
9

Graphic pipelines

In this chapter we discuss the sequence of transformations that graphics data, including
vertices, control points of curves and surfaces, normal vectors, etc., must undergo in
order to be rendered on the screen or displayed on some other output device. Such
sequence of transformations is denoted as graphics pipeline [FvDFH90]. It is customary
to distinguish between 2D and 3D pipelines. The graphics pipelines defined by the GKS
standard for 2D graphics and by the PHIGS standard for 3D graphics, respectively,
are discussed in depth. Outlines of the graphics pipelines used by Open Inventor and
Java 3D are also briefly introduced. A PLaSM implementation of the PHIGS pipeline
and some examples of automatic insertion of viewpoints in PLaSM-generated VRML
files are finally given.

9.1 2D pipeline

In the mid-1980s the vast majority of graphics systems and applications were two-
dimensional. The situation has radically changed nowadays, but important classes of
2D applications remain, including Geographical Information Systems (GIS) and 2D
drafting.

9.1.1 Coordinate systems

The pipeline of transformations between different coordinate systems was introduced
by the ISO graphics standard GKS in order to achieve device independence, i.e. in
order to display graphics data over devices with different dimensions and pixel
addressing [ISO85, EKP87]. For this purpose three coordinate systems were defined:

1. world coordinates (WC);
2. normalized device coordinates (NDC);
3. device coordinates (DC).

World coordinates are used to define graphics data (parameters of graphics primitives
and geometric attributes of primitives) in some suitable reference depending on the
problem at hand; normalized device coordinates are employed to store and transform

Geometric Programming for Computer-Aided Design Alberto Paoluzzi
c© 2003 John Wiley & Sons, Ltd ISBN 0-471-89942-9

334 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

data in a device-independent way; and, finally, device coordinates are used to display
graphics data on some suitable subset of the current output device.

World Coordinates The so-called world coordinates (WC) define a reference
system which coincides with a standard Cartesian system of two-dimensional
Euclidean space. In such a reference system the more suitable coordinate values can
be used for defining graphics primitives and attributes. Only a bounded rectangular
subset of this space can be displayed on the graphics device. Such a user-defined subset
is called a 2D window.

x

y

0

1

1
0 Nx

Ny

Figure 9.1 (a) Graph of the function f : IR→ IR : x �→ x + 3 sin x, with

x ∈ [0, 6π], and window in WC (b) Normalized device coordinates and viewport in

NDC (c) Rasterized picture in DC

Normalized Device Coordinates The standard 2D unit interval [0, 1]× [0, 1] in
Euclidean space IE2 is called the normalized device coordinates (NDC). This bounded
subset gives a reference frame which is used to store and transform graphics data in a
device-independent manner. The transformation from WC to NDC is given by defining
a rectangular subset of NDC, called viewport, to be used as the target set where the
window over graphics data must be mapped.

Device Coordinates Let us consider a device with Nx × Ny pixels (picture
elements) which can be individually referenced in order to be, e.g., colored or displayed.
The discrete 2D interval [0, Nx − 1]× [0, Ny − 1] ⊂ Z2, corresponding to the address
space of such a specific device, is called the device coordinates (DC). This discrete
space clearly gives a “device-dependent” reference frame that can be regarded as a
bijection with the set of device pixels. Notice that NDC is a square but DC is not
necessarily so.

Example 9.1.1 (Function graph)
We want to generate the graph of the function f : IR → IR : x �→ x+3 sinx, shown in
Figure 9.1. In particular, we are interested to the graph of f restricted to the interval
[0, 6π], i.e. to the set of points

{(x, f(x)) ∈ E2| 0 ≤ x ≤ 6π, f(x) = x+ 3 sinx}

In Script 9.1.1 this function graph is approximated by a polyline primitive
connecting 91 sampled points in the [0, 6π] interval. We remember that the function

GRAPHIC PIPELINES 335

SumSeqWithZero, given in Script 7.3.1, returns the cumulative sums of the elements
of the sequence it is applied to, that is:

SumSeqWithZero:< 1,1,1,1,1 > ≡ < 0,1,2,3,4,5 >

Script 9.1.1
(polyline

∼ AA:[ID, ID + K:3 * sin]

∼ SumSeqWithZero

∼ #:90): (6 * PI / 90);

9.1.2 Normalization and device transformations

In this section we discuss how to transform a coordinate space into another coordinate
space. The simple user-model of such kind of mapping, proposed by GKS, requires
that two 2D intervals are defined in the domain and target spaces of the mapping,
respectively. The mapping is then computed by ensuring that the first interval is
affinely mapped onto the second one. The two intervals are called window and viewport,
respectively. Such an approach to the computation of a coordinate transformation is
called window-viewport mapping.

2D Extent A 2D extent, also called 2D box or 2D interval, is a rectangular domain
B of Euclidean space which is parallel to the reference frame. Such a box is represented
by the ordered quadruple of real numbers that correspond to the coordinates of lower-
left point (b1, b2) and upper-right point (b3, b4), so that:

B = (b1, b2, b3, b4) = [b1, b3]× [b2, b4]

i.e.

B = {p = (x, y)T | x ∈ [b1, b3], y ∈ [b2, b4]} ⊂ IE2

Normalization transformation The bijective affine mapping T N between a
window Wwc in WC and a viewport Vndc in NDC is called the normalization
transformation:

T N : Wwc → Vndc,

where

Wwc = [w1, w3]× [w2, w4], Vndc = [v1, v3]× [v2, v4],

as shown in Figure 9.2a.

336 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

w1,w2

w3,w4

v1,v2

v3,v4

w1,w2

w3,w4

v1,v2

v3,v4

Figure 9.2 (a) Normalization transformation: WC → NDC;

(b) Device transformation: NDC → DC

Device transformation Analogously, a device transformation T D is a bijective
affine mapping between a workstation window Wndc ⊂ NDC and a workstation
viewport Vdc ⊂ DC:

T D : Wndc → Vdc,

where

Wndc = [w1, w3]× [w2, w4], Vdc = [v1, v3]× [v2, v4],

as shown in Figure 9.2b.

9.1.3 Window-viewport mapping

A window-viewport mapping is, by definition, a bijective affine transformation between
2D extents W = [w1, w3]× [w2, w4] and V = [v1, v3]× [v2, v4]:

M : W → V : p �→ M(p),

where M is a tensor in aff IE2. Two methods are discussed below to compute such a
transformation tensor, respectively by a direct approach and by the composition of
elementary transformations.

Direct Method We use here homogeneous coordinates. The two extreme points
(w1, w2, 1)T and (w3, w4, 1)T of windowW are respectively mapped to the two extreme
points (v1, v2, 1)T and (v3, v4, 1)T of viewport V . Also, the M tensor must transform
a 2D extent, parallel to the reference frame, onto another one of the same kind. Hence,
the matrix [M] will have a predictable structure, with only (unknown) coefficients of
scaling and translation:

 v1 v3

v2 v4

1 1

 =

 a 0 b

0 c d
0 0 1

 w1 w3

w2 w4

1 1

GRAPHIC PIPELINES 337

The previous matrix equation is equivalent to four scalar simultaneous equations in
the unknown coefficients a, b, c and d:

a w1 + b = v1

c w2 + d = v2

a w3 + b = v3

c w4 + d = v4

, and hence

a = v3−v1
w3−w1

c = v4−v2
w4−w2

b = v1 − v3−v1
w3−w1

w1

d = v2 − v4−v2
w4−w2

w2

Composition of elementary transformations The window-viewport mapping
tensor M can be derived easily by composition of some elementary transformations:

1. a translation T 1 which maps the point (w1, w2) into the origin o of the
reference system;

2. a scaling S1 of W onto the standard unit square;
3. a scaling S2 of the standard unit square onto V ;
4. a translation T 2 which maps o into (v1, v2).

In other words we have:

M : W → V : p �→ (T 2 ◦ S2 ◦ S1 ◦ T 1)(p),

where

T 1 = T (−w1,−w2),

S1 = S

(
1

w3 −w1
,

1
w4 −w2

)
,

S2 = S (v3 − v1, v4 − v2) ,
T 2 = T (v1, v2).

Non-isomorphic transformation The ratio Ar between the horizontal and
vertical measures of a box B = [b1, b3]× [b2, b4] is called the aspect ratio of the box:

Ar(B) =
b3 − b1
b4 − b2

When Ar(W) �= Ar(V), the window-viewport mapping M : W → V is said to
be non-isomorphic, since it does not preserve the shape of figures. In general, a non-
isomorphic mapping transforms squares into rectangles and circles into ellipses.

Isomorphic transformation In order to preserve the shape of figures for every pair
W and V , it is customary that the graphics system substitutes a computed viewport
V̂ of maximal area, such that

Ar(V̂) = Ar(W),

to the user-defined viewport V . Hence we may have, for the two different cases shown
in rightmost part of Figure 9.3:

Ar(V) > Ar(W) :
{

v̂1 = v1, v̂2 = v2, v̂4 = v4,
v̂3 = v1 + (v4 − v2)Ar(W)

338 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Ar(V) < Ar(W) :
{

v̂1 = v1, v̂2 = v2, v̂3 = v3,
v̂4 = v2 + (v3 − v1)Ar(W)

Different strategies can also be chosen, by imposing, e.g., that the computed
viewport has the same center of the user-defined one, as shown in the central part
of Figure 9.3.

w1,w2

w3,w4

v1,v2

v3,v4

v2

v4̂

^

v1,v2

v3,v4

v1

v3̂

^

v1,v2

v3,v4

v4̂

v1,v2

v3,v4v3̂

Figure 9.3 Computed viewports for preserving aspect ratio in window-viewport

mapping. Two diverse strategies

Device transformation Several device transformations may be associated in GKS
with the same normalization transformation. This allows simultaneous connection of
several devices in one graphics application.

The simplest example of device transformation is given by mapping the NDC space
onto the discrete DC space, in the hypothesis of square pixels. In this case we have,
for the isomorphic mapping:

T iso
D : NDC → D̂C

that

T iso
D = S(N − 1, N − 1),

with

N = min(Nx, Ny),

where Nx and Ny are the numbers of columns and rows of discrete device space,
respectively, and

D̂C = [0, N − 1]× [0, N − 1] ⊂ DC.

Rectangular pixel Some display devices (e.g. TV monitors) may have non-square
pixels, usually with aspect ratio

dx

dy
< 1,

GRAPHIC PIPELINES 339

where dx and dy are the pixel side measures. In this case, in order to mantain invariant
the shape of figures, i.e. in order to map circles to circle, squares to squares, and so
on, it is possible to define a corrected device transformation:

T iso
D : NDC → D̂C

such that

T iso
D = Spixel ◦ S(N − 1, N − 1) = S

(
dy

dx
, 1

)
◦ S(N − 1, N − 1)

where, as usual, N = min(Nx, Ny). If conversely dx

dy
> 1, then we have Spixel =

S
(
1, dx

dy

)
.

Reversed y axis Some graphics monitors address the device space with encreasing
y-coordinates from top to bottom of the screen. In this case the device transformation
must combine a scaling tensor with a mirroring and vertical translation tensor:

T iso
D = T (0,−N) ◦ S(1,−1) ◦ Spixel ◦ S(N − 1, N − 1),

as shown in Figure 9.4. When displaying a graphics object on some reversed-axis device
of such type, i.e. with origin of DC on its top-left point, we have the result shown in
Figure 9.4b.

NDC

DC

Figure 9.4 (a) Device transformation, with a reversed orientation of y axis

(b) Display on a reversed y-axis device

9.2 3D pipeline

Every 2D picture of a 3D scene is obtained by projection, i.e., geometrically speaking,
by intersection of a plane with the bundle of straight lines which project the scene
vertices from some suitable projection center. Depending on the position of this center,
there are two main classes of projections: perspective and parallel, with center in a
finite point or at infinity, respectively. The various types of projections are thoroughly
discussed in Chapter 10. A picture of a 3D scene on the output device is produced by
applying several coordinate transformations to the scene data. Such a set of coordinate
transformations is often called the 3D pipeline, and is discussed here.

340 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

9.2.1 View model

The mechanism of projection is very similar to that of human vision, where light’s rays
reflected from scene reach the observer’s eye and are intercepted by the retina. This is
a small portion of a spherical surface, which may be thought as locally approximated
by the tangent plane. The image generated by light receptors on the retina is then
transmitted to the superior brain centers, where it is suitably elaborated. In particular,
from the small differences between the images perceived by the two eyes, due to the
small difference between the positions of “projection centers”, depth information about
scene points is generated.

Actually, when using computers, the projection of scene points is not computed
geometrically, but is derived algebraically by applying to the scene model a linear
mapping of rank two which maps a three-dimensional space onto a two-dimensional
one. This approach allows production of both parallel and perspective projections by
using homogeneous coordinates. To preserve depth information, needed to generate
pictures with hidden parts removed, the projection mapping is always generated by
the composition of a linear mapping of rank three with an ortographic projection,
which removes the third coordinate while leaving invariant the remaining ones.

Camera model In the past two decades, 3D graphics systems have adopted a
conceptual model of projection called the camera model, which is very easy to use
and allows generation of both central and parallel projections with assigned geometric
properties. This conceptual model of projection was developed in late 1970s by the
Special Interest Group in Graphics of Association for Computing Machinery (ACM
Siggraph), as a part of the more general 3D Core system, that became ANSI standard
in those years. Subsequent graphics libraries and environments have introduced only
small variations on this approach, that we are going to discuss in the following sections.
In particular, we make reference to the PHIGS [ANSI87, ISO89, HHHW91, GG91,
Gas92] specification of the camera model.

View parameters Four 3D vectors, defined in WC, are called view parameters in
ANSI Core. They completely specify the picture resulting from a specific projection,
also called view, of the scene. The picture resulting from a projection is returned in
a reference system linked to the projection plane. This system is called uvn or view
system in ANSI Core, and view reference in PHIGS. A view model is a set of values
for view parameters. The four vector parameters which specify the projection, i.e. the
view, are the following:

1. Center of Projection (COP) is the common point of projecting lines. It
coincides with the observer’s position. It is substituted by the vector called
Direction of Projection (DOP) for parallel projections, where the projection
center is improper, i.e. is set at infinity.

2. View Reference Point (VRP) is the point targeted by the observer, at the
intersection of the view axis and the view plane. It is assumed as the origin
of the view reference system.

3. View Up Vector (VUV) is a vector used to orientate the projected picture.
The v axis of view system is parallel to the projection of view up vector.

GRAPHIC PIPELINES 341

4. View Plane Normal (VPN) is a vector normal to the view plane. It is assumed
as the direction of the n axis of view reference system.

A further discussion and several examples of view parameters are given in Sections 10.1
and 10.2, where we discuss how to generate the more useful types of projections used
in technical drawings.

9.2.2 Coordinate systems

In ISO graphics standard PHIGS, five different coordinate systems are used:

1. Modeling Coordinates (MC)
2. World Coordinates (WC3)
3. View Reference Coordinates (VRC)
4. Normalized Projection Coordinates (NPC)
5. Device Coordinates (DC3)

Such systems are connected by four coordinate transformations. The composition of
such transformations is called the 3D pipeline.

Each reference system, including device coordinates, in the PHIGS’s 3D pipeline is
fully three-dimensional. The acronyms WC3 and DC3 are used to distinguish them
from the corresponding 2D coordinates of GKS.

Modeling Coordinates (MC) are coordinates which are local to each structure in
the structure network. It is very useful and natural that each component substructure
in a hierarchical model can be modeled by using a local coordinate frame. The local
coordinates of each structure are called modeling coordinates.

A traversal algorithm, that we know (from Section 8.3) to be a Depth First
Search (DFS), is used to linearize the structure network and transform all component
substructures, i.e. the graphics primitives there contained, to the same coordinate
frame, say, to world coordinates.

World Coordinates (WC3) are the global coordinates of the structure posted
to a workstation, in order to be displayed or interactively modified. Often, world
coordinates coincide with the local coordinates of the root (i.e. the initial structure)
of some hierarchical structure network.

World coordinates are used as the common reference frame for all the graphics
primitives (graphics data) contained in every component of a 3D scene. Such a
reference frame is also used to define the camera position and orientation in a view
model.

View Reference Coordinates (VRC) are used to establish the position of the
observer in the scene, and the orientation of the view. With respect to the camera
analogy, this view reference coordinates system is uniquely determined by the position
and orientation of the camera.

The view reference coordinate system, or uvn system, has its origin in the view
reference point (VRP), n axis parallel to the view plane normal (VPN), and v axis

342 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

parallel to the projection of view-up vector (VUV), all given in WC3. The u axis is
then uniquely determined. The view plane normally coincides with the n = 0 subspace

The projection reference point (PRP) given in VRC, and the type of projection
(either parallel or perspective) completely specify the projection. The 2D window
limits on view plane in VRC and the front, and back plane distances (given as n
values in VRC) specify the view volume used to clip the scene to the desired portion.

Normalized Projection Coordinates (NPC) are used to describe the type of
projection desired. In particular this is fixed by specifying the relative position to the
observer and view plane, as well as some additional parameters which define what
portion of the scene must be rendered on the output device.

The view mapping transformation first transforms the view volume given in VRC
into a canonical volume in NPC, then into a 3D viewport contained in the 3D standard
interval [0, 1]3, where the transformed and clipped data are mantained in a device-
independent manner.

Normalized projection coordinates are also used to compose different pictures. For
example, a Monge projection (which is a composite orthographic projection where
different views are composed simultaneously — see Section 10.2.2) is obtained by
connecting different VRC systems to the same NPC. Different views can be composed
in NPC by specifying different projection viewports.

The third coordinate of NPC system is the perspective depth of scene points and is
used to compute the relative occlusion between scene parts. The actual projection of
the scene is simply obtained by eliminating this coordinate, both in perspective and
parallel cases.

Device Coordinates (DC3) are discrete 3D coordinates depending on the device.
Such coordinates are three-dimensional in PHIGS, where advanced graphics devices
are considered fully 3D.

Sometimes the device address space is bjiectively mapped onto the set of voxels
(volume elements), really 3D, that allow for dynamic volume visualizations. More
often a two-dimensional array of reals, called a z-buffer, is closely coupled to a 2D
frame buffer, which accommodates a color index for each point displayed on the raster
device. The z-buffer algorithm, which drives the rasterization of graphics primitives
producing a hidden-surface removed picture of the scene, is discussed in Section 10.3.6.

9.2.3 Transformations of coordinates

A pipeline of four transformations of coordinates is associated with the five reference
systems of PHIGS systems:

1. Structure Network Traversal
2. View Orientation
3. View Mapping
4. Workstation Transformation.

The Structure Network Traversal was already discussed in Section 8.3 and is only
briefly recalled here; the other transformations are discussed in detail in the following
subsections.

GRAPHIC PIPELINES 343

Structure Network Traversal is a composite algorithmic transformation from
modeling coordinates that are local to the various hierarchical structures, to the global
world coordinates:

MC → WC3.

As we already know from Section 8.3, this algorithm clips the primitives certainly
outside the view volume, while transforming the remaining ones to WC3 coordinates.
The mapping from MC to WC3 is performed by traversing the structure network with
a DFS, and multiplying each encountered primitive times the Current Transformation
Matrix (CTM). The traversal algorithm returns the set of clipped primitives in the
coordinates of the posted root stucture, assumed as WC3.

View Orientation is the mapping from world coordinates to view reference
coordinates:

WC3 → V RC.

This transformation is a rigid (possibly improper) transformation i.e. is composed by
a translation, a rotation and possibly by an elementary reflection, to be considered
only when WC3 and VRC systems have different orientation. In recent years world
coordinates and view reference coordinates are both right-handed, so that the
reflection coincides with the identity mapping.

View Mapping is the mapping from view reference coordinates to normalized
projection coordinates:

V RC → NPC.

This transformation maps the view volume in VRC onto a canonical volume [−1, 1]×
[−1, 1] × [−1, 0], then onto some NPC viewport. The first step is accomplished
by composing a translation, a shearing, a scaling and possibly a perspective
transformation (mathematically an affine homology). Such a transformation allows
unification of the treatment of both parallel and perspective projections. A 3D window-
viewport mapping, analogous to the transformation discussed in Section 9.1, is finally
applied to transform the canonical volume onto some NPC viewport.

Workstation Transformation is the mapping from normalized projection
coordinates to discrete 3D device coordinates:

NPC → DC3.

It is used to transform a 3D workstation-window in NPC into a 3D workstation-
viewport in DC3, both defined as 3D extents parallel to the coordinate frames. As in
the 2D case, it is composed by translations and scaling transformations.

344 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

9.2.4 View orientation

The view-orientation transformation is a translation followed by a rotation, possibly
improper, that moves the VRP to the origin, the VPN to the z axis, the projection of
VUV to the y axis, and the cross-vector of the first two to the x axis.

This roto-translation may be followed by a z-reflection if the WC3 system and the
VRC system have different orientations, e.g. if the first is right-handed whereas the
second one is left-handed, or vice versa.

Notice that the view-orientation transformation is exactly the same for both the
parallel and the perspective case.

V O = R(V PN, V UV) ◦ T (−V RP)

where

T (−V RP) =

1 0 0 −vrpx

0 1 0 −vrpy

0 0 1 −vrpz

0 0 0 1

R(V PN, V UV) =

rux rvx rnx 0
ruy rvy rny 0
ruz rvz rnz 0
0 0 0 1

with

rn = V PN/||V PN ||

ru = V UV × rn/||V UV × rn||

rv = rn × ru

The transformation can also be seen as change of coordinates. The three vectors of
the new basis, i.e., respectively, V O(ru), V O(rv) and V O(rn), denoted here as x, y
and z, are traditionally named u, v and n in graphics systems. Since we cannot invent
new names for the basis of each coordinate system in the 3D pipeline, we will continue
to use the standard names x, y and z for basis vectors of each pipelined reference
frame.

View Model We show here the great simplicity of the specification of a view model
in a PHIGS-like graphics system. It may be useful to remember that VRP is the target
point in the camera analogy, and that VPN is the normal to the view plane, so that
it determines the orientation of the camera axis. Conversely, the VUV vector defines
the vertical direction of the projected picture, i.e. the rotation of the camera about
its axis. Let us remember also that PRP, the window limits and the front and back
planes are given in VRC.

GRAPHIC PIPELINES 345

Script 9.2.1 (View model)
DEF vrp = < 0, 2.0, 2>;

DEF vpn = < 1, 0, 0 >;

DEF vuv = < 0, 1, 1 >;

DEF prp = < 0, 0, 25 >;

DEF front = 10;

DEF back = -1;

DEF window = < -4, -3, 4, 3 >;

Example 9.2.1 (View model definition)
A set of values for the parameters described above will be called a view model in this
book. An example of view model is given in Script 9.2.1.

Implementation As we already know, the ViewOrientation tensor is composed of
a translation followed by a rotation. The first one moves the origin to the PRP; the
second one moves three unit normal vectors Ru, Rv and Rn, depending on VPN and
VUV, in the unit vectors of reference frame. The implementation given in Script 9.2.2
directly translates the transformation formulas discussed in Section 9.2.4.

Script 9.2.2
DEF ViewOrientation = RotVRC ∼ TranslVRC;

DEF TranslVRC = T:<1,2,3>:(AA:-:vrp);

DEF RotVRC = (MAT ∼ TRANS): <<1,0,0,0>,AL:<0,Ru>,AL:<0,Rv>,AL:<0,Rn>>

WHERE

Ru = UnitVect:(vuv VectProd Rn),

Rv = Rn VectProd Ru,

Rn = UnitVect:vpn

END;

In Figure 9.5 we show the world positions of the house model and the view volume
previously given.

In Figure 9.6 we show the result of application of tensor ViewOrientation to the
WCscene model defined by Script 9.4.4. The generating expression of the model shown
in Figure 9.6 is

ViewOrientation: WCscene;

Let us note that all the pictures of this section use both a Monge’s and a dimetric
projection. The direction of the z axis in the dimetric projection is always vertical in
the pictures. The Monge’s images instead mantain the axis orientation typical of this
kind of composite projection.

9.2.5 View mapping

The view mapping transforms the view volume in VRC onto the canonical volume in
an intermediary coordinate system, and then maps this volume onto the 3D viewport
in NPC. The canonical volume is defined as the 3D interval [−1, 1]× [−1, 1]× [−1, 0] in
the parallel case, and the truncated pyramid with vertex in the origin, squared basis

346 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Figure 9.5 House model and perspective view volume in world coordinates

Figure 9.6 House model in VRC according to the view orientation transformation

GRAPHIC PIPELINES 347

z

z

x

z
x

y

z

y

x

z

y

x

z

y y

y

Figure 9.7 Canonical view volume: (a) parallel case (b) perspective case

in the plane z = −1 and side faces into the planes with unit slope, in the perspective
case.

In perspective case an affine homology1 is applied to the pyramidal canonical
volume, which is transformed to the parallelepiped canonical volume, then mapped
to the 3D viewport. In such canonical volume, two points aligned with the observer
belong to the line of equations x = a, y = b, and differ only for their perspective depth,
which coincides with the z coordinate.

In the following we distinguish between the view mapping V Mper in the perspective
case, from the view mapping V Mpar in the parallel case.

Parallel case The view mapping tensor V M par is the composition of a shearing, a
scaling and a translation:

V Mpar = T par ◦ Spar ◦ Hz .

The shearing Hz must shear the Direction Of Projection (DOP) vector in
(0, 0, dopz, 1)T , thus shearing the possibly oblique view volume into a straight one.
The DOP vector in VRC is defined in PHIGS as difference between the Center of
Window (CW) and the Projection Reference Point (PRP):

DOP = CW − PRP =

(umax + umin)/2
(vmax + vmin)/2

0
1

 −

prpu

prpv

prpn

1

So, it must be

0
0

dopz

1

 = Hz

dopx

dopy

dopz

1

 =

1 0 shx 0
0 1 shy 0
0 0 1 0
0 0 0 1

dopx

dopy

dopz

1

,

and hence

shx = −dopx

dopz
, shy = −dopy

dopz
.

1 A bijective mapping of lines to lines and planes to planes that preserves the incidence
relationship.

348 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

z=vrp'z=vrp' + F z=vrp' + B
zz z

-z

y

y=(vmax-vmin)/2

-z

y

-1

y = -z

y = z

z = z min

Figure 9.8 Scaling to canonical view volume of parallel case

After the action of such tensor, the bounds of view volume are

umin ≤ x ≤ umax, vmin ≤ y ≤ vmax, B ≤ z ≤ F

to be scaled and translated to the canonical volume

−1 ≤ x ≤ 1, −1 ≤ y ≤ 1, −1 ≤ z ≤ 0,

so that

T par = T

(
−umin + umax

2
,−vmin + vmax

2
,−F

)
,

Spar = T

(
2

umax − umin
,

2
vmax − vmin

,
1

F − B

)
.

Perspective case The view mapping tensor V Mper is the composition of a
translation of PRP, that coincides with COP in this case, to the origin, followed
by a shearing to make straight the view pyramid, and by a composite scaling to map
the result into the canonical volume:

V Mper = Sper ◦ Hz ◦ T (−PRP),

where:

1. T (−PRP) moves the center of projection to the origin;
2. the shearing Hz tensor coincides with the one of parallel case;
3. the scaling tensor can be decomposed as: Sper = S2 ◦ S1.

where S1 maps the straight view pyramid onto a unit slope pyramid:

S1 = S(
−2 vrp′z

umax − umin
,

−2 vrp′z
vmax − vmin

, 1)

and where S2 uniformly scales the three-space to move the z = B plane (the Back
plane) to the z = −1 plane:

S2 = S(
−1

vrp′z +B
,

−1
vrp′z +B

,
−1

vrp′z + B

T

)

GRAPHIC PIPELINES 349

Notice that vrp′z is obtained by mapping the VRC origin by the translation to PRP
and by the subsequent shearing:

V RP ′ = (Hz ◦ T (−PRP))(0, 0, 0, 1)T

Implementation The ViewMapping tensor maps the view volume from VRC to
NPC. The NPC view volume must coincide, in the perspective case, with the pyramid
centered in the origin and with squared basis [−1, 1]× [−1, 1] in the plane of equation
z = −1.

As seen in Section 9.2.5, the view mapping tensor V M per is composed of a
translation tensor T per, by a tensor shearing Hz and by a scaling tensor S per.
Also in this case, the code given in Script 9.2.3 implement very directly the formulas
given in Section 9.2.5.

Notice that umin, vmin, umax and vmax are generated by selecting the first, second
third and fourth component of 2D window, and that the z component of VRP is
obtained by opening the polyhedral data structure and by extracting the origin of
VRC exposed to the action of T per and SH per. The MK operator that transforms
a point into a 0-dimensional polyhedron, so that tensors can apply to it, is given in
Script 3.3.15.

Script 9.2.3
DEF ViewMapping = S per ∼ SH per ∼ T per;

DEF T per = T:<1,2,3>:(AA:-:prp);

DEF SH per = MAT:

<< 1, 0, 0, 0 >,

< 0, 1, 0, dopx / dopz >,

< 0, 0, 1, dopy / dopz >,

< 0, 0, 0, 1 >>

WHERE

dopx = (umin + umax)/2 - s1:prp,

dopy = (vmin + vmax)/2 - s2:prp,

dopz = 0 - s3:prp

END;

DEF S per = S:<1,2,3>:<sx,sy,sz>

WHERE

sx = (2 * vrp z)/((umax - umin)*(vrp z + back)),

sy = (2 * vrp z)/((vmax - vmin)*(vrp z + back)),

sz = -1/(vrp z + back)

END;

DEF umin = S1:window; DEF vmin = S2:window;

DEF umax = S3:window; DEF vmax = S4:window;

DEF vrp z = (s3 ∼ s1 ∼ s1 ∼ UKPOL ∼ SH per ∼ T per ∼ MK): <0,0,0>;

In Figure 9.9 we show the result of application of ViewMapping tensor to the model
generated by the previous step. The generating expression of the model shown is in
this case:

350 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

(ViewMapping ∼ ViewOrientation): WCscene;

9.2.6 Perspective transformation

The so-called perspective transformation [FvDFH90], mathematically an affine
homology, maps the canonical pyramid volume of central projections onto the
canonical parallelepiped volume of parallel projections.

Such a transformation moves the origin to the improper point of z axis and the front
plane to the plane z = 0, while keeping invariant the back plane, of current equation
z = −1. Such a perspective tensor is associated with a matrix

P =

1 0 0 0
0 1 0 0
0 0 1

1+zmin

−zmin

1+zmin

0 0 −1 0

, zmin �= −1 (9.1)

Example 9.2.2 (Perspective transformation)
Let us consider the vertices

r =

−zmin

−zmin

zmin

1

T

and s =

1
1
−1
1

T

of canical view volume of Figure 9.7b, where r is at the intersection of planes x = −z,
y = −z and z = zmin, and s is at the intersection of planes x = −z, y = −z and
z = −1. They are respectively mapped to

P (r) =

−zmin

−zmin

0
−zmin

 =

1
1
0
1

 and to P (s) =

1
1
−1
1

Perspective Transformation The perspTransf tensor, given in Script 9.2.4, maps
the canonical view volume of central projections onto the canonical view volume of
parallel projections, the 3D extent [−1, 1]× [−1, 1]× [−1, 0].

In order to implement such a tensor it is necessary to remember that PLaSM, for
the purpose of allowing for easy dimensional-independence of geometric operations,
has conventionally chosen the first coordinate as the homogeneous one. Hence the
matrix (9.1) of affine homology discussed in Section 9.2.6 must be accordingly
modified. The desired result may be obtained by applying the cyclic permutation(

1 2 3 4
2 3 4 1

)

to the matrix rows and columns. The perspTransf tensor is hence defined as in the
following Script.

GRAPHIC PIPELINES 351

Script 9.2.4
DEF perspTransf = (MAT ∼ INV):<

< 0, 0, 0, -1>,

< 0, 1, 0, 0>,

< 0, 0, 1, 0>,

<-:z min/(1+z min), 0, 0, 1/(1+z min)> >

WHERE

z min = -:(vrp z + front)/(vrp z + back)

END;

The result of application of the perspTransf tensor to the model generated at the
previous step is shown in Figure 9.10. The PLaSM expression which generates the model
represented in such figure is

(perspTransf ∼ ViewMapping ∼ ViewOrientation): WCscene;

9.2.7 Workstation transformation

The workstation transformation maps a 3D workstation window in NPC onto a 3D
workstation viewport in DC3. This mapping is similar to the 2D one defined by GKS
and discussed in Section 9.1.2. It is composed of a translation that moves the NPC
point of minimum coordinates to the origin, then by a scaling of the 3D extent to the
size of the viewport and by a final translation of the origin to the DC3 viewport point
of minimum coordinates. The device transformation is applied to the geometric data
of primitives, including the control points of curves and surfaces (see Section 11.2).
Such primitives are then rasterized in 3D, often using some variation of the z-buffer
approximated algorithm for removing the hidden parts. Exact algorithms for hidden-
surface removal would have already been applied in NPC coordinates.

So, ifW = [w1, w4]×[w2, w5]×[w3, w6] ⊂ NPC, and V = [v1, v4]×[v2, v5]×[v3, v6] ⊂
DC3, then we have

T D : NPC → DC3

such that

T D = T (v1, v2, v3) ◦ S(
v4 − v1

w4 − w1
,
v5 − v2

w5 −w2
,
v6 − v3

w6 −w3
) ◦ T (−w1,−w2,−w3)

View volume clipping It is very convenient to perform in NPC the detail clipping
of geometric primitives to the boundaries of the view volume. Remember that a fast
culling of a hierarchical scene graph can already be performed in WC3 by pruning
its covering tree at traversal time, on the basis of an intersection test between the
containment box of current node (root of substructure) and the containment box of
the view volume.

A clipping in NPC after perspective transformation is numerically convenient,
because the intersection of primitives with a 3D extent parallel to the reference frame
allows the use of very simple inequalities for boundary half-spaces, i.e.:

−x ≤ 1, x ≤ 1,

352 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Figure 9.9 House model (in NPC) after the orientation and the view mapping

transformation

Figure 9.10 Canonical volume after perspective transformation

GRAPHIC PIPELINES 353

−y ≤ 1, y ≤ 1,

−z ≤ 1, z ≤ 0.

Such a clipping is easily microcoded on the graphics boards. The result of applying
in NPC a clipping operation to the result of perspective transformation is shown in
Figure 9.11. A possible PLaSM generating expression is given in Script 9.2.5.

Script 9.2.5
DEF WCscene = < WCvolume, house >;

DEF clipping = <1,2,3> && <1,2,3>;

DEF perspPipeline = perspTransf ∼ ViewMapping ∼ ViewOrientation;

(clipping ∼ AA:perspPipeline): WCscene;

Some comments on the code in Script 9.2.5 are probably needed. First, notice that
the clipping function is just an alias for the operator of intersection of polyhedral
complexes of full dimensionality in 3D. The meaning of the perspPipeline function
is straightforward.

Window-viewport mapping Two window-viewport mappings are supported by
PHIGS, between VRC and NPC as well as between NPC and DC3. The first one is
slightly simpler, since the mapping domain is the canonical volume [−1, 1]× [−1, 1]×
[−1, 0], which is mapped onto a NPC viewport. As we know, this kind of mapping is
a composition of a translation, a scaling and a further translation.

To finally obtain some realistic image from our example, we only need to scale our
result to the size of VRC window. A further mapping to some NPC viewport should
subsequently apply:

(S:<1,2>:<(umax-umin)/2,(vmax-vmin)/2> ∼ clipping

∼ AA:perspPipeline): WCscene;

The geometric result of the previous expression is shown in Figure 9.12. The
final 2D image algebraically generated by eliminating the third coordinate, is shown
in Figure 9.13, where both a wire-frame image of projected model and a hidden-
surface removed image are reported. We discuss in Section 10.3 how the insertion of
perspective transformation in the 3D pipeline allows for a more efficient solution to
the problem of removing the hidden parts of the scene.

9.3 Other implementations

A brief introduction to different models of 2D and 3D graphics approaches and
pipelines is given in this section. Our aim is to help the reader to make connections
and look at the similarities and differences between the different implementations of
the same concept. According to the ancient Romans, we believe that history, even in
the short run of two/three decades, is the best magistra.

354 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Figure 9.11 Canonical volume after perspective transformation and clipping

Figure 9.12 Canonical volume after perspective transformation, clipping and

scaling to the window 2D

Figure 9.13 Final projected image: with (b) and without (a) removal of hidden

lines

GRAPHIC PIPELINES 355

9.3.1 Scalable vector graphics (SVG)

SVG is a recent standard for vector 2D graphics on the web defined by the W3
Consortium [Svg02]. When using the SVG format, a 2D graphics at vector precision
will be created by the browser based on plain text instructions contained in a SVG file
or directly embedded in a HTML document. No image files are necessary. A working
draft specification was released on 2001 by the World-Wide Web Consortium, partly
inspired by two earlier specifications by Microsoft, Macromedia, and others, and by
Adobe, Netscape, Sun, and others.

When looking at the SVG specification document [Svg02], the authors were very
impressed by the similarities with the 2D standard graphics codified by GKS, as
a further signal of how pervasive and influential was the 1980s’ movement for
device-, platform-, application- and language-independent standardization of graphics
methods.

The first thing we should note is that SVG is plain text. The code can live within
an HTML document with no other files involved. This one is the main difference from
Flash graphics, that is a binary format, that requires either ad hoc interactive tools or
a dedicated API to create, i.e. much more than a plain text editor. The second thing
to be aware of is that SVG is written in XML, that is a powerful and simple way to
present structured information on the web.

Primitives and attributes SVG offers several predefined primitives, and gives the
user full control of their appearance, in particular by controlling the Fill and Stroke
attributes. Fill means painting the interior of the shape by specifying the color and
even making the inside of a shape partially transparent. Stroke means painting along
the shape outline. Several built-in primitives are available, including:

1. rectangles (with optional rounded corners)
2. circles
3. ellipses
4. pie slices
5. polygons
6. paths

For example, circle may be defined as:

<circle style="fill: red; stroke: yellow"/>

The <path> element allows a combination of sequentially straight lines, cubic Bézier
curves, elliptic or circular arcs, so that shapes can be made by any combination. And
the user can have control over the color, width, antialiasing, and opacity of the stroke
as well as how outlines end or come together. Also, it is possible to fill any shape with
a GIF or JPEG image or make the image define a pattern tile to fill the space. And it
is possible to create a pattern that would cover the stroke of a shape.

Graphic text Graphic text can easily be inserted into a drawing. <text> is a new
element for defining what your text is and what styling information you want to apply
to it. The x and y attributes of a text elements, in particular, allow absolute positioning

356 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

of text string on a web page. The text elements may be positioned along a <path>, as
you can do, say, in Adobe Illustrator. Imagine drawing a curving path and then having
the base line of your text follow that curve.

Grouping and naming Multiple graphics elements can be grouped hierarchically
and considered together enclosed in a <g> tag. A group or individual graphics element
can be named and instanced several times in different positions and orientations and
also stored for later use. Similarly, it is possible to define a set of characteristics in
one part of the document and then apply those characteristics somewhere else, very
much as is done with classes in CSS.

Each drawing can be positioned anywhere on a web page. SVG relies on Cascading
Stylesheets (CSS) to take charge of positioning on the page as well as other visual
parameters. Several graphics layers can be positioned over each other by any desired
ordering, making use of the CSS property called z-index.

Transformations and effects Furthermore, graphics elements, i.e. vector shapes,
images, and text, can be subject to the following effects:

1. Clipping paths
2. Masks
3. Gradients
4. Visibility
5. Opacity
6. Transformations
7. Filter effects
8. Animation
9. Scripting

When a clipping path is applied to a region, only the area within that path will be
visible. It is even possible to use a <text> as a clipping path. Is also possible to use
any other graphic as an alpha mask, getting close to Photoshop-style techniques on the
Web. Linear or radial gradients allow smooth transitions from one color to another
within any shape. A visibility or opacity property for a single graphics element or a
group may be set. Transformations include rotation, shearing, scaling, and translation.
Animations are possible, because the language allows for JavaScript scripting, used to
manipulate SVG graphics. In particular, any graphic, grouping, path, image, or text
can be assigned any of the standard HTML event handlers (onclick, onmouseover,
onmouseout, onload, and so on). Last but not least, it is possible to type in some code
that would apply filters such as a Gaussian blur or diffuse lighting effects to SVG
graphics or text.

SVG exporting Some limited exporting to SVG files is possible for 2D PLaSM
geometric objects. For this purpose the built-in SVG primitive is used. An example
of exported SVG file is shown in Figure 9.14. The exporting syntax is given below.

SVG: object: width cm : ′filename.svg ′

GRAPHIC PIPELINES 357

Figure 9.14 Rendering in a web browser of vector graphics exported by PLaSM:

(a) SVG graphics (b) Flash graphics

9.3.2 Open Inventor camera model

The conceptual model used by Open Inventor [WO94] to specify the view is no different
from the camera model adopted by ANSI Core and ISO PHIGS standards.

A camera node may be inserted anywhere in an Open Inventor scene graph. Such
a node generates a picture of every object situated after it in the graph. The camera
orientation is affected by the current geometric transformation. A node SoCamera is
provided at this purpose, with attributes

1. viewportMapping, associated with the type of treatment to apply in non-
isomorphic camera-viewport mapping;

2. position, which is the location of viewport in local coordinates. It is affected
by current geometric transformation;

3. orientation, of the camera viewing direction. Together with the current
geometric transformation, this specifies the orientation of the camera in world
coordinates;

4. aspectRatio, i.e. ratio of the camera width to height;
5. neardistance, farDistance, focalDistance, specify in VRC the distance

of camera viewpoint from front and back clipping planes as well as from the
point of focus, i.e. from the view plane.

Two subclasses SoPerspectiveCamera and SoOrthographicCamera are derived from
the SoCamera class. A new field heightAngle is added to SoPerspectiveCamera in
order to specify the vertical angle in radians of the camera view volume, i.e. of the
truncated pyramid volume specified by the camera. The horizontal angle of the view
volume is determined by heightAngle and by the camera’s aspectRatio.

The new field height of SoOrthographicCamera derived class specifies the height
of the camera’s parallelepiped view volume for parallel projections. A switch node (of
kind blinker, e.g.) may be used to choose between different predefined cameras of a
given scene.

9.3.3 Java 3D viewing model

Java 3D, the vendor-neutral 3D API based on Java platform, gives full support to
the creation of virtual worlds and to multiple interaction with them by using a plenty
of gadgetry. It hence must support the interaction of virtual and physical realities,

358 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

needing a much more complex viewing model that the standard camera’s one.
Our main sources for the material in this section were [SN99, SRD00] by the chief

architect of the Java 3D API and others.
In the Java 3D approach, a VirtualUniverse holds everything within one or more

Locales. A Locale positions in a universe one or more BranchGroups, where each
BranchGroup holds a scene graph. Scene graphs in Java 3D are typically divided
into two types of branch graphs, called Content branch and View branch; the former
contain scene modeling, including shapes, lights, and other content; the latter contain
viewing information.

The ViewPlatform is a leaf node in a view branch of the scene graph which defines
a viewpoint within the scene, by giving a frame of reference for the user’s position
and orientation in the virtual world. There can be many ViewPlatforms in a scene
graph. Each such platform can be transformed by a TransformGroup parent node.
User interface and animation features may modify such nodes to move the platforms
under application control, like “magic carpets” [SN99] flying on the scene.

Many additional classes control how that scene is rendered, using either a perspective
or a parallel projection. Support for room-mounted and head-mounted displays is
provided, as well as for user’s head tracking.

Virtual vs physical worlds Shapes, branch groups, locales, and the virtual
universe define the virtual world. A user co-exists in both this virtual world and in
the physical world. In particular, s/he has a position and orientation in both worlds.
The Java 3D view model handles co-existence mapping between virtual and physical
worlds. A chain of relationships controls several mappings. In particular they map: the
eye locations relative to the user’s head; the head location relative to a head tracker;
the head tracker relative to the tracker base; the tracker base relative to display (image
plate), and so on.

A so-called view policy selects one of two constraint systems, associated with either
room-mounted displays, whose locations are fixed, like CRTs, video projectors, multi-
screen walls and portals, or to head-mounted displays (HMDs), whose locations change
as the user moves.

When using room-mounted displays and head tracking, the constraint system uses
the eye location relative to the image plate to compute a view volume (view frustum),
where the eyepoint locations are computed automatically. To map from eye to image
plate, the constraint system uses a chain of coordinate system mappings, linking Eyes
to Head to Head tracker to Tracker base to Image plate. In particular, the constraint
system uses the left and right eye locations relative to the left and right image plates
to compute two view volumes.

Physical to virtual mappings are needed to allow the user to interact with the virtual
scene. Recall that the user co-exists in the virtual and physical worlds. For this purpose
consider that the user has both a physical and a virtual position and orientation. We
have seen that room- and head-mounted display view policies handle mapping from
the user’s physical body to a tracker base and image plates. To map from this physical
world to the virtual world, it is necessary to add to the constraint chain: a tracker base
to coexistence mapping; a coexistence to view platform mapping; a view platform to
locale mapping, and finally a locale to virtual universe mapping.

GRAPHIC PIPELINES 359

Viewing model Summing up, the Java 3D viewing model is composed of: a view
policy to choose a room- or head-mounted constraint system; a set of physical body,
physical environment, and screen configuration parameters; a set of policies to guide
the chosen constraint system, including the view attach policy.

The view attach policy establishes how the view platform origin is placed relative to
the user (i.e., how it is attached to the user’s view). Three such policies are possible:

1. Nominal head policy places the view platform origin at the user’s head. It is
convenient for arrangement of content around the user’s head for a heads-up
display. It is very similar to “older” view models.

2. Nominal feet policy places the view platform origin at the user’s feet, at the
ground plane. It is convenient for walk-throughs, where the user’s feet should
touch the virtual ground.

3. Nominal screen policy places the view platform origin at the screen center.
It enables the user to view objects from an optimal viewpoint.

Implementation The Java 3D viewing model is implemented through several
classes. A VirtualUniverse defines the universe coordinate system. A Locale places a
scene graph branch within that universe. A ViewPlatform (and a Transform3D above
it) define a viewpoint within that locale. It defines a frame of reference for the user’s
position and orientation in the virtual world. A View is the virtual user standing on a
ViewPlatform. There can be many views on the same view platform. A PhysicalBody
describes the user’s dimensions for use by a View. There is always one PhysicalBody
for a View. A PhysicalEnvironment describes the user’s environment for use by a
View. There is always one PhysicalEnvironment for a View. A Canvas3D selects
a screen area on which to draw a View. Every View has one or more Canvas3Ds. A
Screen3D describes the physical display device (image plate) drawn on by a Canvas3D.

In conclusion: the 3D transformation pipeline in Java 3D is quite complex because
it has to map a virtual world to several physical worlds, but it is quite easy to
use because each kind of object has reasonable defaults. In the virtual world the
ViewPlatform controls the user’s virtual position and orientation, whereas a View sets
a view policy. In the physical world a PhysicalBody describes the user, whereas the
PhysicalEnvironment describes the user’s environment. Finally, a Canvas3D selects
a region to draw into, whereas a Screen3D describes the screen device.

9.4 Examples

9.4.1 PHIGS pipeline display

In this section we develop some PLaSM functions which help to graphically display our
implementation of the 3D pipeline for the central projection case. As already shown in
Example 9.2.1, some functions without parameters are used to specify the view model.

The tensor V O, V Mper and P of view orientation, view mapping and perspective
transformations are implemented by PLaSM tensors denoted as viewOrientation,
viewMapping and perspTransf, in Sections 9.2.4, 9.2.5 and 9.2.6, respectively. Notice
that such tensors implicitly depend on the view model parameters, i.e. they are implicit
functions of such arguments.

360 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Figure 9.15 The model of the scene we have projected.

In particular, we generate here a geometric model of view volume starting from the
parameters in view model. A geometric model of the scene, the view volume and a
simplified model of the view reference system will be shown in world coordinates and
then mapped by the component tensors of 3D pipeline in each intermediary reference
frame.

Geometric model of scene A sufficiently realistic 3D house model is given here
to illustrate the various steps of 3D pipeline. Such a house model is quite simplified,
and in particular is open at the top. The source code generating the model is given in
Script 9.4.1; some projections of it are shown in Figure 9.15.

Script 9.4.1
DEF mesh = INSL:* ∼ AA:QUOTE;

DEF house = T:2:-0.2:(walls - windows - door)

WHERE

walls = STRUCT:<xWalls, yWalls>,

xWalls = mesh:<<7>,<0.2,-5,0.2>,<3.5>>,

yWalls = mesh:<<0.2,-6.6,0.2>,<-0.2,5>,<3.5>>,

windows = STRUCT:

< mesh:<<-1.5,1,-1.5,1>,<0.2,-5,0.2>,<-1,1.5>>,

mesh:<<-6.8,0.2>,<-3,1.5>,<-1,1.5>> >,

door = mesh:<<-6.8,0.2>,<-1.5,1>,<2.5>>

END;

Computation of View Volume in WC

In this section we show the computation of the view volume in WC3 starting from a
given view model. The simplest method to generate such a volume probably consists
in building the very simple pyramidal volume in NPC before of perspective projection,
and then in getting its WC3 counterimage by applying the inverse 3D pipeline to it.

Canonical View Volume in NPC The canonical volume before perspective
transformation is a truncated pyramid with side faces z = x, z = −x, z = y, z = −y,
back face z = −1, and front face z = zmin. The view plane is defined by the equation
z = zproj .

Therefore, in PLaSM the canonical volume in normalized projection coordinates may

GRAPHIC PIPELINES 361

be generated by a MKPOL function which defines a polyhedral complex with 2 convex
cells, each one given as convex combination of 8 vertices. In total, we need to explicitly
give 12 vertices, situated by groups of 4 on the planes z = zmin, z = zproj and z = −1,
as described by Script 9.4.2.

Script 9.4.2
DEF NPCvolume = MKPOL:< verts, cells, pols>

WHERE

verts = < <z min, z min, z min>, <z min, -:z min, z min>,

<-:z min, z min, z min>, <-:z min, -:z min, z min>,

<z proj, z proj, z proj>, <z proj, -:z proj, z proj>,

<-:z proj, z proj, z proj>, <-:z proj, -:z proj, z proj>,

<1, 1, -1>, <1, -1, -1>, <-1, 1, -1>, <-1, -1, -1> >,

cells = < <8, 7, 6, 5, 4, 3, 2, 1>, <12,11,10, 9, 8, 7, 6, 5> >,

pols = < <1, 2> >;

DEF z min = -:(vrp z + front) / (vrp z + back);

DEF z proj = -:vrp z / (vrp z + back);

View Volume in VRC In order to generate the geometric model of view volume
in view reference coordinates, called VRCvolume in Script 9.4.3, it is sufficient to apply
the inverse view mapping to the NPCvolume given in Script 9.4.2.

We also give as a polyhedral complex of dimension (1, 3), a triplet of orthogonal
segments of unit length, called ReferenceFrame, to be used as an image of the VRC
system in the set of pictures dedicated to the discussion of the 3D perspective pipeline.

View Volume in WC Finally, the view volume in world coordinates, called
WCvolume, is obtained from the view model by applying the inverse view orientation
mapping to the polyhedral complex VRCvolume given in Script 9.4.3. The scene used
to produce several pictures in this example is defined as a structure that contains the
WCvolume, the house model and the uvnSystem in WC.

9.4.2 VRML camera implementation

In this section we implement some simple operators to automatically generate
viewpoints from the directions of the reference axes when producing a VRML
output for PLaSM-generated models. For this purpose we will define, in Script 9.4.8,
two functions called AxialCameras and CenteredCameras, respectively. The
AxialCameras operator, when applied to some polyhedral complex, will insert in the
output VRM hierarchical graph, three viewpoint nodes looking at the origin from
the point on the x, y and z axis, respectively. The three viewpoints are labeled with
strings ′x view′, ′y view′ and ′z view′, and are searchable from the VRML interface
of common web browsers. The CenteredCameras operator does something similar, but
also it centers the viewpoints with respect to the orthogonal extent of the polyhedral
scene or model it is applied to, so centering the produced views in the browsing

362 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Script 9.4.3
DEF VRCvolume = (INV T per ∼ INV SH per ∼ INV S per): NPCvolume;

DEF INV T per = T:<1,2,3>:(prp);

DEF INV S per = S:<1,2,3>:<sx,sy,sz>

WHERE

sx = ((umax - umin)*(vrp z + back))/(2 * vrp z),

sy = ((vmax - vmin)*(vrp z + back))/(2 * vrp z),

sz = -:(vrp z + back)

END;

DEF INV SH per = MAT:

<<1,0,0,0 >,

<0,1,0,-:dopx / dopz>,

<0,0,1,-:dopy / dopz>,

<0,0,0,1 >>

WHERE

dopx = (umin + umax)/2 - s1:prp,

dopy = (vmin + vmax)/2 - s2:prp,

dopz = 0 - s3:prp

END;

DEF uvnSystem = MKPOL:<

< <0,0,0>,<1,0,0>,<0,1,0>,<0,0,1> >,

< <1,2>,<1,3>,<1,4> >,

< <1,2,3> > >;

viewport, as shown by Figures 9.18a, 9.18b and 9.18c.

VRML viewpoint implementation The PLaSM language and its underlying
representation were recently extended by adding properties to nodes of the Hierarchical
Polyhedral Complex (HPC) data structure. In such a way, graphics concepts such as
appearance, lights, and viewpoints, that do not strictly depend on the geometry, can
be inserted in the hierarchy in a simple and non-invasive manner. Furthermore, such
properties are consistently retained after the evaluation of every PLaSM operators,
including e.g. mapping, skeleton extraction, product and so on, and without any
change in the implementation of the predefined language operators.

A camera is defined in PLaSM by making use of the semantics of the VRML viewpoint
node. A viewpoint applies to the scene subgraph rooted on it, and is affected by the
current value of transformation matrix. In PLaSM, a camera is joined to a polyhedral
complex by an expression of this kind:

CAMERA:< pol complex, camera >

camera ≡
< position, orientation, fieldOfView, focalDistance, description >

where position and orientation are a triplet and a quadruple of numeric
expressions, respectively, according to the VRML semantics. We notice that a VRML
orientation has the coordinates of a vector parallel to the orientation axis in the first
three components, and an angle (in radiants) in the fourth component.

GRAPHIC PIPELINES 363

Script 9.4.4
DEF WCvolume = invViewOrientation:VRCvolume;

DEF invViewOrientation (volume::IsPol) = (invTransl ∼ invRot): volume

WHERE

invTransl = T:<1,2,3>:vrp,

invRot = MAT:< <1,0,0,0>, AL:<0,Ru>, AL:<0,Rv>, AL:<0,Rn> >,

Ru = UnitVect:(vuv VectProd Rn),

Rv = Rn VectProd Ru,

Rn = UnitVect:vpn

END;

DEF uvnSystem in WC = invViewOrientation: uvnSystem;

DEF WCscene = STRUCT:< WCvolume, house, uvnSystem in WC >;

Toolbox First a small toolboox of auxiliary functions is given. It contains a non-
raised version IsGT of the GT predefined operator, the greater selector of two argument
numbers, which returns the greater of them. The MK function, used to transform a
sequence of coordinates into a 0-dimensional polyhedron, is given in Script 3.3.15.

Script 9.4.5 (Toolbox)
DEF IsGT (a,b::IsReal) = GT:a:b;

DEF bigger (a,b::IsReal) = IF:<IsGT,s2,s1>:<a,b>;

Axial Camera Actually, several VRML browsers do not implement the full viewpoint
semantics. In particular they implement the viewpoint position, and the angle value
in the orientation field, as well the fieldOfView given in radians, but the result
of using an orientation axis different from 0,0,1 is unpredictable, whereas the
focalDistance field is unused.

Such browsers’ implementation limits underlie our design choices of Script 9.4.6,
where the MyCamera operator applies to a (0, 3)-dimensional polyhedron, which
coincides with the origin of 3D space, a camera with a variable prp and a variable
description string. Any axialCamera:i expression, with i ∈ {1, 2, 3}, will return
a suitably oriented (0, 3)-dimensional polyhedron, with attached camera in its local
coordinate space, which may be rooted to the scene to display.

Let us remember that each binary PLaSM operator can be applied also in infix form,
often increasing the code readability. In Figure 9.16 we show the display from the
viewpoints in the VRML file generated by the STRUCT expression above, where MKframe
is the 3D object described in Script 6.5.3. The last expression, where the AxialCameras
operator given in Script 9.4.8 is used, produces exactly the same output.

Centered Camera A useful camera operator, called centeredCamera:, is given is
Script 9.4.7. The expression centeredCamera:i:obj puts a centered viewpoint on the
xi direction, i ∈ {1, 2, 3}, in the polyhedral scene obj, at a distance suitably chosen, in
such a way that the whole scene is gracefully accommodated into the VRML browser
viewport, when the VRML file exported by PLaSM is loaded in the memory.

364 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Script 9.4.6 (Axial Camera)
DEF prp = < 0,0,5 >;

DEF MyCamera (prp::Isseq)(string::IsString) = MK:< 0,0,0 >

ASSIGNCAMERA < prp, < 0,0,1,0 >, <PI/4>, <>, string >;

DEF axialCamera (i::IsIntPos) =

IF:< C:EQ:3, K:(MyCamera:prp:′z view′), testxy >:i

WHERE

testxy = IF:< C:EQ:1,

K:((R:<2,3>:(PI/2) ∼ R:<1,3>:(PI/2)):(MyCamera:prp:′x view′)) ,

K:((R:<1,2>:PI ∼ R:<2,3>:(PI/2)):(MyCamera:prp:′y view′)) >,

END;

STRUCT:< axialCamera:1, axialCamera:2, axialCamera:3, Mkframe >;

AxialCameras: MKframe;

Figure 9.16 Scene display from viewpoints generated on the x, y and z axes,

respectively

Set of cameras Three axial cameras or three centered cameras on the directions of
the reference axes are generated by the functions AxialCameras and CenteredCameras
given in Script 9.4.8. An example of use of the last operator in displaying a quite
complex 3D scene is shown in Figure 9.18. The inverse ordering <3,2,1> of axis
indices is used in order to get the ′z view′ as the first viewpoint on opening the
VRML browser, as usual.

Script 9.4.7 (Centered Camera)
DEF centeredCamera (i::IsIntPos) (obj::IsPol) =

(T:i:(trParam - S3:PRP) ∼ T:<1,2,3>:objCenter):(axialCamera:i)

WHERE

objCenter = MED:<1,2,3>:obj,

trParam = 1.25 * bigger:(SIZE:(pair:i):obj) + (SIZE:i:obj)/2,

pair = IF:< C:EQ:3, K:<1,2>, IF:< C:EQ:1, K:<2,3>, K:<1,3> > >

END;

GRAPHIC PIPELINES 365

Figure 9.17 Scene display from viewpoints generated by centeredCameras

operator

Script 9.4.8 (Set of cameras)
DEF AxialCameras (obj::IsPol) =

STRUCT: (obj AL AA:AxialCamera:<3,2,1>);

DEF CenteredCameras (obj::IsPol) =

STRUCT: (obj AL (CONS ∼ AA:centeredCamera):<3,2,1>:obj);

Figure 9.18 Different viewpoints in PLaSM-generated VRML model of beams and

pillars in a building fabric

