
8

Hierarchical structures

Hierarchical models of complex assemblies are generated by an aggregation of
subassemblies, each one defined in a local coordinate system, and relocated by affine
transformations of coordinates. This operation may be repeated hierarchically, with
some subassemblies defined by aggregation of simpler parts, and so on, until one
obtains a set of elementary components, which cannot be further decomposed.

Two main advantages can be found in a hierarchical modeling approach.
Each elementary part and each assembly, at every hierarchical level, are defined
independently from each other, using a local coordinate frame, suitably chosen to
make its definition easier. Furthermore, only one copy of each component is stored in
the memory, and may be instanced in different locations and orientations how many
times it is needed.

In the present chapter a graph-theoretical model of hierarchical assemblies is
discussed, also making some reference to its concrete implementation in standard
graphics systems. The chapter includes several worked examples of hierarchical
structures, including the 2D and 3D design of the furniture of a living room, an
anthropomorphic body modeling, the preliminary sketching of a parametric umbrella,
an algorithm for drawing tree diagrams, and operators to make complex arrangments
of 2D symbols.

8.1 Hierarchical graphs

A hierarchical model, defined inductively as an assembly of component parts [LG85],
is easily described by an acyclic directed multigraph, often called a scene graph or
hierarchical structure in computer graphics. The main algorithm with hierarchical
assemblies is the traversal algorithm, which transforms every component from local
coordinates to global coordinates, called world coordinates.

Acyclic directed-multigraph

The standard definition of a directed graph G states that it is a pair (N, A), where N
is a set of nodes and A is a set of directed arcs, given as ordered pairs of nodes. Such

Geometric Programming for Computer-Aided Design Alberto Paoluzzi
c© 2003 John Wiley & Sons, Ltd ISBN 0-471-89942-9

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

304 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Figure 8.1 (a) Directed acyclic multigraph of an assembly (b) Tree of

sub-assembly instances generated when traversing the multigraph

a definition is not sufficient when more than one arc is to be considered between the
same pair of nodes.

In this case the notion of multigraph is introduced. A directed multigraph is a triplet
G := (N, A, f) where N and A are sets of nodes and arcs, respectively, and f : A → N2

is a mapping from arcs to node pairs. In other words, in a multigraph, the same pair
of nodes can be connected by multiple arcs.

Directed graphs or multigraphs are said to be acyclic when they do not contain
cycles, i.e. when no path starts and ends at the same vertex. Trees are common
examples of acyclic graphs. Nodes in a tree can be associated with their integer distance
from the root, defined by the number of edges on the unique path from the root to
the node. A tree can be layered by levels, by putting in the same subset (level) all the
nodes with equal distance from the root. A tree, where each non-leaf node is the root
of a subtree, is the best model of the concept of hierarchy.

Acyclic graphs/multigraphs are also called hierarchical graphs, because they can be
associated to a tree, generated at run-time by visiting the graph with some standard
traversal algorithm, e.g. with a depth-first-search [AHU83]. The ordered sequence of
nodes produced by the traversal is sometimes called a linearized graph. Each node
in this sequence is suitably transformed from local coordinates to world coordinates,
i.e. to the coordinates of the root, by the traversal algorithm.

8.1.1 Local coordinates and modeling transformation

A hierarchical multigraph is used to model a scene database in the sense described
below. In particular, each node may be considered a container of geometrical objects,
where:

1. The geometrical objects contained in a node a are defined using a system of
coordinates which is local to a.

2. Each arc (a, b) is associated with an affine transformation of coordinates. In
simplest cases the identity transformation is used.

3. The affine mapping of the arc (a, b) is used to transform the objects contained
within the b node to the coordinate system of the a node.

The previous properties are extended inductively to the subgraphs rooted in each
node. In particular:

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

HIERARCHICAL STRUCTURES 305

1. the subgraphs rooted in the bi sons of a, i.e., the geometrical data contained
in such subgraphs, may be affinely mapped to the coordinates of a. The affine
maps associated to (a, bi) arcs are used at this purpose;

2. a subgraph may be instanced in a node (i.e., in its coordinate space) more
than once. As shown in Figure 8.1 and discussed in Example 8.3.1, the number
of instances of a subgraph in a node equates the number of different paths
that connect the subgraph to the node.

Summary The main ideas concerning scene graphs can be summarized as follows.
Nodes are containers of geometrical data stored in local coordinates. They are also
used as root of subgraphs, whose data are transformed to the node coordinates by a
traversal algorithm. Arcs (a, b) are associated with affine transformations, which map
the data contained in b from their local coordinates to the coordinates of a. More than
one arc may exist between the same node pair. This allows storage in memory only of
one copy of each container. The composite transformations of coordinates applied to
the linearized graph generated at traversal time are collectively known as the modeling
transformation.

8.2 Hierarchical structures

Various kinds of hierarchical assemblies are used in standard graphical systems, such
as GKS, PHIGS and VRML, as well as in graphics libraries like Open Inventor1 and
Java 3D. The model of hierarchical structures adopted by PLaSM is inspired, even in
the name of the operator used for this purpose, by the one introduced by PHIGS.

GKS segments In GKS (Graphical Kernel System) [EKP87, ISO85] the storage
of graphical segments was introduced, which defines a two-level hierarchical system.
More specifically: graphical primitives like polylines, polygons and text strings
can be grouped into named collections, called segments. Segments are stored in a
“normalized” coordinate space, and cannot be nested. Geometric transformations,
including composite translation, rotation and scaling, can be applied to segments.
Also, segments can be made visible/invisible, picked interactively and highlighted.

PHIGS structure network In PHIGS (Programmer′s Hierarchical Interactive
Graphics System) [HHHW91, ANSI87] structure networks are used, which can be
visualized as acyclic graphs, where structures give the nodes of the graph, and
references between structures give the arcs between nodes. Hierarchical assemblies
of any depth can be modeled by such acyclic graphs. Structures are stored in a
centralized structure store (CSS) independent of workstations, were structures can
be posted. Structures can be interactively edited, by inserting, replacing and deleting
structure elements.

1 Inventor, later called Open Inventor, was developed and marketed by SGI (Silicon Graphics
Instruments) and by TGS (Template Graphics Software). An OpenSource version for both
Linux and Windows platforms has recently been released by SGI.

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

306 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Inventor′s scene graphs In Open Inventor [WO94] scene databases are defined as
collections of scene graphs. A scene graph is an ordered collection of nodes, which
are basic building blocks holding shape descriptions, geometric transformations, light
sources or cameras. In other words, each node represents a geometry, property, or
grouping object. Hierarchical scenes are created by adding nodes as children of
grouping nodes. This approach clearly results in building scene graphs as acyclic
directed graphs. No properties or transformations are attached to graph arcs, which
just represent the containment relation between nodes. Node kits are provided as
C++ classes with a predefined behavior, which can be customized by the application
programmer by subclassing.

VRML scene graphs in VRML (Virtual Reality Modeling Language) [ANM97,
ISO97] the same idea of scene graphs as ordered collections of nodes is used. The
reader should notice that VRML originates from the File Format of Open Inventor.
Such VRML files, written either in ASCII or gzipped binary format, can be used
to import scene graphs into a scene database or even as an alternative to creating
scene graphs programmatically. For example, scene graphs can be imported in Java
3D [SRD00] using VRML files. Some non-trivial differences exist between the semantics
of scene graphs with versions 1.0 and 2.0 of VRML.

Remarks The arcs of scene graphs are normally specified implicitly in real graphical
systems. For example, an arc is actually specified when a node is contained or referred
within another one. In particular, it is possible to specify a new container node together
with either the matrix or the parameters of the transformation to be associated with
the the arc that connects the new container to the current node.

8.2.1 Hierarchical structures in PLaSM

A container of geometrical objects is defined in PLaSM by applying the predefined
operator STRUCT to the sequence of contained objects. The value returned from such
application is of the polyhedral complex type. The coordinate system of the value
returned from a STRUCT application is the one associated with the first object of the
argument sequence. Also, the resulting geometrical value is often associated with a
symbol used as the name of the container, as in

DEF obj = STRUCT:< obj1, obj2, . . . , objn >;

The obj geometry can be pictorially described, using the previously discussed graph
model of hierarchical structures, as shown in Figure 8.2a. Clearly, each component
object may in turn be defined as a container of other objects, i.e. as the root of a
subgraph, as shown in Figure 8.2b, according to the following definition:

DEF obj2 = STRUCT:< obj21, . . . , obj2m >;

Exactly the same geometric result2 would be generated by direct nesting of STRUCT
sub-expressions:

2 Actually, using an internally-generated symbol to name the second son of the scene graph
root.

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

HIERARCHICAL STRUCTURES 307

Figure 8.2 (a) Graph representation of a STRUCT assembly (b) Nested assembly

DEF obj = STRUCT:< obj1, STRUCT:< obj21, . . . , obj2m >, . . . , objn >

The sequence argument of the STRUCT operator may either contain or not affine
transformations, together with polyhedral complexes. This fact results in generating
an assembly either by using the same (global) coordinates for the various components
or by using different (local) coordinate systems. The two cases are discussed in the
two following subsections, respectively.

8.2.2 Assembly using global coordinates

Let us assume that the sequence argument of a STRUCT expression does not contain
affine transformations. In other words we assume that the evaluations of the PLaSM
expressions in the argument sequence return only polyhedral values.

In this case the output polyhedral complex is returned in the coordinate system
of the first element of the input sequence, and no transformations of coordinates are
applied to the assembly components, which are only aggregated within the same space,
as shown by the following example.

Example 8.2.1 (STRUCT assembly (1))
The PLaSM expression given below returns the object displayed in Figure 8.3a. Notice
that the local origin and coordinate axes of the three component shapes coincide. The
@1 operator is used with the only purpose of generating the wire-frame drawing shown
in the figure.

(@1 ∼ STRUCT):< CUBOID:<2,2,2>, CUBOID:<1,1,1>, SIMPLEX:3 >

Figure 8.3 (a) Assembly without coordinate transformations (b) Assembly with

coordinate transformations

Alberto Paoluzzi

Alberto Paoluzzi

308 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

8.2.3 Assembly with local coordinates

Let us conversely assume here that some affine transformations are contained within
the sequence argument of a STRUCT expression. In this case, each transformation is
applied to each polyhedral complex that follows it in the argument sequence.

From a user’s viewpoint, the following equivalence holds, where pol1, . . . , poln

are polyhedral complexes and T1, . . . , Tn−1 are transformation tensors:

STRUCT:< pol1, T1, pol2, T2, pol3, . . . , Tn−1, poln > ≡
STRUCT:< pol1, T1:pol2, (T1∼T2):pol3, . . . , (T1∼T2∼ · · · ∼Tn−1):poln >

Looking at the internal behavior of the geometric kernel of the language, the
following transformation is applied to a STRUCT application at evaluation time:

STRUCT:< pol1, T1, pol2, T2, pol3, . . . , Tn−1, poln > ≡ STRUCT:<
pol1,

(T1 ∼ STRUCT):< pol2,
(T2 ∼ STRUCT):< pol3,

. . .
(Tn−2 ∼ STRUCT):< poln−1, Tn−1:poln >

. . . > > >

Example 8.2.2 (STRUCT assembly (2))
Here we aggregate the same geometric components used in Example 8.2.1, but we also
associate some transformations of coordinates, different from the identity, to the arcs
of the graph representation of the resulting assembly.

In particular, let us describe their aggregation as done in the following.

(@1 ∼ STRUCT):< CUBOID:<2,2,2>, T:3:2, CUBOID:<1,1,1>, T:2:1, SIMPLEX:3 >

Notice, looking at the geometric result shown in Figure 8.3b, that:

1. the output assembly is represented in the coordinate system of first cube;
2. the second cube is translated in z direction;
3. the unit tetrahedron is translated both in y and in z directions.

8.3 Traversal

The traversal of a hierarchical structure consists of a modified Depth First Search
(DFS) of its acyclic multigraph,3 where each arc — and not each node — is traversed
only once. In particular, each node is traversed a number of times equal to the number
of different paths that reach it from the root node.

The aim of the traversal algorithm is to “linearize” a structure network, by
transforming all its substructures (i.e. all the subgraphs) from their local coordinates
to the coordinates of the root node, assumed as world coordinates.

3 Notice that the standard dfs graph traversal (see e.g. [AHU83]) visits all the nodes once,
since it works by recursively visiting those sons of each node that it has not already visited.

Alberto Paoluzzi

Alberto Paoluzzi

HIERARCHICAL STRUCTURES 309

For this purpose, a matrix denoted as the current transformation matrix (CTM)
is maintained. Such a CTM is equal to the product of matrices associated with the
arcs of the current path from the root to the current node. For the sake of efficiency,
the traversal algorithm is implemented by using a stack of CTMs. When a new arc
is traversed, the old CTM is pushed on the stack, and a new CTM is computed by
(right) multiplication of the old one times the matrix of the arc. When unfolding from
the recursive visit of the subgraph appended to the arc,4 the CTM is substituted
by the one popped from the stack. The Traversal algorithm is specified by some
pseudo-language in Script 8.3.1.

Script 8.3.1 (Traversal of a multigraph)
algorithm Traversal ((N, A, f) : multigraph) {

CTM := identity matrix;
TraverseNode (root)

}

proc TraverseNode (n : node) {
foreach a ∈ A outgoing from n do TraverseArc (a);
ProcessNode (n)

}

proc TraverseArc (a = (n, m) : arc) {
Stack.push (CTM);
CTM := CTM * a.mat;
TraverseNode (m);
CTM := Stack.pop()

}

proc ProcessNode (n : node) {
foreach object ∈ n do Process(CTM * object)

}

The CTM is normally used to (left) multiply the vertices of geometric objects
stored in the traversed containers. But the reader should remember that equations of
hyperplanes and normal vectors must be conversely (right) multiplied for the inverse
of the applied transformation, according to the mapping of covectors discussed in
Section 6.3.4. A double stack of matrices, where to push/pop both the CTM and its
current inverse, may therefore speed up the traversal. As a result of the algorithm,
a linearized model in world coordinates is produced, which may be used, e.g., for
rendering purposes, as discussed in the next chapter.

Example 8.3.1 (Graph traversal)
In Figure 8.1a a directed multigraph over the set of nodes {1, 2, . . . , 9} is shown.

4 Using a pictorial image, we could say: when the arc is traversed in the opposite direction.

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

310 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

According to a standard convention of hierarchical graph drawing [DBETT99], each
edge should be considered as downwards oriented. In Figure 8.1b the tree generated
when traversing the previous multigraph is given. As the reader may notice, it contains
a higher number of node instances. In particular, the ordered set of nodes produced
by the traversal algorithm discussed above is:

(6, 2, 6, 7, 3, 7, 7, 8, 9, 4, 7, 8, 9, 4, 9, 9, 9, 5, 1).

We would like to emphasize the fundamental property that the number of instances
of a node equates to the number of different paths that reach it from the root. Notice,
e.g., there are five different paths in the hierarchical multigraph of Figure 8.1a from
root 1 to node 9, so that five instances of the node 9 are produced in the linearized
graph generated at traversal time.

8.4 Implementations

We briefly summarize here some main aspects of management of structured assemblies
in PHIGS and in VRML, mainly because the first standard introduced the conceptual
model of hierarchical structures adopted by PLaSM, whereas VRML is used as main
exporting format by our design language.

8.4.1 Structure network in PHIGS

A structure is defined as an ordered collection of structure elements, where a structure
element is either:

1. an output primitive, say, a polyline, polymarker, text, fill area, fill area set,
cell array or generalized drawing primitive (see Section 7.1.2);

2. an affine transformation, either through by setting a transformation matrix
or by invoking some elementary transformation (say, a x-, y- or z-rotation, a
scaling or a translation);

3. a reference to other structures. A reference behaves exactly like a procedure
invocation in a programming language. When such a reference is encountered
at traversal time, the current state of the graphics system is saved on a
stack; the invoked procedure is executed, i.e. displayed; the saved state is
then restored and finally the control is returned to the following structure
element;

4. an attribute specification for either primitives or structures, i.e. a setting of
some appearance characteristic of primitives or collections of primitives;

5. a label, i.e. a symbolic name associated with a numbered position within a
structure, used to make the process easier and speed up the structure editing
at run-time.

A collection of structures referring to each other is called structure network. This
one has the topology of a directed acyclic graph. The processing of a structure
network for display on a workstation by stepping through its structure elements is
called the structure network traversal. While traversing the structure network, a set of
information called the traversal state list is maintained, including the current values

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

Alberto Paoluzzi

HIERARCHICAL STRUCTURES 311

of the attributes used to display the output primitives, and the current value of the
global modeling transformation, that we called CTM, as well as the current value of
the local modeling transformation, a sort of CTM internal to the current structure.

Remarks We note that:

• A structure is defined by invoking a openStruct(name) procedure and ended
by invocation of a closeStruct() procedure. Structure definitions cannot
be nested. Conversely, references to external structures are allowed within a
structure, as invocations of the executeStruct(name) procedure.

• Attribute specifications modify the current values of the appropriate
attributes. Attributes are values of properties (like, e.g. polyline color,
text height or width, etc.) used to determine the appearance of output
primitives encountered during the traversal. Current values of attributes are
maintained in the traversal state list, and are saved on the stack when an
executeStruct() element is encountered.

• Labels as structure elements are used to make the editing of structures at
run-time easier. Since changes to a posted structure network are immediately
displayed on a workstation, the editing of structures (i.e. the insertion,
deletion or modification of structure elements) often results in some animation
of the posted structure network.

Structure editing and animation As we already said, the animation of a posted
structure network is obtained by editing the network, whose traversal is repeated
several times at each time unit. Since changes of structure elements are immediately
reflected on the workstation display, in order to animate a scene it will suffice to
modify some element of posted structures, often by repeatedly changing some modeling
transformation. In particular, a change to a modeling transformation may induce a
change of the whole subgraph rooted on the edited node.

To obtain a continuous change of the scene appearance, i.e. a fluid animation, the
frequency of traversal must exceed the latency of the perceived image on the observer′s
retina. The traversal frequency will clearly depend on the complexity of the posted
structure network and, in particular, on the number of output primitives contained
there. Modern graphics hardware available as add-on for personal computers nowadays
provides an amazing computational power, and is able to display scene graphs with
more that one million of multiply-textured and shaded triangles at a traversal rate of
80 times for second, or to traverse 2 million triangles 40 times/second, and so on.

8.4.2 Hierarchical scene graph in VRML

The definition of hierarchies in VRML is obtained by using grouping nodes, and in
particular by using Transform and Group nodes. The Group node has a similar use to
the Transform node, but without including a transformation. Both nodes may contain
any number of children nodes:

Group {
bboxCenter 0 0 0 # SFVec3f

312 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

bboxSize -1 -1 -1 # SFVec3f
children [. . .] # MFNode

}

The bboxCenter (bounding box center) and bboxSize (bounding box size) attributes
are optionally used to speed up the operations, and in particular the hierarchical graph
culling (see Section 10.3.2) of VRML viewers. The children field may contain either a
single node or any number of ordered nodes.

Scene diagrams A useful tool for design and development of hierarchical assemblies
is the drawing of scene diagrams, which help to visualize the structure of the scene.
Nodes are shown as circles. In such diagrams dark circles are used for grouping nodes,
i.e. for Group and Transform nodes, whereas light circles are used for the other types
of nodes. According to a convention introduced by Open Inventor, the scene graph is
drawn vertically, with children nodes aligned to the right of their father node, and
connected to it by the same vertical line.

Example 8.4.1 (VRML scene graph)
In this example we introduce the VRML scene graph of the Living room example fully
implemented in PLaSM in Section 8.5.1, and shown in Figure 8.5b.

The reader may easily figure out that a complete linear description, i.e. a complete
tree of the scene may be too verbose and redundant, and also difficult to read. In
order to make the description more compact and readable, it is customary to adopt a
bottom-up approach based on separating the definition and the instantiation of scene
components.

Let us therefore start our VRML coding by independently defining, within “local”
coordinate systems, the elementary parts of our scene, i.e. the Table and Chair nodes.
The ArmChair node is defined by invoke a transformed instance of the Chair. Let
us remember that a Shape node usually contains an appearance field and a geometry
field. Also remember the VRML rule that nodes are capitalized, whereas fields are not.

Script 8.4.1 (Table, Chair and ArmChair subgraphs)
DEF Table Shape {

appearance Appearance . . .
geometry Inline url . . .

} #Table

DEF Chair Shape {
appearance Appearance . . .
geometry inline url . . .

} #Chair

DEF ArmChair Transform {
scale 1.2 1.2 1
children USE Chair

} #ArmChair

The diagram of Table node defined in Script 8.4.1 is given in Figure 8.4a.

HIERARCHICAL STRUCTURES 313

Analogously, to define the Couch node (Figure 8.4b), it is sufficient to invoking three
instances of the Chair node, each one suitably rotated and translated. The VRML
coding of the Couch as a Group node (and the subgraph rooted on it) is given in
Script 8.4.2.

Shape
Table

Appearance

Geometry
IndexedFaceSet

Seat

Appearance

Geometry
IndexedFaceSet

Transform

Seat

Appearance

Geometry
IndexedFaceSet

Transform

Group
Couch

Seat

Appearance

Geometry
IndexedFaceSet

Transform

Figure 8.4 (a) Scene diagram for the Table node (b) Scene diagram for the Couch

node

Script 8.4.2 (Couch subgraph)
DEF Couch Transform {

scale 1.2 1.2 1
children [

USE Chair ,
Transform {

children USE Chair
translation 6 0 0 },

Transform {
children USE Chair
translation 12 0 0 }

] #children
} #Couch

The Dinner node, given in Script 8.4.3, is defined by an instance of Table node,
translated to position its center in the origin, and by four instances of the Chair node,
properly translated and rotated. A Transform node is used for this purpose where a
translated chair is defined, denoted as TranslChair, which is further accessed three
times, using different rotations, in the coordinate system of the Dinner node.

314 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Script 8.4.3 (Dinner subgraph)
DEF Dinner Transform {

translation -5 -5 0 },
children [

USE Table,
Transform {

rotation 0 0 1 1.57
children

DEF TranslChair
Transform {

children USE Chair
translation -8 -2.5 0 } },

Transform {
rotation 0 0 1 3.14
children USE TranslChair },

Transform {
rotation 0 0 1 4.71
children USE TranslChair },

Transform {
rotation 0 0 1 6.28
children USE TranslChair }

] #children
} #Dinner

Analogously, a Conversation object is defined as a Group node, by using the local
coordinates of its first child Table, and containing also a rotated and translated
instance of the ArmChair node and a translated instance of the Couch node.

Script 8.4.4 (Conversation subgraph)
DEF Conversation Group {

children [
USE Table ,
Transform {

translation 0 9 0
rotation 0 0 1 -0.523
center 3.6 3.6 0
children USE ArmChair },

Transform {
translation 10 0 0
children USE Couch }

] #children
} #Conversation

Finally, we give the root node of the scene graph, called LivingRoom, using the same
local coordinate system of the Conversation node, and containing also a translated
instance of the Dinner node.

Let us finally notice that the above VRML description of the scene was developed
using a bottom-up approach, i.e. by starting from the more elementary components,

HIERARCHICAL STRUCTURES 315

Script 8.4.5 (Living room subgraph)
DEF LivingRoom Group {

children [
USE Conversation ,
Transform {

children USE Dinner
translation 30 30 0 }

] #children
} #LivingRoom

and by iteratively assembling them into more complex components. The above is
the common development method when using scene-graph-based 3D development
environments. Conversely, in the PLaSM description of the same scene discussed in
the next section, we are able to use a top-down approach, starting from a high-level
design of the scene, and making modifications until we produce the model of the scene
with the desired level of detail. To work with a similar approach, a graphics application
developer would need the support of some quite sophisticated 3D authoring software.

8.5 Examples

We discuss here some examples of quite complex assemblies in different application
domains. The first one concerns the modeling of a living room; the second example
discusses the modeling of a simplified human body; then a first implementation of the
opening mechanism of a simplified umbrella is discussed. The umbrella example will
be worked out with more detail in the chapters on curves and on surfaces, respectively.
Finally, some strategies for generating complex assemblies by suitably aligning their
component parts are introduced.

8.5.1 Living room modeling

In this section a top-down development of a 3D model of a (simplified) “living room”
is presented. Our aim is to discuss a step-wise PLaSM refinement of quite a structured
assembly. The example was already introduced in the previous section using VRML,
with the further aim of comparing the “flavors” of the two languages when describing
a quite complex scene graph.

In particular, a LivingRoom object is again defined as the aggregation of a Dinner
and a Conversation objects. The first one contains a Table and four Chair objects; the
second one contains another Table, an ArmChair and a Couch. The Couch is obtained
by assembling three transformed instances of the Chair object.

In Script 8.5.1 a first draft of such definitions is given, by associating a
transformation matrix to each object instance within an assembly. The reader may
notice that the definitions in Script 8.5.1 are nothing more, nothing less, than a
linguistic description of the information coded by the scene graph shown in Figure 8.5.

The above definitions actually specify a hierarchical relation part of between the
components of the LivingRoom assembly, by naming both each node of the graph
and the matrices to be associated with the arcs. According to the discussion in
Section 8.1.1, such matrices transform the geometry data contained in the second

316 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Script 8.5.1 (Top-down design)
DEF LivingRoom = STRUCT: < T1:Dinner, T2:Conversation >

DEF Dinner = STRUCT: < T3:Table, T4:Chair, T5:Chair, T6:Chair, T7:Chair >
DEF Conversation = STRUCT: < T8:Table, T9:ArmChair, T10:Couch >
DEF ArmChair = STRUCT: < T11:Chair >
DEF Couch = STRUCT: < T12, Chair, T13:Chair, T14:Chair >

LivingRoom

Dinner Conversation

Table

ArmChair Couch

Chair

T
1

T
2

T 3

T
4

T
5

T
6

T
7

T
8 T

9 T
10

T
11 T

12 T
13

T 14

Figure 8.5 (a) Structure network (scene graph) of the LivingRoom design
(b) 2D preliminary LivingRoom

node, into the coordinates of the first node of the arc.
Next we go on to detail both the geometric content of the scene components and

the transformation matrices. We may assume in this phase that the scene is 2D.

Scene graph modeling

We start by setting, in Script 8.5.2, a first elementary specification of the basic parts of
the scene; then we give a precise content, using local definitions, to the transformation
matrices in Script 8.5.3.

Script 8.5.2 (First version - Basic parts)
DEF Chair = QUOTE:<1,5> * QUOTE:<5>;

DEF Table = CUBOID:<10,10>;
DEF ArmChair = S:<1,2>:<1.2,1.2>:Chair;

The higher-level assemblies in our scene are then fully detailed. The 1-skeleton of
the resulting sketch of the scene, exported by the last expression of Script 8.5.3, is
shown in Figure 8.5b.

A better implementation A much better implementation of LivingRoom,
Conversation and Dinner assemblies is given in Script 8.5.4, by exploiting the very
powerful semantics of structures introduced by PHIGS and inherited by PLaSM (see
Section 8.2.3). Look in particular at the definition of the Dinner structure, given as a
sequence that contains various instances of the seat geometric object and of the Rxy

HIERARCHICAL STRUCTURES 317

Script 8.5.3 (First version - Assemblies)
DEF LivingRoom = STRUCT:< T1:Dinner, T2:Conversation >

WHERE
T1 = T:<1,2>:<30,30>,
T2 = T:1:0

END;

DEF Dinner = STRUCT:< T3:Table, T4:Chair, T5:Chair, T6:Chair, T7:Chair>
WHERE

T3 = T:<1,2>:<-5,-5>,
T4 = R:<1,2>:(1*PI/2) ∼ T:<1,2>:<-9,-2.5>,
T5 = R:<1,2>:(2*PI/2) ∼ T:<1,2>:<-9,-2.5>,
T6 = R:<1,2>:(3*PI/2) ∼ T:<1,2>:<-9,-2.5>,
T7 = R:<1,2>:(4*PI/2) ∼ T:<1,2>:<-9,-2.5>

END;

DEF Conversation = STRUCT:< T8:Table, T9:ArmChair, T10:Couch >
WHERE

T8 = S:<1,2>:<7/10,7/10>,
T9 = T:2:9 ∼ (T:<1,2>:<3.6,3> ∼ R:<1,2>:(PI/-6) ∼ T:<1,2>:<-3.6,-3>),
T10 = T:1:10

END;

DEF Couch = STRUCT:< T12, seat, T13:seat, T14:seat >
WHERE

seat = (R:<1,2>:(PI/2) ∼ T:2:-5):Chair,
T12 = S:<1,2>:<1.2,1.2>,
T13 = T:1:5,
T14 = T13 ∼ T13

END;

VRML:((STRUCT ∼ [ID,@1]):LivingRoom):′out.wrl′;

transformation.
The associated multigraph would contain the Dinner, Table and seat nodes, an arc

(with ID transformation) between Dinner and Table and four arcs between Dinner
and seat. The transformation tensors associated with such four arcs would be ID,
Rxy, Rxy∼Rxy and Rxy∼Rxy∼Rxy, respectively.

The simplification obtained in Script 8.5.4 is partially due to the use of local
modeling transformations even within the single structure and also partially due to a
better positioning of the local origin within the elementary parts of the assembly. In
particular, the new definitions given in Script 8.5.5 set the origin of local systems to
the midpoint of containment boxes.

3D scene modeling

A quite detailed 3D modeling of the elementary parts of the scene is given in
Script 8.5.6. The Chair object is decomposed into the assembly of a frame, a seat
and a back, colored with black, yellow and white predefined colors, respectively.
The Table object is decomposed into the assembly of four rotated instances of a

318 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Figure 8.6 (a) Top view of the 3D version (b) View from the dinner angle

Script 8.5.4 (Better assembly)
DEF LivingRoom = STRUCT:< Conversation, T:<1,2>:<27,27>, Dinner >;

DEF Conversation = STRUCT:< table2, T9:ArmChair, T10:Couch >
WHERE

table2 = S:<1,2>:<0.7,0.7>:Table,
T9 = T:2:9 ∼ R:<1,2>:(PI/-6),
T10 = T:1:10

END;

DEF Dinner = STRUCT:< Table, seat, Rxy, seat, Rxy, seat, Rxy, seat >
WHERE

Rxy = R:<1,2>:(PI/2),
seat = T:1:-5:Chair

END;

translated cylindrical leg and one superimposed tiny plane of colored glass. The
more interesting model is associated with the ArmChair symbol, where a local basis
produces a properly dimensioned instance of a “parametrized puff”, i.e. a cushion
parametrized by the sizes of its containment box.

As it possible to see in Figure 8.6b, the ArmChair assembly is made by three
translated and rotated instances of the cushion located at the cushion angles. The
Q version of the QUOTE operator was defined in Script 1.5.5. Script 8.5.7 provides the
puff function, used to generating the component cushions of both the ArmChair and
the Couch.

Notice that such parametrized cushion is generated by JOIN of four rotated instances

Script 8.5.5 (Better parts)
DEF Couch = STRUCT:< seat, T:1:6, seat, T:1:6, seat >

DEF seat = R:<1,2>:(PI/2):ArmChair
DEF Chair = (T:<1,2>:<-3,-2.5>):(QUOTE:<1,5> * QUOTE:<5>);
DEF Table = (T:<1,2>:<-5,-5> ∼ CUBOID):<10,10>;
DEF ArmChair = S:<1,2>:<1.2,1.2>:Chair;

HIERARCHICAL STRUCTURES 319

Script 8.5.6 (Detail modeling — parts)
DEF Chair = STRUCT:< frame, seat, back >

WHERE
frame = Q:<0.5,-4,0.5> * Q:<0.3,-4.4,0.3> * Q:4.5 COLOR BLACK,
seat = Q:5 * Q:<-0.3,4.4> * Q:<-4.3,0.2> COLOR YELLOW,
back = T:1:-0.2:(Q:0.2 * Q:5 * Q:<-3,5>) COLOR WHITE

END;

DEF Table =
(T:<1,2>:<4.6,4.6> ∼ STRUCT):< leg, Rz, leg, Rz, leg, Rz, leg >
TOP (CUBOID:<10,10,0.2> MATERIAL glass)

WHERE
leg = (T:<1,2>:<-4.6,-4.6> ∼ Cylinder):<0.4,7,18> ,
Rz = R:<1,2>:(PI/2),
glasscolor = RGBCOLOR:<0.2,0.6,1>,
glass = BASEMATERIAL:< glasscolor,glasscolor,0.2,BLACK,0.2,0.6 >

END;

DEF ArmChair = S:<1,2,3>:<5/8,5/8,5/8>:
((T:3:4 ∼ R:<1,3>:(PI/2)):cushion RIGHT (cushion TOP cushion))

WHERE
cushion = puff:<6,6,2> COLOR RGBCOLOR:<1,0.5,0>

END;

DEF Seat = ArmChair;

Script 8.5.7 (Detail modeling — puff)
DEF puff (a,b,c::IsReal) = (JOIN ∼ STRUCT ∼ ##:4):< theAngle, Rz >

WHERE
Rz = R:<1,2>:(PI/2),
cyl = (T:3:(c/-2) ∼ cylinder):<c/2, c, 18>,
corner = &:< cyl, R:<1,3>:(PI/2):cyl, R:<2,3>:(PI/2):cyl>,
theAngle = T:<1,2>:<a/-2,b/-2>:corner

END;

of theAngle, a translated copy of corner generated by intersection of three rotated
cylinders. The shape thus generated closely recalls at the corners the hand-made seams
of real-world cushions, and gives more realistic results than using a small sphere —
see Figure 8.6b.

Storage comparison It may be interesting to compare the storage used by the
PLaSM description of the 3D LivingRoom discussed in this section, with the storage
of the VRML file generated by it and displayed in Figure 8.6. On the Mac OS X file
system, the first one needs 4KB, whereas the second one needs 112KB. The comparison
between the number of characters contained in such files is even more unbalanced,
going from 1, 935 to 103, 621 characters, with a ratio close to 1

53 .

320 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

8.5.2 Body model

A simplified model of the human body as a hierarchical assembly with rotational joints
between parts is discussed in this section. A hierarchical structure is assumed as the
basis of the modeling, where the Body symbol denotes the structure root. The body′s
main substructures, respectively called top limb, upper limb and lower limb, are
attached to it. The last two are clearly instanced twice. It is also assumed that all the
degrees of freedom are rotational. In other words it is assumed that only rotations are
allowed by body joints.

Anthropomorphic robot

The upper level object, i.e. the root of the assembly, is given as a STRUCT expression
named Body. The interesting part of the definition is how the joint conditions are
defined, using the Tensor function. The particular shapes of the body components
will be detailed in Script 8.5.13. The simplest shape for each part is a parallelepiped.
The resulting object, resembling an anthropomorphic robot, is shown in Figure 8.7.

Figure 8.7 Front, side, top and dimetric projections of the anthropomorphic robot

The Tensor function is first applied to a sequence of integers, which specify the
axes of rotations (either x, y or z, respectively corresponding to input values 1,2 or 3)
allowed by a joint, and the corresponding angles in degrees. The output of the function
is a transformation tensor, generated by composition of elementary rotations. Notice
that angles, entered in degrees, are transformed to convertedAngles in radians. The
scalarVectProd operator is given in Script 2.1.20.

Script 8.5.8 (Composite rotations)
DEF Tensor (axes::IsSeqOf:IsInt) (angles::IsSeqOf:IsReal) =

(COMP ∼ AA:APPLY ∼ TRANS): < rotations, convertedAngles >
WHERE

rotations = AS:SEL:axes:< R:<2,3>,R:<1,3>,R:<1,2> >,
convertedAngles = PI/180 scalarVectProd angles

END;

In Script 8.5.9 the Body structure is given, i.e. the root of the structure
network discussed in this section. The children structures top limb, upper limb and

HIERARCHICAL STRUCTURES 321

lower limb are invoked as functions, and applied to the actual values of the angles
which determine their configuration. Notice that the rotations of each body′s limb
are about its local origin. Each joint which connects a limb to torso is then properly
translated to its position in the body′s coordinate system by a local jointi function.

Script 8.5.9 (Assembly root)
DEF Body = STRUCT:< torso,

(joint1 ∼ top limb):<<0,0>,<0,0,-30>>,
(joint2 ∼ upper limb):<<20,0,0>,<10,0>,<0>>,
(joint3 ∼ upper limb):<<-20,0,0>,<10,0>,<0>>,
(joint4 ∼ lower limb):<<40,0,-10>,<0>,<0>,<0>>,
(joint5 ∼ lower limb):<<-10,0,10>,<-10>,<0>,<20>> >

WHERE
torso = T:<1,2>:<-5,-5>:torso shape,
joint1 = T:3:30,
joint2 = T:<1,3>:<6,30>,
joint3 = T:<1,3>:<-6,30>,
joint4 = T:1:4,
joint5 = T:1:-4

END;

The top limb structure, given in Script 8.5.10, contains a neck and a head object,
respectively connected by two and three rotational degrees of freedom, which are
passed via the dof (Degrees Of Freedom) formal parameter. Notice that the neck is
allowed to rotate about its local x and y axes, whereas the head may rotate about x,
y and z.

Script 8.5.10 (Neck and head)
DEF top limb (dof::IsSeqOf:IsSeq) = STRUCT:<

rot1, pos1:neck, joint, rot2, pos2:head >
WHERE

pos1 = T:<1,2>:<-2.5,-2.5>,
pos2 = T:<1,2>:<-4,-4>,
rot1 = Tensor:<1,2>:(S1:dof),
rot2 = Tensor:<1,2,3>:(S2:dof),
joint = T:3:3

END;

The upper limb parametric structure given in Script 8.5.11 connects into a
kinematic chain the upper arm to the lower arm and the latter to the hand objects,
and connects them with three, two and one rotational degrees of freedom, passed as
subsequences of the dof sequence, respectively. Notice, e.g., that the hand object is
positioned with respect to its local origin by the pos3 tensor, then rotated about its
origin by the rot3 tensor. Finally, the local origin, i.e. the position of the rotational
joint, is translated within the local system of its father object (in this case lower arm)
by the joint2 tensor within the hierarchical assembly which models the kinematic

322 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

chain of the body arm. A similar pattern of transformations is used for the subsequent
subassemblies and joints, i.e. for lower arm and upper arm.

Script 8.5.11 (Arm and hand)
DEF upper limb (dof::IsSeqOf:IsSeq) = STRUCT:<

rot1 ∼ pos1, upper arm,
joint1 ∼ rot2 ∼ pos2, lower arm,
joint2 ∼ rot3 ∼ pos3, hand >

WHERE
rot1 = Tensor:<1,2,3>:(S1:dof),
rot2 = Tensor:<1,3>:(S2:dof),
rot3 = Tensor:<2>:(S3:dof),
pos1 = T:<1,2,3>:<-1,-1.5,-15>,
pos2 = T:<1,2,3>:<-1,-1.5,-15>,
pos3 = T:3:-8,
joint1 = T:<1,2>:<1,1.5>,
joint2 = T:<1,2>:<0.5,-1>

END;

Analogously, the lower limb function given in Script 8.5.12 is a parametric
structure, joining a big toe to the feet and this one to the lower leg and then
to the upper leg, which is finally positioned into the local reference system of the
lower limb by the transformation tensors named pos1 and rot1.

Script 8.5.12 (Leg and feet)
DEF lower limb (dof::IsSeqOf:IsSeq) = STRUCT:<

rot1 ∼ pos1, upper leg,
joint1 ∼ rot2 ∼ pos2, lower leg,
joint2 ∼ rot3 ∼ pos3, feet,
joint3 ∼ rot4, toe >

WHERE
pos1 = T:<1,2,3>:<-2,-3,-20>,
pos2 = T:<2,3>:<-3,-20>,
pos3 = T:2:-1,
rot1 = Tensor:<1,2,3>:(S1:dof),
rot2 = Tensor:<1>:(S2:dof),
rot3 = Tensor:<1>:(S3:dof),
rot4 = Tensor:<1>:(S4:dof),
joint1 = T:2:3,
joint2 = T:3:-4,
joint3 = T:2:9

END;

The sort of anthropomorphic robot depicted in Figure 8.7 is finally generated by
assigning a parallelepiped shape to each Body part. The detailed definitions of all the
component shapes are given in Script 8.5.13.

HIERARCHICAL STRUCTURES 323

Script 8.5.13 (Body components)
DEF torso shape = CUBOID:<10,10,30>;

DEF head = CUBOID:<8,8,8>;
DEF neck = CUBOID:<5,5,3>;
DEF upper arm = CUBOID:<2,3,15>;
DEF lower arm = CUBOID:<2,3,15>;
DEF hand = CUBOID:<1,5,8>;
DEF feet = CUBOID:<4,9,4>;
DEF toe = CUBOID:<4,3,4>;
DEF lower leg = CUBOID:<4,6,20>;
DEF upper leg = CUBOID:<4,6,20>

Note The important part of the structured assembly discussed above is the
hierarchical relationship between its parts, and the chains of transformations between
the local coordinate systems induced by the joint conditions. The shapes of the
elementary parts may easily be changed without requiring any change of the upper-
level structures, as it is shown by the two variations of the body model given in
Figure 8.8.

Figure 8.8 Two configurations of the Body model with different definitions for the

elementary parts and same values for the joint angles

Actually, in order to be really invariant with respect to the dimensions and shapes
of lower-level subassemblies and components, the posi tensors should be moved on
top of the children structures, and the jointi tensors should be written as parametric
functions of the dimensions of the local root.

8.5.3 Umbrella modeling (1): structure

The goal of the geometric programming example given here is the generative modeling
of a parametric umbrella, parametrized on the opening angle. In particular, we discuss
the modeling from scratch of the kinematic mechanism, using wire-frame parts. In
later chapters, this model will be step-wise refined by:

1. curving some rods as quadratic Bézier curves, depending on the opening angle
of the umbrella (see Section 11.5.2);

2. modeling the umbrella canvas as Coon′s patches delimited by polynomial
curves of degrees 2, 1 and 0 (see Section 12.6.1);

3. modeling all the umbrella rods as solid parts, to substitute their previous

324 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

definitions as wire frames (see Section 13.6.1).
4. animating the various umbrella versions (see Section 15.6.1).

This example aims to demonstrate that the PLaSM language, conversely than other
development environments for graphics programming and virtual reality, allows for
progressive refinement of working models and top-down development. The authors
believe this fact should be the very distinctive feature of a design language.

Rod and axis modeling A 1D Rod of length len is defined along the z-axis in IR3

by using the primitive constructor MKPOL. The core RodPair of the moving mechanism
(shown in Figure 8.9a) is then described as a function depending on the height h and
on the opening angle alpha. For this purpose two instances of the Rod primitive are
properly combined with affine transformations. According to the semantics of standard
iso phigs structures, both Rod1 and Rod2 are defined in local coordinates and jointly
transformed into world coordinates.

x y

z

αr o d 1

r o d 2

axis

h a n d l e

x

y

z z

x

y

Figure 8.9 (a) Model generated by (STRUCT ∼ [Axis ∼ S1,Handle ∼
S1,RodPair]):<10,80> (b) Value of Umbrella:<10,80> (c) Value of

Umbrella:<10,15>

Script 8.5.14 (Umbrella (1a))
DEF Rod (len::IsReal) = MKPOL:<<<0,0,0>,<0,0,len>>,<<1,2>>,<<1>>>;

DEF Axis (len::IsReal) = Rod:len;

DEF RodPair (h, alpha::Isreal) = STRUCT:<
T:3:h, R:<3,1>:(-:alphaRad), Rod1,
T:3:(-:AB), R:<3,1>:(2*alphaRad), Rod2 >

WHERE
alphaRad = alpha*PI/180,
Rod1 = S:3:-1:(Rod:(2*AB)),
Rod2 = S:3:-1:(Rod:AB),
AB = h*4/10

END;

HIERARCHICAL STRUCTURES 325

Parametric umbrella The whole parametric Umbrella is then defined as a
structure by catenating a sequence with one Axis and Handle and 12 pairs, each
containing a rotation of π/6 around the z-axis and one instance of the RodPair model
previously defined.

In particular, the Handle is defined as a properly positioned halfcircle linearly
approximated with 12 segments. The whole Umbrella model at this stage is shown in
Figure 8.9 for two different values of the opening angle.

Script 8.5.15 (Umbrella (1b))
DEF Umbrella (h, alpha::Isreal) = (STRUCT ∼ CAT):

<[Axis, Handle]:h, ##:12:< RodPair:<9/10*h,alpha>, R:<1,2>:(PI/6) > >;

DEF Handle (h::Isreal) = (T:1:Radius ∼ S:<1,3>:<Radius,Radius>):
(MAP:[COS ∼ S1, K:0, SIN ∼ S1]:dom)

WHERE
dom = T:1:PI:(QUOTE:(#:12:(PI/12))),
Radius = h/18

END;

8.5.4 Tree diagrams

In this section we develop and discuss a useful set of functions used to produce a
graphical representation of a hierarchy, or, in other words, to perform some tree
drawing. In particular, we assume here that every tree node is associated with a
string. The given drawing approach can be slightly modified to produce a graphical
representation of more general hierarchies, where a node may be associated to any kind
of polyhedral complex of dimension 2 or 3. This approach could get useful to generate
the hierarchical diagram of the product model in some industrial applications.

Drawing strategy

Very simple drawing rules are used, and no optimization of the drawing area is
attempted. Two different styles for the drawing of the father-son relationship are
alternatively implemented. The resulting diagrams of the same tree are shown in
Figures 8.9a and 8.9b. The two simple style rules used in the following implementation
may be summarized as follows:

1. the containment boxes of the subtrees rooted in a node (called brother
subtrees in the following) are aligned with the top edges;

2. the containment boxes of brother subtrees are equally spaced.

Two more geometrical rules drive the whole drawing algorithm:

3. each node is defined in local coordinates, with the origin of the local system
positioned in the centroid of the containment box of the node;

4. each subtree is defined in the local coordinates of its root node;

326 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Implementation

In implementing the above drawing strategy, three main steps can be abstracted,
concerning respectively (a) the drawing of a node; (b) the drawing of a subtree; and
the (c) bottom up streaming aggregation of drawn subtrees, until one can draw or,
better, generate a geometric model of the diagram of the whole input tree.

Figure 8.10 Two graphical representations of the same tree

Tree input The tree shown in Figure 8.10, using two different drawing styles for
the arcs outgoing from each node, is coded in Script 8.5.16.

In particular, a tree is defined as a sequence of levels, where each level is a sequence
of sequences of nodes. There are as many elements (subsequences) in a level as there
are nodes in the previous tree level, so to define a one-to-one mapping between nodes
and sequences of their children. Therefore, a leaf node is associated with an empty
sequence in the next level, a node with two children is associated with a sequence with
two nodes, and so on. Also, each node is represented by a PLaSM string. Clearly, there
are as many (top-level) sequences in this description as there are levels in the tree.

Script 8.5.16 (Tree input)
DEF tree = <

<<′1′>>,
<<′2′,′3′,′4′,′5′>>,
<<′6′,′7′>,<>,<′8′,′9′,′10′>,<′11′>>,
<<>,<′12′,′13′,′14′>,<>,<>,<′15′>,<>>,
<<>,<>,<′16′,′17′,′18′,′19′>,<>>

>;

VRML:(drawTree:tree):′out.wrl′;

Notice that the diagrams of Figure 8.10 were produced by the last expression of
Script 8.5.16.

Node drawing We assume here that each tree node is described by a label of type
string, so that the TEXT operator defined in Script 7.2.13 can be applied to it. In
Script 8.5.17 the drawNode operator is given for this purpose, which adds a properly
scaled rectangle to the graphical text produced and centered about its midpoint by
the centerLabel function.

HIERARCHICAL STRUCTURES 327

Script 8.5.17 (Node drawing)
DEF Label = STRUCT ∼ [T:<1,2> ∼ AA:- ∼ MED:<1,2>, ID] ∼ TEXT;

DEF drawNode = STRUCT ∼ [ID, K:(S:<1,2>:<1.2,1.6>), BOX:<1,2>] ∼ Label;

More general assumptions about the nature of the nodes might be postulated and
easily implemented, with the aim of generating the diagram as a polyhedral complex
of suitable dimension.

Subtree drawing The main design choices of the subtree drawing algorithm given
in Script 8.5.18 concern the definition of each subtree in the local coordinate space of
its own root node, with a local origin (0, 0) coinciding with the center of the root′s
containment box.

Notice that the discussed drawing strategy is bottom-up, from leaf nodes in the
lowest hierarchical level, up to the root node in the top tree level. The main algorithm
is codified by the drawSubtree function, which is repeatedly called by the draw level
function in Script 8.5.19.

The drawSubtree algorithm just aggregates the two structures returned by the
moved sons function and by the drawEdges function. In particular, the last one returns
a set of polylines between the local origin and the sonCenters. The moved sons
operator returns the structure produced by equispacing the subtree(s) of its son
arguments. The translations to be applied between adjacent son pairs are computed
on the fly, by analyzing the pairs of already modeled subtrees.

Script 8.5.18 (Subtree drawing)
DEF pairs = CONS ∼ AA:CONS

∼ TRANS ∼AA:(AA:SEL∼FROMTO)∼[[k:1,len-k:1],[k:2,len]];
DEF size pairs = APPLY ∼ [pairs, ID] ∼ AA:(SIZE:1);
DEF translations = AA:(T:1 ∼ C:+:dx ∼ /∼[ID,K:2] ∼ +)

∼ AR ∼ [ID, K:0] ∼ size pairs;
DEF last transl (n::IsPol) = T:<1,2>

∼ [(SIZE:1 / K:-2) + K:(SIZE:1:n / 2), K: dy];

DEF drawSubtree = STRUCT ∼ [moved sons, drawEdges];
DEF subtree = STRUCT ∼ CAT ∼ TRANS ∼ [ID, translations];
DEF moved sons (sons::isSeqOf:isPol) =

(STRUCT ∼ [last transl:(FIRST: sons), ID] ∼ subtree):sons;

DEF drawEdges (sons::isSeqOf:isPol) =
(STRUCT ∼ AA:Polyline ∼ DISTL): < <0,0>, sonCenters >

WHERE
sonTransl = (AL∼[last transl:(S1:sons)∼subtree, translations]): sons,
sonCenters = (S1 ∼ UKPOL ∼ STRUCT ∼ CAT ∼ DISTR):<sonTransl,MK:<0,0>>

END;

Tree drawing The top-level operator, which is invoked to produce a diagram of a
tree, is clearly named drawTree, and is given in Script 8.5.19. It is quite interesting,

328 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

because does not use either explicit iteration or recursion to make its work, but instead
a pure FL style based on a sort of stream processing. The drawTree behavior can be
summarized as follows.

1. First, the input tree is preprocessed by “drawing” every node, i.e. by
transforming every string into a 2D polyhedral complex.

2. Then, the n levels in the input tree are paired bottom-up, and each level pair
is repeatedly transformed into a single level, by reducing each corresponding
(node, children sequence) into a single polyhedral complex, by using for this
purpose the drawSubtree operator. This operation is repeated n − 1 times.

3. Finally, some house-cleaning is performed, in order to extract the 2D output
complex from the generated data structure.

Script 8.5.19 (Tree drawing)
DEF drawTree (levels::IsSeq) =

(S1 ∼ S1 ∼ S1 ∼ COMP:(#:(n - 1):reducePair AR preProcess)):levels
WHERE

n = LEN: levels,
preProcess = REVERSE ∼ AA: draw leafs,
reducePair = AL ∼ [structMapping, TAIL∼TAIL]

∼ AL∼[AA: pairing ∼ TRANS ∼ [draw level ∼ S1, CAT ∼ S2], TAIL]
END;

DEF draw leafs = AA:(IF:< isVoid, K:<>, AA:drawNode >);
DEF draw level = AA:(IF:< isVoid, K:<>, drawSubtree >);
DEF pairing = IF:< isVoid ∼ s1, s2, STRUCT ∼ [s2,s1] >;
DEF structMapping = APPLY ∼ [CONS ∼ AA:(AS:SEL) ∼ select ∼ S2, S1];
DEF select = AA:(FROMTO ∼ [+ ∼ [- ∼[+ , LAST],K:1], +])

∼ APPLY
∼ [CONS ∼ AA:(AS:SEL ∼ INTSTO)∼INTSTO ∼ LEN, ID]
∼ AA:LEN;

Drawing subtree forks The standard drawing style for a tree diagram puts a
segment between non-leaf nodes and each of their children. More unusually, a single
“fork” instead goes out from every non-leaf node, and enters each of the children of
the node. The drawForks function given in Script 8.5.20 implements such a drawing
style, and is intended to substitute the drawEdges call in the drawSubtree function of
Script 8.5.18. An example of diagram with forks is given in Figure 8.10b. In this case
a sort of “Manhattan” path is used when drawing edges between the starting point
and the ending points. The mean function was given in Script 4.4.8.

8.5.5 Array of aligned graphics symbols

Our aim in this section is to discuss how to build complex arrangements of variously
aligned graphics objects or symbols.

HIERARCHICAL STRUCTURES 329

Script 8.5.20 (Subtree forks)
DEF drawForks (sons::isSeqOf:isPol) = (STRUCT ∼ AA:Polyline ∼ CAT):

< LIST:middleExtremes, manhattan:<<0,0>, Meanpoint >,
TRANS:< sonCenters, addedPoints >>

WHERE
middleExtremes = DISTR:< [S1∼first, S1∼last]: sonCenters , dy / 2 >,
Meanpoint = (AA: mean ∼ TRANS): middleExtremes,
addedPoints = AA:S1: sonCenters DISTR dy / 2,
manhattan = [[S1, [s1∼s1,s2∼s2]], [[s1∼s1,s2∼s2], S2]]
sonTranslations =

(AL ∼ [last transl:(FIRST: sons) ∼ subtree, translations]): sons,
sonCenters = (S1 ∼ UKPOL ∼ STRUCT ∼ TAIL ∼ CAT ∼ DISTL):

< MK:<0,0>, sonTranslations >,
END;

For this purpose we first prepare a simplified 3D model of a house, given in
Script 8.5.21, as a polyhedral complex assembling few 3D convex polygons. Such a
house model is then projected in various ways, using methods discussed in Chapters 9
and 10, so generating several different 2D projections, shown in Figure 8.11. We do not
discuss here how the projections are generated. An extensive discussion of standard
projections may be found in Chapter 10. We are only interested here in the relative
arrangements of the 2D projections.

Script 8.5.21 (House model)
DEF house = MKPOL:< verts,cells,pols >

WHERE
verts = < <0,0,0>,<0,0,10>,<0,5,13>,<0,10,10>,<0,10,0>,

<10,0,0>,<10,0,10>,<10,5,13>,<10,10,10>,<10,10,0>,
<10,4,0>,<10,4,8>,<10,6,0>,<10,6,8>,
<6,10,4>,<4,10,4>,<6,10,8>,<4,10,8> >,

cells = < 15..18,<5,4,9,10>,11..14,6..10,<3,4,8,9>,
<2,3,7,8>,<1,2,6,7>,1..5 >,

pols = < <1>,<2>,<3>,<4>,<5>,<6>,<7>,<8> >
END;

Each projection of the 3D house model generated (and assembled) by Script 8.5.22
produces a different 2D graphics object. In particular, a set of 15 different projections is
organized in Script 8.5.22 as a 2D array of symbols with 5 rows and 3 columns. For this
purpose the generating expressions (enclosed in round parentheses) are grouped into
5 subsets as STRUCT expressions, in turn assembled by an external STRUCT operator,
together with translation tensors that relocate the graphics objects they refer to in
proper locations of the 2D arrangement.

Notice that, according to the semantics of PHIGS structures, each T:1:28 tensor
in Script 8.5.22 applies only to graphics objects which follow it within the argument
sequence the tensor belongs to.

330 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Figure 8.11 Flash exporting: (a) array of pictures, with alignment of origins of

local systems (b) array of pictures centered around their (aligned) origins

HIERARCHICAL STRUCTURES 331

Script 8.5.22 (array of artworks)
DEF MxMy = STRUCT ∼ [T:<1,2> ∼ AA:- ∼ MED:<1,2>, ID];

DEF out = STRUCT:<
STRUCT:<

MxMy:(projection: perspective: onepoint: house), T:1:28,
MxMy:(projection: perspective: twopoints: house), T:1:28,
MxMy:(projection: perspective: threepoints: house) > ,

T:2:-25, STRUCT:<
MxMy:(projection: parallel: orthox: house), T:1:28,
MxMy:(projection: parallel: orthoy: house), T:1:28,
MxMy:(projection: parallel: orthoz: house) > ,

T:2: -22, STRUCT:<
MxMy:(projection: parallel: isometric: house), T:1:28,
MxMy:(projection: parallel: dimetric: house), T:1:28,
MxMy:(projection: parallel: trimetric: house) > ,

T:2: -28, STRUCT:<
MxMy:(projection: parallel: leftCavalier: house), T:1:28,
MxMy:(projection: parallel: centralCavalier: house), T:1:28,
MxMy:(projection: parallel: rightCavalier: house) > ,

T:2: -30, STRUCT:<
MxMy:(projection: parallel: xCavalier: house), T:1:28,
MxMy:(projection: parallel: yCavalier: house), T:1:28,
MxMy:(projection: parallel: cabinet: house) >

>;

Picture exporting The pictures shown in Figure 8.11 are produced by a web
browser, e.g. Microsoft Internet Explorer or Netscape Navigator, equipped with a
Flash plug-in, by loading the out.swf file exported by PLaSM at the evaluation
of the expression given in Script 8.5.23. To successfully evaluate such expression,
the PLaSM environment must have already loaded the library called flash.psm,
where the definitions of the primitive functions FILLCOLOR, LINECOLOR and LINESIZE
are contained. Notice that the argument sequence of FILLCOLOR and LINECOLOR
contain 4 numbers in the interval [0, 1], according to the RGBα (Red, Green, Blue,
Transparency) color model used by Flash.

Script 8.5.23 (Flash exporting)
flash:(out

FILLCOLOR RGBAcolor:< 0,1,1,0.5 >
LINECOLOR RGBAcolor:< 0,0,0,1 >
LINESIZE 1)

:300:′out.swf′;

Alignment operators

The picture shown in Figure 8.11b is generated by direct evaluation of the PLaSM
code given above. The reader may find very instructive to re-evaluate the exporting

332 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

expression 8.5.23 after some editing and re-evaluation of Script 8.5.22. In particular,
the reader should cancel all the instances of the string “MxMy:”, i.e. all the applications
of the function MxMy — that stands for Middle x, Middle y — to the symbol generating
expressions. The specific aim of this operator, defined in Script 8.5.22 as

DEF MxMy = STRUCT ∼ [T:<1,2> ∼ AA:- ∼ MED:<1,2>, ID]

is to center a 2D object around its local origin.
This operation is accomplished as follows by the MxMy operator:

1. compute, by using the MED:<1,2> operator, the middle point p of the
containment box of the symbol;

2. then, generate the translation vector o − p, by just reversing the sign of all
the p components;

3. finally, produce a STRUCT expression that contains the T:<1,2>:−p tensor
as well as the symbol we want to relocate.

Several different alignment operators might easily be defined by substituting the
MED:<1,2> operator with a different function, with the intent of suitably generating a
different translation vector to be applied to the input symbol. For example, a graphics
symbol can be usefully relocated by using one of the operators defined in Script 8.5.24.

Script 8.5.24 (Alignment operators)
DEF MxBy = STRUCT ∼ [T:<1,2> ∼ AA:- ∼ [MED:1,MIN:2], ID]

DEF MxTy = STRUCT ∼ [T:<1,2> ∼ AA:- ∼ [MED:1,MAX:2], ID]
DEF LxMy = STRUCT ∼ [T:<1,2> ∼ AA:- ∼ [MIN:1,MED:2], ID]
DEF RxMy = STRUCT ∼ [T:<1,2> ∼ AA:- ∼ [MAX:1,MED:2], ID]

Where:

1. MxBy stands for Middle x, Bottom y, and moves the center of the object
baseline, clearly together with the whole object, to the origin of its local
reference system.

2. MxTy stands for Middle x, Top y, and moves the center of the object topline
to the origin of the local system.

3. LxMy stands for Left x, Middle y, and moves the center of left side of object′s
containment box to the origin of the local frame, thus preparing the graphics
symbol for a “left-hand” alignment.

4. RxMy stands for Right x, Middle y, and moves the center of right side of
object′s box to the local origin, giving a “right-hand” alignment.

Other combinations of x and y alignments are clearly possible.

