
6

Affine transformations

Transformations, i.e. linear invertible automorphisms, are used to map a picture or
model into another one with different size, position and orientation. We will see
that each useful geometric transformation may be reduced to an invertible linear
transformation of a suitable linear space. Hence, given a basis, transformations are
represented by means of squared invertible matrices, called transformation matrices.
The main aim of this chapter is to study the structure and properties of matrices
of “elementary” transformations. The interpretation of matrix multiplication as a
geometric operator that maps a point locus (i.e. either a picture or model) into another
one, is one of the great old ideas of computer graphics. In this chapter we first study
the transformations of the 2D Euclidean space, then we see how they generalize to 3D
and to greater dimensions. We also discuss how affine transformations are implemented
as dimension-independent automorphisms by PLaSM. Several programming examples
are given in the chapter.

6.1 Preliminaries

Some preliminary concepts needed in basic computer graphics are discussed in this
section, including the definition of linear and affine transformations, the notation and
conventions used for points, vectors, angles and positive rotations, and the important
ideas underlying the use of homogeneous coordinates.

6.1.1 Transformations

A geometric transformation is defined as a one-to-one mapping of a point space to
itself, which preserves some geometric relations of figures. For example:

1. linear transformations map lines for the origin to lines for the origin;
2. affine transformations map lines to lines preserving the parallelism;
3. uniform scaling transformations map point sets preserving the similarity ;
4. translations and rotations, called rigid transformations, preserve the
congruence of point sets.

Geometric Programming for Computer-Aided Design Alberto Paoluzzi
c© 2003 John Wiley & Sons, Ltd ISBN 0-471-89942-9

218 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Linear transformations A linear transformation is an invertible linear map of a
vector space to itself. Linear transformations of a vector space V earned this name
because the transformed p∗ of each p on the line segment joining p1 and p2 belongs
to the segment joining the transformed images p∗

1 and p∗
2 . In fact, let

p = α1p1 + α2p2 0 ≤ α1, α2, α1 + α2 = 1

and let T : V → V be a linear transformation. By linearity of T we have

p∗ = Tp = T (α1p1 + α2p2) = α1Tp1 + α2Tp2 = α1p
∗
1 + α2p

∗
2

This property is very important from a practical viewpoint, because it allows
transformation of pictures or models, which are point loci with infinite elements, by
just transforming a finite number of points, and in particular those called vertices, at
the intersection of picture or model edges.

Affine transformations An affine map is a map between two affine spaces which
preserves the affine structure, i.e. maps lines to lines and preserves the parallelisms.
Let A and B be two affine spaces with underlying vector spaces V and W, respectively.
Then a map A : A → B is affine if, for each x ∈ A and v ∈ V

x+ v 	→ A(x + v) = A(x) + T (v),

where T is linear, and is called the linear part of A.
An affine transformation is an invertible affine map of an affine space to itself. An

affine map is invertible only if its linear part is invertible. The affine transformations
of an affine space A form a group with respect to function composition, called the
affine group of A.

Notation In the following sections we indifferently speak of either affine
transformations — also called tensors in this book — and of their matrices, and
normally we use the same notation. Tensor composition will occasionally be denoted
by symbol concatenation, with the same notation used for matrix multiplication. An
explicit denotation of functional composition is instead used within the PLaSM sources,
where we need to distinguish between tensors, i.e. functions in the affine group, and
their matrices.

6.1.2 Points and vectors

According to current practice, we give the coordinate representation of elements in

a point space, e.g. of point p ∈ IE2, as a column vector
(

x
y

)
. The coordinate

representation of the point p∗ = A(p) generated by the action of a tensor A on a
point p is hence given by left-hand multiplication by tensor matrix [A].

Actually, for sake of simplicity, we will often use the notation A to denote both
the tensor and its matrix. We shall use the full notation [A] for a tensor matrix just
occasionally, with the aim of remarking its use.

So, we have:

AFFINE TRANSFORMATIONS 219

p∗ =
(

x∗

y∗

)
= A p =

(
a c
b d

)(
x
y

)
=

(
ax+ cy
bx+ dy

)
.

The convention of representing points with column vectors and transformations
with left-hand matrix multiplication was adopted in graphics quite recently. Hence,
several graphics books represent points as row vectors and transformations as right-
hand matrix multiplications. E.g.:

p∗ =
(
x∗ y∗

)
= p AT =

(
x y

)(a b
c d

)
=

(
ax+ cy bx+ dy

)

Notice the use of the transposed transformation matrix, and remember that the
transposition of a matrix product is the product of transposed matrices, in the reverse
order:

(S2 S1 p)T = pT ST
1 ST

2

6.1.3 Orientations and rotations

In studying the space transformations of 3D models, we need to first of all agree on
orientation of rotations and angles.

In particular, the vectors e1, e2, e3 in a Cartesian basis can be mutually oriented as
the first three fingers of either the left or the right hand. The basis is called left-hand
or right-hand , accordingly.

In most engineering and design disciplines, right-hand Cartesian bases are used,
with the x and y axes contained on the image plane and the z axes perpendicular
and directed towards the observer. In a left-hand basis the z axis has an opposite
orientation, entering the image plane.

Given a basis (ei), the rotations are considered positive that move the basis vectors
as follows:

e1 → e2, e2 → e3, e3 → e1.

In right-hand bases the positive rotations (and positive angles) are counter-clockwise
oriented, whereas in left-hand bases the positive rotations are oriented clockwise. In
order to find the sign of rotation, the observer should look at as the rotation axis, see
Figure 6.1.

6.1.4 Homogeneous coordinates

We know that several transformations of figures are linear. Linear transformations
include scaling, rotation, reflection and shearing. They can be applied to some picture
or model by matrix multiplication of picture (model) “vertices” times some suitable
matrix. We also know that translations are conversely not linear, since they are applied
by adding some constant vector to picture (model) vertices.

It is computationally inconvenient that the algebraic operation needed to apply
different transformations is not always the same. This prevents from easy combining

220 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

y

x

z

y

x

z

e1

e2
e3

e1

e2

e3

Figure 6.1 Basis orientation and positive rotations: (a) right-hand basis

(b) left-hand basis

different transformations to some object, by first multiplying the corresponding
transformation matrices and by then applying the resulting product matrix to object
vertices.

A solution to this problem was discovered by using normalized homogeneous
coordinates rather than standard Cartesian coordinates. In particular, three-
dimensional homogeneous coordinates are used for 2D pictures, whereas four-
dimensional homogeneous coordinates are used for 3D models. More generally, (n+1)-
dimensional coordinates are needed for nD models.

x, X

y, Y

W

p = (x, y)

p = (X, Y, 1)

Figure 6.2 Homogeneous coordinates of 2D plane

Homogeneous coordinates define a bijective mapping between the set of points of
Cartesian plane and the set of straight lines passing for the origin o of the 3D space,
see Figure 6.2. The origin is subtracted from such lines, considered as point sets, so
that the mapping between plane points and space lines becomes one-to-one.

In this mapping E2 → E3 each point
(

x
y

)
∈ E2 is represented as a vector

 X
Y
W

 ∈ E3, with W
= 0, such that x = X/W, y = Y/W . Notice that the same

plane point is also represented by each vector λ

 X

Y
W

, where λ ∈ IR and λ
= 0.

The reverse mapping from lines to points is hence very simple. In order to return

AFFINE TRANSFORMATIONS 221

from an homogeneous point (or, better, vector)

p′ =

 X

Y
W

to its corresponding Cartesian point

p =
(

x
y

)
,

two divisions by the homogeneous coordinate W are needed. In order to avoid such

computation it is sufficient to associate the plane point
(

x
y

)
to the so-called

normalized homogeneous representation

 X

Y
1

, for which it is

x = X, y = Y.

In the remainder of this book we use only lower-case letters for coordinates, so that
the generic plane point will be denoted, in homogeneous normalized coordinates, as
 x

y
1

.

6.2 2D Transformations

In this section we discuss the properties of Cartesian plane (IE2, o, {e1, e2}), and the
structure of the elementary transformation matrices. In several figures the Cartesian
axis are labeled both with x, y and with x∗, y∗, in order to represent the coordinates
of both the domain and range of the discussed mapping.

6.2.1 Translation

A plane translation is a mapping T : IE2 → IE2 where a fixed vector t =
(

m
n

)
is

added to each point p =
(

x
y

)
, so that

p∗ = T (p) = p + t =
(

x
y

)
+

(
m
n

)
=

(
x+m
y + n

)
.

Notice that t gives exactly the image of the origin in such a transformation. This
movement of the origin implies that a translation is not a linear transformation, and
hence that it cannot be directly represented by the product with some suitable matrix.

We see here that the translation becomes linear when using homogeneous
coordinates. In fact, the translation which maps a point p in

p∗ = p + t,

222 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

x

x*

y y *

p

p*

m

n
t

Figure 6.3 2D translation

with t =
(
m n

)T , can be expressed by using homogeneous coordinates as:

p∗ = T p =

 1 0 m

0 1 n
0 0 1

 x

y
1

 =

 x+m

y + n
1

It is easy to see, looking at Figure 6.2 and to the structure of matrix T , that by
using three-dimensional homogeneous coordinates a translation of IE2 is reduced to
an elementary shearing (see Section 6.2.5) of IE3.

PLaSM representation of translation The elementary geometric transformations,
i.e. translation, scaling, rotation and shearing, are defined in PLaSM by means of higher
level functions, which require a double application to integer and real parameters to
return the desired transformation tensor, which must be in turn applied to some
geometric object to return the transformed object.

In particular, the application of a third-order transformation operator (say T, S or
R) to either one or more integers, which specify the coordinates to be affected by the
transformation, returns a more specific function, which must be applied to a suitable
number of real parameters in order to return a tensor. The integer numbers are called
specificators. The real numbers are called (transformation) parameters. Translation
tensors are generated by PLaSM expressions:

T:specificators:parameters

where specificators are either one integer or a sequence of integers and parameters
are either one real or a sequence of reals, accordingly. Notice that specificators and
parameters sequences of translations must have the same length. The token T is a
PLaSM keyword, and cannot be redefined by the user.

According to their mathematical definition, transformation tensors are functions.
Hence they can be composed with other functions, or applied to language expression
that generate geometric objects, i.e. polyhedral complexes.

The translation tensors generated by such language expressions can be either
composed by standard composition operator or applied to some language expression
which evaluates to a polyhedral complex. E.g., in order to apply a translation with
vector t =

(
10.1 11.2

)T to the polyhedron pol, we write:

AFFINE TRANSFORMATIONS 223

T:<1,2>:<10.1,11.2>:pol

In order to gain a full understanding, remember that multiple applications associate
to left, so that the previous expression is evaluated as:

((T:<1,2>):<10.1,11.2>):pol;

As a further example, the translations T (l, m),T (l, 0),T (0, m) ∈ Aff IR2 can be
defined and applied as either:

T:<1,2>:<l,m>:pol or (T:1:l ∼ T:2:m):pol;

Example 6.2.1 (2D house)
A very simple 2D polyhedral complex House2D, shown in Figure 6.4, is defined in
Script 6.2.1. It is generated by aggregation of three 2D polyhedra respectively denoted
wall, door and window. Each part is defined in local coordinates, with the local origin
positioned in its lower left point. Two suitable 2D translation tensors are applied to
door and window respectively, in order to relocate them in the Cartesian frame of
wall.

y y

x x

Figure 6.4 2D house: (a) without translations of parts (b) with translations

Script 6.2.1
DEF House2D = STRUCT:< wall, T:1:2:door, T:<1,2>:<5,2>:window >

WHERE

wall = MKPOL:<<<0,0>,<8,0>,<0,6>,<8,6>,<4,8>>,<1..5>,<<1>>>,

door = CUBOID:<2,4>,

window = CUBOID:<1,2>

END;

Two translation tensors are also applied to the second and third instances of
the formal parameter Object, of polyhedral type, in the definition of function
triplet given in Script 6.2.2. The value generated by evaluation of expression
triplet:House2D is shown in Figure 6.5. The code is written with the aim of noting
that the value generated by the evaluation of the expression T:1:12 is a transformation
tensor, i.e. a function.

The triplet function could also be written more compactly, by using a proper FL
style, as:

DEF triplet = STRUCT ∼ [ID, T:1:12, T:1:12 ∼ T:1:12];

The triplet definition in Script 6.2.2 is said to use a λ-style, where formal parameters
are given in the function head and referenced in the function body. The proper FL

224 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Script 6.2.2
DEF triplet (Object::IsPol) = STRUCT:

< Object, transl:Object, (transl ∼ transl):Object >

WHERE

transl = T:1:12

END;

triplet:House2D;

style is instead without parameters, as discussed in Section 2.1. The two definitions
are equivalent. Clearly, to choose a programming style is not only a stylistic matter.
There are good reasons for both choices, but a discussion of this topic is beyond the
scope of this book.

Figure 6.5 Aggregation of three 2D houses

6.2.2 Scaling

A scaling S is a transformation tensor represented by a diagonal matrix with positive
coefficients, so that we have:

p∗ = S p =
(

a 0
0 b

)(
x
y

)
=

(
ax
by

)
, a, b > 0

If a, b > 1, then S produces a dilation of pictures; conversely, if a, b < 1 then it
produces a compression of pictures. A scaling with a = b = 1 is an identity mapping.
Examples of 2D scaling on the first and second coordinate directions are given in
Figures 6.6a and 6.6b, respectively.

x

x*

p p*

x

x*

p

p*

*y y *y y

Figure 6.6 2D scaling: (a) about the x coordinate (b) about the y coordinate

The matrices of uni-directional scaling tensors, named Sx and Sy, differ from the

AFFINE TRANSFORMATIONS 225

identity matrix for just one of the diagonal coefficients:

p∗ = Sx p =
(

a 0
0 1

)(
x
y

)
=

(
ax
y

)

p∗ = Sy p =
(

1 0
0 b

)(
x
y

)
=

(
x
by

)
.

A generic scaling transformation (matrix) can be obtained by composition (product)
of uni-directional scaling transformations (matrices):(

a 0
0 b

)
=

(
a 0
0 1

)(
1 0
0 b

)
.

When a = b the scaling is said to be uniform. The action of an uniform scaling is
shown in Figure 6.7. In particular, the picture shows the action of a scaling matrix that
doubles both the coordinates of picture points. We note that, in this transformation:

1. the size of all line segments is doubled;
2. the image p∗ of each point p is located on the line joining p to the origin;
3. the transformed picture is not only enlarged, but also moved away from the

origin.

x
x*

y y * p

p*

Figure 6.7 The action of a uniform scaling tensor

The normalized homogeneous matrix S′ ∈ IR3
3 of the 2D scaling tensor can easily be

derived from the corresponding non-homogeneous matrix S ∈ IR2
2, by adding a unit

row and a unit column:

p∗ = S′p =
(

S 0
0 1

)
 x

y
1

 =

 a 0 0

0 b 0
0 0 1

 x

y
1

 =

 ax

by
1

PLaSM representation of scaling Scaling tensors are generated by the evaluation
of PLaSM expressions

S:specificators:parameters

where specificators and parameters have the same type we discussed for translation
tensors. The token S is a PLaSM keyword, and cannot be redefined by the user.

226 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Example 6.2.2 (2D trees)
Example 6.2.1 is continued here, by adding a very schematic tree to the 2D house there
developed. For this purpose we use the function Circle given in Script 1.6.1. This
function generates a polygonal approximation of the circle of given radius centered in
the origin.

Then the circle is translated and aggregated to a thin rectangle to generate an
idealized tree shape, generated by MyTree. This one is a PLaSM function, parametrized
on the shape height h, which generates a specific tree model when applied to an actual
parameter value. Such a tree generator is instanced twice, using a translation, to give
the Trees object.

Finally, the function triplet given in Script 6.2.2 is used to generate the model
shown in Figure 6.8.

Script 6.2.3
DEF Leaves (radius::IsReal) = Circle:radius:<18,1>;

DEF MyTree (h::IsReal) = STRUCT:

< T:1:(-:h/48):(CUBOID:<h/24,h/3>), T:2:(2*h/3):(Leaves:(h/3)) >;

DEF Trees = STRUCT:<MyTree:9, T:1:2:(MyTree:11) >;

DEF HouseTrees = STRUCT:< House2D, T:1:-0.75:Trees >;

triplet:HouseTrees;

Note that we could not use the token TREE, since this one is a reserved PLaSM
keyword, which denotes a primitive operator with a semantics similar to that of INSR
and INSR operators. See Section 2.1.2.

Figure 6.8 Geometric value generated by the evaluation of the PLaSM expression

triplet:HouseTrees

6.2.3 Reflection

The reflection — sometimes called mirroring in graphics — about a coordinate axis,
is a linear transformation defined by a matrix generated by setting to −1 one of the
diagonal coefficients of the identity matrix. Hence a reflection strongly resembles a
scaling transformation. Two elementary reflections Mx and My can be given in the

AFFINE TRANSFORMATIONS 227

IE2 plane:

Mx =
(

−1 0
0 1

)
, My =

(
1 0
0 −1

)
.

As always, the normalized homogeneous representation of such transformations is
obtained by adding a unit row and column to their matrices:

M ′
x =

(
Mx 0
0 1

)
, M ′

y =
(

My 0
0 1

)
.

x
x*

y y *

p

p*

x
x*

y y *

pp*

Figure 6.9 Elementary reflections of plane: (a) about the x axis (b) about the y

axis

Clearly, the effect of a reflection tensor is to change the sign of just one coordinate
of points. In Figure 6.9 is shown the action of both elementary reflections of the plane.

PLaSM representation of reflection As we said, reflections resemble scaling. So it
is easy to implement such tensors by using the predefined operator S:

Mx ≡ S:1:-1

My ≡ S:2:-1

The same implementation may be used for elementary reflections of 3D space.

Example 6.2.3
The previous example is continued here, by adding symmetry to the scene. This is done
by reflecting the object HouseTrees and aggregating the original and the reflected
object instances. The result of the evaluation of Script 6.2.4 is shown in Figure 6.10.
A new implementation of the triplet function is given, where the x size of the formal
parameter Obj is used to compute the translation tensor.

6.2.4 Rotation

A rotation of the plane about the origin is a linear mapping that moves each point
p ∈ IE2 to a point p∗ = R(p) along an arc of circumference centered in the origin and
with constant angle α.

228 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Script 6.2.4
DEF Mirror (d::IsIntPos)(Obj::IsPol) = (STRUCT ∼ [S:d:-1, ID]):Obj;

DEF triplet (Obj::IsPol) = (STRUCT ∼ [ID, T:1:x, (T:1:x ∼ T:1:x)]):Obj

WHERE

x = SIZE:1:Obj

END;

triplet:(Mirror:1:HouseTrees)

Figure 6.10 triplet of models generated by the expression

triplet:(Mirror:1:HouseTrees)

The matrix of a rotation tensor is easily computed by considering the mapping of
basis vectors {ei}. In particular, we can write that e1 and e2 are mapped to e∗

1 and
e∗

2, respectively, where R is the unknown rotation matrix:

(
e∗

1 e∗
2

)
= R

(
e1 e2

)
.

Looking at Figure 6.11 we can write, more explicitly:
(

cosα − sinα
sinα cosα

)
= R

(
1 0
0 1

)
,

from which R is trivially derived.

x

y*

1e*

e2

x*

y

e1

2e*

Figure 6.11 Rotation of the unit square built on the standard basis vectors

We note that the fixed point of this mapping is the origin, and that the rotation
matrix depends on the rotation angle α. The normalized homogeneous matrix R′ ∈
Lin IR3 of a plane rotation is obtained from the non-homogeneous matrix R ∈ Lin IR2

in the standard way:

AFFINE TRANSFORMATIONS 229

p∗ = R′p =
(

R 0
0 1

)
 x

y
1

 =

 x cosα+ y sinα

−x sinα+ y cosα
1

PLaSM representation of rotation A rotation is called elementary when the set
of fixed points of this transformation is a coordinate subspace. Tensors of elementary
rotations are generated by the evaluation of PLaSM expressions such as

R:<i,j>:α

where <i,j> is a pair of integers that denotes the coordinate pair affected by the
transformation, and the real α is the parameter of the transformation, i.e. the rotation
angle, given in radians units.

The same syntax is used to specify elementary rotation tensors both in E2

and in higher-dimensional spaces. Such specification of rotation is truly dimension-
independent. Consider, in fact, that a rotation in IEn, e.g. Rij(α), is defined as one of
the

(
n
2

)
isometries of En which keep fixed a coordinate subspace of dimension n − 2

(and co-dimension 2), with equations

xk = 0, 1 ≤ k ≤ n, k
= i, j.

The two non-constant coordinates are changed by the tensor matrix according to
the pattern of sin and cos functions previously seen in the 2D case.

Hence in E2 we have the unique operator

R:<1,2> : IR → Lin IR2

such that, for each α ∈ IR, the rotation tensor R:<1,2>:α is returned. Conversely, in
E3 there are

(
3
2

)
= 3 different operators

R:<1,2> : IR → Lin IR3,

R:<2,3> : IR → Lin IR3,

R:<1,3> : IR → Lin IR3,

which return a rotation tensor when applied to a real number, which is interpreted as
the rotation angle. Analogously, in E4 we have

(
4
2

)
= 6 different elementary rotation

operators of this kind. Non-elementary rotations can be obtained by composition of
suitable elementary rotations, as discussed in Section 6.3.2 for the 3D case, where the
set of fixed points is an arbitrary axis.

Example 6.2.4 (2D car)
In this example we generate a group of simplified 2D cars. We also rotate such a model
with a variable angle. The single car model is generated by the PLaSM object named
car in Script 6.2.5 and shown in Figure 6.12. The used Circle generating function is
given in Script 2.2.5.

A row of integer length n of cars is generated by the function carQueue. Also a
function rotatedCarQueue is given in Script 6.2.6, which generates a row of n cars
on a “hillside” of any slope, specified by the formal parameter degrees. This function

230 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Script 6.2.5 (Car model)
DEF car = (T:2:0.5 ∼ STRUCT):

< body, T:1:1.5:wheel, T:1:6:wheel >

WHERE

body = MKPOL:<verts, cells, pols>,

verts = <<0,0>,<3,0>,<7,0>,<6,2>,<4,2>,<3,1>,<1,1>>,

cells = <<1,2,6,7>,<2,3,4,5,6>>,

pols = <<1,2>>,

wheel = S:<1,2>:<0.5,0.5>:(Circle:1:<18,1>)

END;

y

x

Figure 6.12 2D model of a simplified car

rotates the row of cars according to the hillside angle alpha. The scene generated by
the expression rotatedCarQueue:5:8 is shown in Figure 6.13.

A function InclinedTriple, where the mirrored pairs of houses given in previous
examples are here translated also in the y direction, is given in Script 6.2.7. The 2D
models produced by this function are easily combined with those produced by the
function rotatedCarQueue. The resulting scene is shown in Figure 6.14.

Script 6.2.6 (Rotated car row)
DEF carQueue (n::IsInt) = (STRUCT ∼ ##:n):< car, T:1:(1.2*SIZE:1:car) >;

DEF rotatedCarQueue (n::IsInt)(degrees::IsReal) =

STRUCT:< basis, R:<1,2>:alpha:(carQueue:n) >

WHERE

basis = MKPOL:<<<0,0>,<x,0>,<x,y>>,<<1,2,3>>,<<1>>>,

x = (SIZE:1:(carQueue:n)) * (COS:alpha),

y = (SIZE:1:(carQueue:n)) * (SIN:alpha),

alpha = degrees * PI/180

END;

rotatedCarQueue:5:8

AFFINE TRANSFORMATIONS 231

Figure 6.13 Car row on the hillside

Figure 6.14 2D model generated by the expression STRUCT:<

InclinedTriple:8:(Mirror:1:HouseTrees), rotatedCarQueue:5:8 >;

Script 6.2.7 (2D scene)
DEF InclinedTriple (degrees::IsReal)(Object::IsPol) = STRUCT:

< Object, transf:Object, (transf ∼ transf):Object >

WHERE

transf = T:<1,2>:<x, x * TAN:(PI*degrees/180)>,

x = SIZE:1:Object

END;

STRUCT:<

InclinedTriple:8:(Mirror:1:HouseTrees),

rotatedCarQueue:5:8

>;

232 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

6.2.5 Shearing

Let us consider the plane as a bundle of straight lines perpendicular to a coordinate
axis. An elementary 2D shearing is a tensor which maps line points to other points of
the same line, in such a way that:

1. all points of a line translate by the same vector, i.e. the line translates by the
vector;

2. only one line (the coordinate axis belonging to the bundle) is identically
mapped, i.e. is not translated;

3. the translation of each line is proportional to its distance from the fixed line.

x
x*

y y*

p*

1

a

p

x
x*

y y* x = by

y = ax b
1

Figure 6.15 (a) Action of a shearing Hx normal to x axis (b) Action of a shearing

Hy normal to y axis

In other words, a shearing tensor does not change a coordinate, whereas the other
one is changed linearly with the fixed coordinate. Algebraically we can write:

p∗ = Hx p =
(

1 0
a 1

)(
x
y

)
=

(
x

y + ax

)

p∗ = Hy p =
(

1 b
0 1

)(
x
y

)
=

(
x+ by

y

)

In particular, notice in Figure 6.15, that the line at unit distance from the axis
translates of a (respectively, of b). In other words the parameters a and b respectively
represent the translations of lines x = 1 and y = 1.

PLaSM representation of shearing A predefined shearing tensor does not currently
exist in PLaSM. Anyway, this operator is very easy to give as a user-defined function,
by using the standard language mechanism for tensor definition, i.e. the operator MAT,
which accepts as input a normalized homogeneous invertible matrix and returns the
corresponding tensor:

MAT : IR3
3 → lin 3

AFFINE TRANSFORMATIONS 233

Example 6.2.5 (Running car)
In order to define a parametrized tensor Hy(b) we can proceed as in Script 6.2.8,
where the function MAT ∼ MatHom is applied to the non-homogeneous tensor matrix.

Then, two shearing tensor values — Hy:1 and Hy:-1, respectively — are applied to
the 2D car model previously defined, in order to get three key-frames of a very simple
animation storyboard.

Figure 6.16 Three key-frames of a simple storyboard

In particular, the model in Figure 6.16 is obtained by evaluating the symbol story,
whereas the model in Figure 6.17 is obtained by evaluating the symbol story3D.
Remember, from Section 3.3.6, that in PLaSM the homogeneous coordinate is the first
one, so that we have:

MatHom:<<1, 5>, <0, 1>> ≡ <<1, 0, 0>, <0, 1, 5>, <0, 0, 1>>

Script 6.2.8
DEF Hy (b::IsReal) = (MAT ∼ MatHom):<<1,b>,<0,1>>

DEF story = STRUCT:< Hy:1:car, T:1:12:car, (T:1:24 ∼ Hy:-1):car >

DEF story3D = R:<2,3>:(PI/2):(Story * QUOTE:<3.5>);

The storyboard scenes can be easily transformed in 3D scenes by extruding the 2D
images (see also Section 14.4) The extrusion operation is implemented in PLaSM as a
Cartesian product with some 1D polyhedron. Also, we have to apply a rotation tensor
of angle π

2
around the x axis to the resulting object, in order to put the wheels upon

the xy plane.

Figure 6.17 Three key-frames of the 3D storyboard (“My wife’s car”).

6.2.6 Generic transformation

We consider here the action of a generic tensor matrix Q on the unit square built on
the basis vectors of a Cartesian frame (o, ei), with

Q =
(

a c
b d

)
.

234 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Let o∗,a∗, b∗, c∗ be the images under Q of points o,a, b, c, respectively, with
a = o + e1, b = o + e2 and c = o + e1 + e2. We can either write

(
o∗ a∗ b∗ c∗

)
= Q

(
o a b c

)
,

or, by using coordinates:
(

0 a c a+ c
0 b d b+ d

)
=

(
a c
b d

)(
0 1 0 1
0 0 1 1

)
.

x

x*

y y*

A*

B*
C*

a

b

c

d

a+c

b+d

B C

AO

Figure 6.18 Action of a generic tensor on the standard unit square

Looking at Figure 6.18, it is easy to note that:

1. a linear mapping does not move the origin;
2. the parallelisms of lines is conserved by the mapping, i.e. mapped parallel

lines are parallel;
3. the size of areas is, in general, not conserved.

6.2.7 Tensor properties

Functional notation We remember, from previous sections, that plane rotations
depend on one real parameter, whereas plane translation and scaling depend on two
real parameters, and so on. Hence we write, with homogeneous coordinates and by
using a mathematical notation to denote plane transformation tensors:

Rxy : IR → lin 3 : α 	→ Rxy(α)
T xy : IR2 → lin 3 : (m, n) 	→ T xy(m, n)
Sxy : IR2 → lin 3 : (a, b) 	→ Sxy(a, b)

The above notation gives a further explanation of the design choice for the syntax
of PLaSM tensors, where rotation, translation and scaling are respectively denoted as
R:<1,2>:α, T:<1,2>:<m,n> and R:<1,2>:<a,b>. In higher-dimensional spaces, the
set of indices may clearly vary.

AFFINE TRANSFORMATIONS 235

Composition or product When a succession of tensors Q1,Q2, . . . ,Qn is applied
to a point p, we can either write

p∗ = (Qn ◦ · · · ◦ Q2 ◦ Q1)(p), or

p∗ = Qn · · · Q2 Q1 p,

depending on the meaning (either tensor or tensor matrix) of the symbol Qi.

Associativity In the following expressions parentheses are not needed, since both
tensor composition and product of matrices are associative operations. In fact:

Q1 ◦ Q2 ◦ Q3 = (Q1 ◦ Q2) ◦ Q3 = Q1 ◦ (Q2 ◦ Q3)

Q1Q2Q3 = (Q1Q2) Q3 = Q1 (Q2Q3)

Commutativity In general, tensor composition and matrix product are not
commutative:

Q1 ◦ Q2
= Q2 ◦ Q1 and Q1Q2
= Q2Q1.

There are some important exceptions to this rule. The list is not exhaustive:

1. composition (product) of rotations about the same axis is commutative;
2. composition (product) of translations is commutative;
3. composition (product) of scaling is commutative;
4. composition (product) of rotations and uniform scaling is commutative.

A proof scheme of such statements is easier for their matrix versions. Write a matrix
multiplication explicitly, and compute the resulting product matrix. The parameters
of the compound mapping are expressed as either sum or product of parameters of
component transformations.

Product of scaling The statement follows from commutativity of number product.

S2 S1 =

 a2 0 0

0 b2 0
0 0 1

 a1 0 0

0 b1 0
0 0 1

 =

 a1a2 0 0

0 b1b2 0
0 0 1

 = S1 S2

Product of translations The statement follows from commutativity of number
summation.

T 2 T 1 =

 1 0 m2

0 1 n2

0 0 1

 1 0 m1

0 1 n1

0 0 1

 =

 1 0 m1 +m2

0 1 n1 + n2

0 0 1

 = T 1 T 2

236 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Product of rotations Trigonometric formulas of addition are used, together with
commutativity of number summation.

R(β) R(α) =

 cos β − sinβ 0

sinβ cos β 0
0 0 1

 cosα − sinα 0

sinα cosα 0
0 0 1

=

 cosα cos β − sinα sinβ −(cosα sinβ + sinα cos β) 0

cosα sinβ + sinα cos β cosα cos β − sinα sinβ 0
0 0 1

=

 cos(α+ β) − sin(α+ β) 0

sin(α+ β) cos(α+ β) 0
0 0 1

= R(α) R(β)

Composition and inverse From the statements proved above, one can conclude
that:

1. Rotation and translation tensors have an additive componibility :

T xy(m1, n1) ◦ T xy(m2, n2) = T xy(m1 +m2, n1 + n2),

Rxy(α1) ◦ Rxy(α2) = Rxy(α1 + α2)

2. Conversely, scaling tensors have a multiplicative componibility :

Sxy(a1, b1) ◦ Sxy(a2, b2) = Sxy(a1a2, b1b2)

3. Hence, it immediately follows for the inverse mappings that:

(T xy(m, n))−1 = T xy(−m,−n)

(Rxy(α))
−1 = Rxy(−α)

(Sxy(a, b))
−1 = S

(
1
a
,
1
b

)

6.2.8 Fixed point transformations

Each invertible linear transformation Q of the plane has the origin of the Cartesian
frame as the only fixed point, i.e. Q(o) = o. To have a fixed point different from the
origin, we need to compose three mappings, that respectively:

1. move q to the origin;
2. apply the desired transformation;
3. move the origin back to q.

AFFINE TRANSFORMATIONS 237

Scaling with fixed point A scaling tensor with fixed point q
= o, with q =(
m n

)T , is given by:

Sq(m, n, a, b) = T xy(m, n) ◦ Sxy(a, b) ◦ T xy(−m,−n)

The succession of elementary transformations whose composition has the desired
action, is graphically shown in Figure 6.19.

x''
x*

y'' y*

x'
x''

y' y''

x
x'

y y'

.

x
x*

y y *

=

m

n

.

Figure 6.19 Decomposition of a scaling with fixed point into a product of

elementary transformations

Rotation with fixed point Analogously, for the rotation about a fixed point q
= o,
with q =

(
m n

)T
, we have:

Rq(m, n, α) = T xy(m, n) ◦ Rxy(α) ◦ T xy(−m,−n)

The succession of elementary transformations, which give a rotation of angle α about
a fixed point q, is graphically shown in Figure 6.20.

6.3 3D Transformations

6.3.1 Elementary transformations

The extension of transformations already discussed for the 2D case is very easy. Some
more care is just needed for 3D rotation and shearing, so that we reserve most of this
section to them. In the remainder, with the aim of unifying the management of both
linear and affine transformations and of using the matrix product as the only geometric
operator, we use normalized homogeneous coordinates and tensors in lin IR4.

Translation and scaling The translation tensor T xyz(l, m, n) with parameters
l, m, n and the scaling tensor Sxyz(a, b, c) with parameters a, b, c are represented,
respectively, by matrices

238 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

x''
x*

y'' y*

x'
x''

y' y''

x
x'

y y' .

x
x*

y y*

=

m

n

.
Figure 6.20 Decomposition of a rotation with fixed point into a product of

elementary transformations

T xyz(l, m, n) =

1 0 0 l
0 1 0 m
0 0 1 n
0 0 0 1

 and Sxyz(a, b, c) =

a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 1

.

Shearing An elementary shearing of the 3D space is a tensor which does not
change a coordinate and changes the other ones as linear functions of the non-
transformed coordinate. We hence distinguish three elementary shearing tensors
Hyz(a, b), Hxz(a, b) and Hxy(a, b), whose matrices differ from the identity matrix
just along the elements of one column. Such tensor matrices are easier to remember if
denoted with the index of the invariant coordinate:

Hx(a, b) ≡ Hyz(a, b) =

1 0 0 0
a 1 0 0
b 0 1 0
0 0 0 1

Hy(a, b) ≡ Hxz(a, b) =

1 a 0 0
0 1 0 0
0 b 1 0
0 0 0 1

Hz(a, b) ≡ Hxy(a, b) =

1 0 a 0
0 1 b 0
0 0 1 0
0 0 0 1

AFFINE TRANSFORMATIONS 239

In fact we have, respectively:

p∗ = Hx(a, b) p =
(
x y + ax z + bx 1

)T

p∗ = Hy(a, b) p =
(
x+ ay y z + by 1

)T

p∗ = Hz(a, b) p =
(
x+ az y + bz z 1

)T

To visualize the action of such tensors, the 3D space should be considered as a
bundle of planes parallel to a coordinate plane. The coordinate plane is invariant
in this mapping; the other planes are moved by a translation on themselves. The
translation of each plane is a linear function of its distance from the coordinate plane.

Consider, e.g., the tensor Hz = Hxy(a, b). In this case:

1. the plane z = 0 is invariant;
2. the plane z = 1 translates by a translation vector t =

(
a b 0

)T .

3. each plane z = c translates by t =
(
ac bc 0

)T ;

Elementary rotations Given a Cartesian frame in IE3, we call elementary rotations
Rx, Ry and Rz, also denoted as Ryz, Rxz and Rxy, respectively, three functions from
reals to tensors in lin 4, which return, for any given angle, the rotation tensor about
the corresponding coordinate axis. We use equivalently either the notation Rz or Rxy

to denote either the invariant coordinate or the varying coordinates. E.g.:

Rx : IR → lin 4 : α 	→ Ryz(α)

The matrices of elementary rotation tensors defined above are obtained by suitably
embedding the rotation matrix of 2D plane into the 4× 4 identity matrix:

Rx(α) ≡ Ryz(α) =

1 0 0 0
0 cosα − sinα 0
0 sinα cosα 0
0 0 0 1

,

Ry(β) ≡ Rxz(β) =

cosβ 0 sinβ 0
0 1 0 0

− sin β 0 cos β 0
0 0 0 1

,

Rz(γ) ≡ Rxy(γ) =

cos γ − sin γ 0 0
sin γ cos γ 0 0
0 0 1 0
0 0 0 1

.

Example 6.3.1 (Stack of rotated elements)
An assembly of rotated parallelepipeds is produced in this example. First a
parallelepiped element is defined in Script 6.3.1, and is translated in x, y by a tensor

240 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

T:<1,2>:<-5,-5>, in order to align the object center with the z axis. Then the pair
object is defined as an assembly of the untransformed element with a second element
instance rotated about the z axis (by tensor R:<1,2>:(PI/8)) and translated (by
tensor T:3:2). The geometric value generated by evaluation of the pair symbol is
shown in Figure 6.21a.

Script 6.3.1
DEF element = (T:<1,2>:<-5,-5> ∼ CUBOID):<10,10,2>;

DEF pair = STRUCT:< element, (T:3:2 ∼ R:<1,2>:(PI/8)):element >;

DEF column = (STRUCT ∼ ##:17): < element, T:3:2, R:<1,2>:(PI/8) >;

Figure 6.21 Rotated 3D elements: (a) pair (b) column

A fully equivalent but more elegant definition of the pair object can be given in
proper FL style as follows:

DEF pair = (STRUCT ∼ [ID, T:3:2 ∼ R:<1,2>:(PI/8)]): element

To produce the column object shown in Figure 6.21b, both the combinatorial power
of FL and the semantics of hierarchical structures (also called hierarchical graphs
in graphics) are exploited. A wider discussion of hierarchical structures is given in
Chapter 8.

6.3.2 Rotations

A 3D space rotation is a linear orthogonal transformation with a set of fixed points
(called autospace in linear algebra) of dimension 1, known as the rotation axis. In
such a transformation, every space point (outside the rotation axis) is mapped to the
second extreme of a circle segment of constant angle with its center on the rotation
axis, and belonging to the orthogonal plane passing for the point.

To compute the matrix of a rotation tensor Rxyz(n, α), with

Rxyz : IR3 × IR → lin 4 : (n, α) 	→ Rxyz(n, α),

where the rotation axis is parallel to the vector n and α is the rotation angle, we can
proceed in several ways, two of which are discussed below.

AFFINE TRANSFORMATIONS 241

Composition of elementary rotations A non-elementary 3D space rotation
Rxyz(n, α) can be reduced to the composition of a suitable succession of elementary
rotations.

First, a compound rotation Ry(γ) ◦ Rx(β) about the x-axis and y-axis is applied,
with the aim of cancelling two components of the mapped n-axis, which is thus
transformed onto the z-axis. A z-rotation tensor Rz(α) of angle α is applied at this
point. Finally, the inverse rotation (Ry(γ) ◦ Rx(β))−1 is applied, with the aim of
mapping the n-axis back to its original position. Hence we write:

Rxyz(n, α) = (Ry(γ) ◦ Rx(β))−1 ◦ Rz(α) ◦ (Ry(γ) ◦ Rx(β))

= Rx(β)−1 ◦ Ry(γ)−1 ◦ Rz(α) ◦ Ry(γ) ◦ Rx(β)

= Rx(−β) ◦ Ry(−γ) ◦ Rz(α) ◦ Ry(γ) ◦ Rx(β)

β

y

z

y'

z'

n y

n z

γ

x'
x''

z'z''

n'
z

n'x

x

y

z

nx

nz

n y

α

Figure 6.22 Decomposition of a general rotation into elementary rotations:

(a) the n-axis (b) the x-rotation (c) the y-rotation

We must finally compute the angles β and γ, to draw out the elementary rotation
tensors Rx(β) and Ry(γ). Looking at Figure 6.22 we can write:

β = arctan
(
ny

nz

)
γ = − arctan

(
n′

x

n′
z

)

where n′ = Rx(β) n.

Transformation of coordinates A rotation tensor Rxyz(n, α) can be derived very
easily by composition of:

1. a coordinate transformation Q(n) which maps the unit vector n
|n| and two

orthogonal unit vectors into the elements of a new basis;
2. a rotation Rz(α) about the z-axis of this new basis;
3. the inverse coordinate transformation Q−1(n).

Hence we write:

Rxyz(n, α) = Q−1(n) ◦ Rz(α) ◦ Q(n). (6.1)

242 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

To compute Q(n) we choose an orthonormal vector triplet with an element directed
as the rotation axis. Let qx, qy, qz be such a triplet, given in coordinates relative to
the old basis {ei}. We see they are transformed in a new basis {êi} by the unknown
matrix Q(n):

(
ê1 ê2 ê3

)
= Q(n)

(
qx qy qz

)
.

But the left-hand side is the identity matrix, and hence:

Q(n) =
(

qx qy qz

)−1 =
(

qx qy qz

)T =

 qT

x

qT
y

qT
z

where we set Q−1(n) = QT (n) since Q(n), which maps an orthogonal unit triplet
into an orthogonal unit triplet, is an orthogonal transformation.

Finally, we have to define the unit vectors qx, qy and qz. First we set

qz =
n

||n|| ,

and also, provided that n
= e3, which would imply the trivial case R(n, α) = Rz(α),
we can write

qx =
e3 × n

||e3 × n|| , and qy = qz × qx.

Example 6.3.2
In this example we discuss the PLaSM implementation of rotation tensor Rxyz(n, α).
For this purpose we first define a function Rot xyz with a real alpha and a vector n as
formal parameters. The function body, i.e. the expression used to compute its values,
is a direct PLaSM translation of Formula (6.1).

The MatHom function, of signature Mn
n → IRn+1

n+1, is given in Script 3.3.13; the
functions UnitVect and VectProd are given in Scripts 3.2.4 and 3.1.3, respectively.
Such functions homogenize a squared matrix by adding a unit row and column,
normalize a vector and compute a vector product, respectively.

The higher-level function to compute the rotation tensor is called Rot xyz. It
is actually a filter which invokes either Rot n or the predefined operator R:<1,2>,
depending on the orientation of the n vector parameter. Two predicates IsZero and
IsUp are defined for this purpose.

Notice that the tensor MAT:Q is defined by homogenizing the <qx, qy, qz> matrix,
where the orthonormal vectors are directly accumulated by row, according to the
discussed method. Remember in fact that a PLaSM matrix representation is a sequence
of matrix rows.

The models of Figure 6.23 are respectively generated as:

STRUCT:<

CUBOID:< 1, 1, 0.2 >,

MKPOL:< <<0,0,0>, <1,1,0>>, <<1,2>>, <<1>> >

>;

AFFINE TRANSFORMATIONS 243

Script 6.3.2 (3D rotation about the n-axis)
DEF Rot n (alpha::IsReal; n::IsVect) =

(MAT∼TRANS):Q ∼ R:<1,2>:alpha ∼ MAT:Q

WHERE

Q = MatHom:<qx, qy, qz>,

qx = UnitVect:(<0,0,1> VectProd n),

qy = qz VectProd qx,

qz = UnitVect:n

END;

DEF IsZero = AND ∼ AA:(C:EQ:0);

DEF IsUp = AND ∼ [C:EQ:0∼s1, C:EQ:0∼s2, NOT∼C:EQ:0∼s3];

DEF Rot xyz = IF:< OR∼[IsUp,IsZero]∼s2, R:<1,2>∼s1, Rot n >;

x x

y y

z z

Figure 6.23 Action of a rotation tensor Rot xyz:<PI/2,<1,1,0>> of angle π/2

about axis n = [1 1 0]T

STRUCT:<

(Rot xyz:<PI/2,<1,1,0>> ∼ CUBOID):< 1, 1, 0.2 >,

MKPOL:< <<0,0,0>, <1,1,0>>, <<1,2>>, <<1>> >

>;

6.3.3 Rotations about affine axes

A more general rotation tensor of E3, with axis an affine subspace of dimension 1,
i.e. a straight line in general not passing for the origin, is obtained by composition of
transformations in lin IR4:

R∗
xyz(n,p, α) = T xyz(p − o) ◦ Rxyz(n, α) ◦ T xyz(o − p)

where R∗
xyz(n,p, α) denotes the rotation about the n-axis passing for point p, and o

is the origin of a Cartesian frame for E3.
We note that the parameters of function T xyz are vectors, since, from Section 3.2,

the difference of points is a vector.

6.3.4 Algebraic properties of rotations

A rotation tensor R ∈ linV does not change the angles between vectors. This property
can be written algebraically using the inner product.

244 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

For each u, v ∈ V:

u · v = R(u) · R(v)

We can write for the corresponding matrices:

[u]T [v] = [Ru]T [Rv] = [u]T [R]T [R][v]

so, we get

[R]T [R] = [RT][R] = [I],

and hence

RT R = I = R−1R.

We can conclude that

RT = R−1

i.e. that a rotation is an orthogonal tensor.
Some further properties of rotations are listed here:

1. In order to verify if a matrix is a rotation, it is sufficient to show that:

[Q][Q]T = [Q]T [Q] = [I]

2. Since [R] is an orthogonal matrix, det R is either 1 or −1; a rotation with
determinant 1 is called proper; with determinant −1 is called improper.

3. An improper rotation is the product of a proper rotation times a reflection.
4. The angle α of a rotation Q can be computed from the relation

tr Q = 1 + 2 cosα

5. The axis of a 3D rotation is given by the eigenvector associated with the real
eigenvalue of its matrix.

Reflections and improper rotations A reflection or mirroring is a tensor which
reverses each vector of an axis for the origin and maintains fixed each vector of the
orthogonal linear subspace.

For a reflection tensor M we have:

M2 = I

M = MT = M−1

The reflections which fix the coordinate planes are called elementary reflections or
mirroring. They can be implemented as scaling with one coefficient equal to −1:

Mx = Sxyz(−1, 1, 1)
My = Sxyz(1,−1, 1)
M z = Sxyz(1, 1,−1)

AFFINE TRANSFORMATIONS 245

Tensors Q with matrix determinant −1 are called either improper rotations or
rotational reflections . They are given by the composition of a rotation about some
axis and by the reflection with respect to the plane orthogonal to such axis.

Angle and axis of an improper rotation Q are obtained from trace and eigenvector
of its matrix, as for proper rotations. Exchanging Q with −Q exchanges the proper
with the improper, and changes the sign of the rotation angle, but does not change
the axis.

Global scaling A uniform scaling tensor Sxyz(a, a, a) can also be represented by a
matrix (sij) ∈ IR4

4, which differs from the identity just for the coefficient s44:

Sxyz(a, a, a) ≡

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

a

In fact, it is easy to verify that:

p∗ =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

a

x
y
z
1

 =

x
y
z
1
a

 =

ax
ay
az
1

Structure of matrices Resuming what we said about the affine transformations
of E3, which are represented in homogeneous coordinates by 4 × 4 real matrices, we
note they always have the structure:

Z =
(

Q m
0T a

)

where Q is an invertible 3 × 3 matrix. If m
= 0, then Z contains a translational
component. If a
= 1, then we say that Z is not normalized. In this case it contains a
global scaling component with parameter 1

a
.

Tensor action on covectors In both graphics and modeling applications it is
sometimes necessary to apply a space transformation to face equations instead of
to vertex coordinates. This often happens within the geometric kernel of PLaSM, where
the linear equations of faces of polyhedral models are explicitly stored in memory.

Let, e.g.,

ax+ by + cz + d = 0

be the Cartesian equation of a plane, and remember that this one is a point set
mapped to zero by a linear function φ : IR4 → IR, called covector, and represented in
coordinates as the row vector

q =
(
a b c d

)

246 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

of coefficients of the plane. We often need to compute the covector q∗ associated with
the plane transformed by the action of a tensor M on E3.

If p =
(
x y z 1

)T is the homogeneous representation of E3 points, then the
points of the plane will satisfy the relation:

q p = 0. (6.2)

Clearly, if we apply a tensor M to IE3, we also have:

q∗ p∗ = q T M p = 0, (6.3)

where T is the unknown tensor for the dual space, to be applied to q covector. Since
both identities (6.2) and (6.3) must hold, it is:

T M = I and hence T = M−1

Therefore, in order to apply a tensor M to a point space, we need to apply a left-
hand matrix multiplication times M to the underlying vectors, as well as a right-hand
matrix multiplication times M−1 to the underlying covectors.

6.4 PLaSM implementation

6.4.1 Pre-defined affine tensors

Some predefined higher-level PLaSM functions return either translation, scaling or
rotation tensors, when applied to suitable parameters. Such functions are respectively
denoted as T, S and R.

As is well known at this point, one major PLaSM characteristics is dimensional
independence. This property allows definition of functions and evaluating expressions
which are able to generate geometric objects of any dimension. A PLaSM object, seen
as a point set, may in fact belong to spaces described by bases with any number of
elements. In other words, object points may have any number of coordinates.

Affine transformation functions are accordingly designed to generate transformation
tensors able to work on any user-specified subset of object coordinates.

Translation Translation tensors are generated by the PLaSM operator denoted by
symbol T. Hence, this symbol cannot be re-defined by the user, without generating an
error at interpretation time. The signature of T operator is:

T : Zd → IRd → lin IR∗, 1 ≤ d

The dimension of the resulting tensor is not specified, because it is only determined
at run-time — and not at interpretation time — depending on the dimension of the
polyhedral expression it is actually applied to. For example, we can equally write:

(T:2:10.5 ∼ T:4:3):(CUBOID:<1,1,1,1,1>) or

(T:<2,4>:<10.5,3>):(CUBOID:<1,1,1,1,1>) or

T:<2,4>:<10.5,3>:(CUBOID:<1,1,1,1,1>) or

(T:<2,4>:<10.5,3> ∼ CUBOID):<1,1,1,1,1>

where the evaluation of each such expression gives an instance of the 5-dimensional
unit hypercube, translated on the second and fourth coordinates.

AFFINE TRANSFORMATIONS 247

Example 6.4.1
Two very simple polyhedra are defined in Script 6.4.1, and designated as basis and
pyramid. Then the assembly pair is given by using the STRUCT function, whose
semantics is described in Chapter 8.

Script 6.4.1
DEF basis = CUBOID:<10,10,1>;

DEF pyramid = MKPOL:<

<<0,0,0>,<8,0,0>,<8,8,0>,<0,8,0>,<4,4,4>>,<1..5>,<<1>> >;

DEF pair = STRUCT:<basis, T:<1,2,3>:<1,1,1>:pyramid>

Figure 6.24 pair assembly with pyramid translation

In Figure 6.24 the object generated by evaluation of pair symbol is shown. A similar
example is given in Script 6.4.2 where a transl tensor is defined and instanced more
times. The triplet value is shown in Figure 6.25.

Script 6.4.2
DEF transl = T:<1,2,3>:<1,1,1>;

DEF pair = STRUCT:<basis, transl:pyramid>;

DEF triplet = STRUCT: <basis, transl:basis, (transl ∼ transl):pyramid>;

Scaling Scaling tensors are generated by the higher-level PLaSM operator named S.
The signature of this operator is:

S : Zd → IRd → lin IR∗, 1 ≤ d

Also in this case the dimension of the resulting tensor is not specified, and is determined
at run-time, as for translation tensors.

Rotation The higher-level operator R generates elementary rotation tensors,
i.e. space isometries which change two coordinates according to the pattern of plane
rotations, and leave the other coordinates invariant. The R signature is:

R : Z2 → IR → lin IR∗.

Once more, the dimension of the generated tensors is not specified, and is determined
at run-time, as for translation and scaling. E.g., the tensor R:<1,2>:PI can be either
applied to a 2D or to a 4D polyhedron.

248 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Figure 6.25 More complex triplet assembly

Example 6.4.2 (2D and 3D Clock)
We define here two PLaSM functions, named clock2D and clock3D, that generate
simplified clock models with time set as specified by their integers parameters,
corresponding to hours and minutes, respectively. The implemented code is given in
Scripts 6.4.3 and 6.4.4. Some generated models are shown in Figures 6.26 and 6.27.

A 2-dimensional clock model is first given, by defining a circular background,
the 12 hour ticks, and the hour and minute hands, each one given in a local
coordinate frame. The Circle function is given in Script 1.6.1, and returns a polygonal
approximation of circle of given radius. In this case it returns a 2D regular polygon
with 24 sides.

Script 6.4.3 (2D Clock)
DEF background = Circle:0.8:<24,1>;

DEF minute = (T:<1,2>:<-0.05,-0.05> ∼ CUBOID):<0.9,0.1>;

DEF hour = (T:<1,2>:<-0.1,-0.1> ∼ CUBOID):<0.7,0.2>;

DEF ticks = (STRUCT ∼ ##:12):< tick, R:<1,2>:(PI/6) >;

DEF tick = (T:<1,2>:<-0.025,0.55> ∼ CUBOID):<0.05,0.2>;

DEF clock2D (h,m::IsInt) = STRUCT:<

background,

ticks,

R:<1,2>:(PI/2 - (h + m/60)*PI/6):hour,

R:<1,2>:(PI/2 - m*PI/30):minute

>;

The interesting part of Script 6.4.3 is constituted by the clock2D function, with
integer parameters h and m, for hours and minutes to set, respectively. An xy rotation of
angle PI/2 - (h+m/60)*PI/6 is there applied to the hour hand. The positive constant
π
2
is summed to move the origin of angles on the vertical line. The negative term takes

into account both the angles induced by integer parameters h and m. Such a term is
negative, because the clock hand movements are (quite obviously!) clockwise, whereas
positive angles are counter-clockwise. The definition of the Q function is discussed in
Section 1.6.2. It is used in Script 6.4.4 as a short-hand for QUOTE ∼ LIST.

Figure 6.26 Geometric values generated by evaluation of clock2D:<2,35> and

clock2D:<11,55>

AFFINE TRANSFORMATIONS 249

The clock3D function differs from clock2D by addition widths to objects in the z
direction, and by coloring red the solid background. The adding of VRML-like colors
and textures to geometric models is discussed in Chapter 10. The generated 3D clock
model is displayed in Figure 6.27.

Notice that both the Cartesian product of polyhedra * and the COLOR binary function
are used infix in the 3D background transforming expression. They are evaluated
correctly by the interpreter, because infix operators are left-associative in PLaSM, i.e.:

A op1 B op2 C ≡ (A op1 B) op2 C

Notice also that each tensor inserted as isolated element in the STRUCT sequence,
e.g. as T:3:0.2, is applied to each geometric value which follows it, according to the
semantics of hierarchical structures (Chapter 8). The Q operator, which is a shortcut
for QUOTE working both on number sequences and on single numbers, is given in
Script 1.5.5.

Script 6.4.4 (3D Clock)
DEF clock3D (h,m::IsInt) = STRUCT:<

background * Q:0.2 COLOR RGB:<1,0,0>,

T:3:0.2:(ticks * Q:0.01), T:3:0.2,

R:<1,2>:(PI/2 - (h + m/60)*PI/6):(hour * Q:0.03), T:3:0.03,

R:<1,2>:(PI/2 - m*PI/30):(minute * Q:0.03)

>;

Figure 6.27 3D VRML model generated by evaluation of clock3D:<2,35>

6.4.2 User-defined affine tensors

It may sometimes be useful to apply tensors not to polyhedra but to single points,
i.e. directly to a set of coordinates (see, e.g. Script 3.3.15). This may be done by
implementing the desired tensors as user-defined PLaSM functions. In the following the
elementary rotations, translations and scaling in E3, which depend on only one real
parameter, are given.

It is interesting to note that, by using the standard composition of the language, such
functions may be first partially specified, then freely composed, and only later applied

250 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

Script 6.4.5 (User-defined 3D tensors)

DEF Tx (a::IsReal)(x,y,z::IsReal) = < x + a, y, z >;

DEF Ty (a::IsReal)(x,y,z::IsReal) = < x, y + a, z >;

DEF Tz (a::IsReal)(x,y,z::IsReal) = < x, y, z + a >;

DEF Sx (a::IsReal)(x,y,z::IsReal) = < x * a, y, z >;

DEF Sy (a::IsReal)(x,y,z::IsReal) = < x, y * a, z >;

DEF Sz (a::IsReal)(x,y,z::IsReal) = < x, y, z * a >;

DEF Rx (a::IsReal)(x,y,z::IsReal) =

< x, cos:a * y - sin:a * z, sin:a * y + cos:a * z >;

DEF Ry (a::IsReal)(x,y,z::IsReal) =

< cos:a * x + sin:a * z, y, (- sin):a * x + cos:a * z >;

DEF Rz (a::IsReal)(x,y,z::IsReal) =

< cos:a * x - sin:a * y, sin:a * x + cos:a * y, z >;

to the target points. For example, a rotation of angle α of the point p = (px, py, pz)
around a line parallel to the y-axis and passing for the point q = (0, h, k), i.e.

p∗ = Rxyz(e2, q, α)(p)

can be directly computed in PLaSM as:

DEF p star =

(Tz:k ∼ Ty:h ∼ Ry:alpha ∼ Ty:(-:h) ∼ Tz:(-:k)):< px,py,pz >

6.5 Examples

In this section we discuss some simple but quite realistic examples of geometric
programming with affine transformations, whose implementation requires combining
tensors in several ways with other PLaSM operators. The more interesting example,
is probably the first one, where some functions MKframe and MKvector are given, to
generate the geometric model of a Cartesian reference frame and of any applied vector.

6.5.1 Modeling applied 3D vectors and reference frames

Two useful functions MKframe and MKvector are given to generate the geometric model
of the Cartesian frame, as well as of any applied vector in 3D. Several functions,
including type predicates, vector and matrix functions, the rotation transformation
around a given axis for the origin, and more, are given in previous Scripts.

In Script 6.5.1 the symbol MKversork generates a geometric model of the unit vector
e3 of the z axis, as made by a cylinder of radius 1/100 and height 7/8 and by a cone
of radius 1/16 and height 1/8.

Script 6.5.1 (geometric model of the unit vector <0,0,1>)
DEF MKversork =

CYLINDER:<1/100,7/8>:3 TOP (Cone:<1/16,1/8>:8);

AFFINE TRANSFORMATIONS 251

The MKvector function in Script 6.5.2 generates the geometric model of an applied
vector with first extreme in point p1 and second extreme in point p2. The arrow model
of the actual vector is produced by first scaling the object generated by MKversork to
the proper size, then by rotating to make it parallel to the final model and then by
translating the model to the final position. Finally, the optimize operator is applied,
in order to make possible the VRML exporting of a polyhedral complex with a general
transformation matrix inserted in the data structure. As already discussed elsewhere,
the composite operator MKPOL ∼ UKPOL has the effect of flattening the hierarchical data
structure of a polyhedral complex, by applying all the stored transformation matrices
to the vertex data.

Script 6.5.2 (geometric model of the applied vector p1− >p2)
DEF optimize = MKPOL ∼ UKPOL

DEF MKvector (p1::IsPoint)(p2::IsPoint) =

(optimize ∼ Tr ∼ Rot ∼ Sc):MKversork

WHERE

Tr = T:<1,2,3>:p1,

Rot = Rotn:< alpha, n >,

Sc = S:<1,2,3>:<b,b,b>,

b = VectNorm:u,

u = p2 VectDiff p1,

alpha = ACOS:(<0,0,1> innerProd UnitVect:u),

n = <0,0,1> VectProd u

END;

In Script 6.5.3 the MKframe operator is given, which produces a model of the
standard Cartesian frame, with labeling of axis, as shown in Figure 6.28.

Script 6.5.3 (geometric model of 3D reference frame)
DEF MKframe = STRUCT:<

MKvector:<0,0,0>:<1,0,0>,

MKvector:<0,0,0>:<0,1,0>,

MKvector:<0,0,0>:<0,0,1>,

(T:<1,2>:<1,1/8> ∼ S:<1,2>:<1/20,1/20>):XX,

(T:<2,3>:<1,1/8> ∼ S:<2,3>:<1/20,1/20>):YY,

(T:<3,1>:<1,1/8> ∼ S:<3,1>:<1/20,1/20>):ZZ >

WHERE

XX = MKPOL:<<<-1,1,0>,<1,-1,0>,<1,1,0>,<-1,-1,0>>,

<<1,2>,<3,4>>,<<1,2>>>,

YY = MKPOL:<<<0,0,0>,<0,-1,1>,<0,1,1>,<0,0,-1>>,

<<1,2>,<1,3>,<1,4>>,<<1,2,3>>>,

ZZ = MKPOL:<<<-1,0,1>,<1,0,1>,<-1,0,-1>,<1,0,-1>>,

<<1,2>,<1,4>,<3,4>>,<<1,2,3>>>,

END;

The following example shows the sum of a set of applied vectors in 3D, each given

252 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

as an ordered pair of points. The VRML file exported by the language is displayed in
Figure 6.28. Notice that the last vector, shown in red in Figure 6.28, is the sum of the
previous three.

Script 6.5.4 (Applied vectors modeling)
STRUCT:< MKframe,

MKvector:<0.5,-0.1,0>:<1.1,-0.7,0.3>,

MKvector:<1.1,-0.7,0.3>:<2.1,-0.2,-0.3>,

MKvector:<2.1,-0.2,-0.3>:<1.4,0.3,-0.5>,

MKvector:<0.5,-0.1,0>:<1.4,0.3,-0.3> COLOR RED >;

Figure 6.28 Geometric modeling of Cartesian frame and some applied vectors

Example 6.5.1 (Linear ramp)
First of all, we define a function Ramp in Script 6.5.5, which generates a parametrized
linear stair as a complex of 2D polygons in IE3.

In particular, this function accepts as input the three dimensions of a step, i.e. the
width, depth and height, denoted as x,y,z, respectively, according to the Cartesian
axes they are parallel to. The partial function generated by actual values of such
parameters is then applied to an integer n, which specifies the number of steps of the
ramp.

Script 6.5.5 (Linear ramp)
DEF Ramp (x,y,z::IsReal)(n::IsInt) = (STRUCT∼##:n):<step, T:<2,3>:<y,z>>

WHERE

step = STRUCT:<

(T:3:z ∼ EMBED:1):step foot,

(R:<2,3>:(PI/2) ∼ EMBED:1):step rise >,

step foot = CUBOID:<x,y>,

step rise = CUBOID:<x,z>

END;

We note the use of the PLaSM operator EMBED:n which, when applied to a polyhedral

AFFINE TRANSFORMATIONS 253

complex of Em, embeds it in the coordinate subspace of Em+n with equations

xm+1 = xm+2 = · · · = xm+n = 0.

The EMBED:1 function is hence used here to embed some E2 rectangles into the x3 = 0
subspace of E3.

In Figure 6.29 we show the result of the evaluation of expression

Ramp:<0.9,0.28,0.16>:10;

x

y

z

Figure 6.29 Model generated by function Ramp with 10 steps

Example 6.5.2 (Multiple linear ramp)
The function Ramp is then used to generate an object theRamp which is multiply
instanced and transformed, to generate the quite complex aggregation of stairs and
landings shown in Figure 6.30.

The Landings body of Script 6.5.6 is a geometric expression which uses the Q
operator, introduced in Script 1.5.5, to transform both numbers and sequences of
numbers into 1D polyhedral complexes, and the Cartesian product * of polyhedral
complexes (See Section 12).

The formal parameter n, in both MultipleStair and Landings generating
functions, clearly denotes the number of floors.

Script 6.5.6 (StairCase)
DEF doubleRamp = STRUCT:< theRamp, (T:2:Y ∼ S:<1,2>:<-1,-1>):theRamp > ;

DEF MultipleStair (n::IsInt) = (STRUCT ∼ ##:n): < doubleRamp, T:3:Z > ;

DEF X = SIZE:1:theRamp;

DEF Y = SIZE:2:theRamp;

DEF Z = SIZE:3:theRamp;

DEF Landings (n::IsInt) = T:<1,2>:<-:X,-:X>:

(Q:(2*X) * Q:<X,-:Y,X> * (@0 ∼ Q ∼ #:n):Z);

DEF StairCase = (STRUCT ∼ [MultipleStair, Landings]):(n floors - 1)

Two quite different values of the StairCase object are shown in Figure 6.30. In
particular, the StairCase model associated with the definitions

DEF theRamp = Ramp:<3, 0.28, 0.16>: 8;

254 GEOMETRIC PROGRAMMING FOR COMPUTER-AIDED DESIGN

DEF n floors = 2

is shown is Figure 6.30a. The one generated by changing such definitions to

DEF theRamp = Ramp:<0.95, 0.30, 0.15>: 10;

DEF n floors = 5

is given in Figure 6.30b.

Figure 6.30 Two instances of the implicitly parametrized stairCase object

Example 6.5.3 (Helix ramp)
The construction of a spiral stair ramp with squared basis and triangular steps is
described here. Each step pair gives a turn of π

2 to the helix-centered angle, as shown
by Figure 6.31.

In particular, the function L Ramp of Script 6.5.7 depends on two positive reals x,
z, and on a positive integer n turns. The first two parameters correspond respectively
to the half size of squared staircase and to the step height; the second one gives the
number of π

2 turns, so that the number of steps is 2× n turns.

Script 6.5.7 (Parametric helix ramp)
DEF L Ramp (x,z::IsRealPos)(n turns::IsIntPos) = (STRUCT ∼ ##:n turns):

< step1, T:3:z, step2, T:3:z, R:<1,2>:(PI/2) >

WHERE

step1 = STRUCT:<

(S:1:-1 ∼ T:1:(-:x) ∼ T:3:z):step foot,

(R:<2,3>:(PI/2)) :step rise >,

step2 = STRUCT:<

(S:2:-1 ∼ T:2:(-:x) ∼ T:3:z):step foot,

(R:<1,2>:(PI/4) ∼ R:<2,3>:(PI/2)):step rise >,

step foot = (EMBED:1 ∼ S:<1,2>:<x,x> ∼ SIMPLEX):2,

step rise = (EMBED:1 ∼ S:<1,2>:<2**0.5,2**0.5> ∼ CUBOID):<x,z>

END;

AFFINE TRANSFORMATIONS 255

Notice that the primitive PLaSM function SIMPLEX, when applied to the integer 2,
returns the 2-dimensional unit simplex of the plane, i.e. the triangle built on the basis
vectors e1 and e2.

As in several previous examples, the body of L Ramp function relies on the semantics
of structures, where each tensor is applied to each following complex in the sequence
order.

x
y

z

Figure 6.31 Squared helix ramp with turn of 3
2
π angle

