~ TRANS):< translations, scene >

WHERE
scalings = #:(LEN:centers):(S:<1,2,3>:<sx,sy,sz>),
translVectors = (AA:vectDiff ~ TRANS):< scaledCenters,centers >,
centers = AA:(MED:<1,2,3>) :scene,
scaledCenters = (AA: (UK ~ APPLY) ~ TRANS):< scalings, AA:MK:centers >,
translations = AA:(T:<1,2,3>):translVectors

END;

(STRUCT ~ explode:<1,1,1.5> ~ extractbodies ~ ColRow):4;
(STRUCT ~ explode:<1.2,1.2,1.5> ~ extract_polygons ~ ColRow):4;

10.8.5 Standard view models

In Figure 10.55 we show three examples of projections chosen from those discussed
in Section 10.2. In particular we show a central (oblique) projection, an orthogonal
(isometric) parallel projection and a oblique (cabinet) parallel projection, all generated
by PLaSM and exported as Flash files. The PLaSM code is given in Script 10.8.7. A
complete listing of the view models associated to standard projection types is given in
Script 10.2.1. Clearly, in order to produce different projection it is sufficient to change
the name of the view model in the generating line. Let us remember that the semantics
of the flash exporting operator was discussed in Section 7.
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Figure 10.55 Projections exported as Flash files: (a) perspective oblique

(b) parallel isometric (c) parallel cabinet

The house model is defined in Script 8.5.21; the FILLCOLOR, LINECOLOR, LINESIZE
operators, to be used with FLASH exporting, are discussed in Section 15.3.2.

Script 10.8.7 (View models)
DEF housel = projection: perspective: threepoints: house;
DEF house2 = projection: parallel: isometric: house;
DEF house3 = projection: parallel: cabinet: house;

DEF out (object::IsPol) (name::IsString) = FLASH: (object
FILLCOLOR RGBAcolor:<0,1,1,0.5>
LINECOLOR RGBAcolor:<0,0,0,1>
LINESIZE 5) :300:name;

out: housel: 'housel.swf’;
out: house2: 'house2.swf’;
out: house3: 'house3.swf’;

10.9 Annotated references

Michael McKenna discussed in [McK87] a O(n?) worst-case optimal hidden-surface
removal algorithm. This was an improvement over the previous best worst-case
performance of O(n? logn). It was established that the hidden-line and hidden-surface
problems have an O(n?) worst-case lower bound, so the algorithm is optimal.



Part 111

Modeling






