
Informatica Biomedica
lezione21

Alberto Paoluzzi Mauro Ceccanti
www.dia.uniroma3.it/ paoluzzi/web/did/biomed/

Informatica e Automazione, "Roma Tre" — Medicina Clinica, "La Sapienza"

May 17, 2010



Informatica Biomedica: Lezione 21

The CouchDB Project
Features

MapReduce
Dataflow

ERLANG for Concurrent programming



Contents

The CouchDB Project
Features

MapReduce
Dataflow

ERLANG for Concurrent programming



Apache CouchDB is a document-oriented database that can be
queried and indexed in a MapReduce fashion using JavaScript

I CouchDB also offers incremental replication with bi-directional
conflict detection and resolution

http://couchdb.apache.org/
http://labs.google.com/papers/mapreduce.html
http://javascript.internet.com/


Apache CouchDB is a document-oriented database that can be
queried and indexed in a MapReduce fashion using JavaScript

I CouchDB also offers incremental replication with bi-directional
conflict detection and resolution

http://couchdb.apache.org/
http://labs.google.com/papers/mapreduce.html
http://javascript.internet.com/


CouchDB provides a RESTful JSON API than can be accessed
from any environment that allows HTTP requests

I There are myriad third-party client libraries that make this
even easier from your programming language of choice

I CouchDB’s built in Web administration console speaks directly
to the database using HTTP requests issued from your browser

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://www.json.org/


CouchDB provides a RESTful JSON API than can be accessed
from any environment that allows HTTP requests

I There are myriad third-party client libraries that make this
even easier from your programming language of choice

I CouchDB’s built in Web administration console speaks directly
to the database using HTTP requests issued from your browser

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://www.json.org/


CouchDB provides a RESTful JSON API than can be accessed
from any environment that allows HTTP requests

I There are myriad third-party client libraries that make this
even easier from your programming language of choice

I CouchDB’s built in Web administration console speaks directly
to the database using HTTP requests issued from your browser

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://www.json.org/


CouchDB is written in Erlang, a robust functional programming
language ideal for building concurrent distributed systems

I Erlang allows for a flexible design that is easily scalable and
readily extensible



CouchDB is written in Erlang, a robust functional programming
language ideal for building concurrent distributed systems

I Erlang allows for a flexible design that is easily scalable and
readily extensible



Design

CouchDB is most similar to other document stores like MongoDB
and Lotus Notes

I It is not a relational database management system

I Instead of storing data in rows and columns, the database
manages a collection of JSON documents

I The documents in a collection need not share a schema, but
retain query abilities via views

I Views are defined with aggregate functions and filters are
computed in parallel, much like MapReduce



Design

CouchDB is most similar to other document stores like MongoDB
and Lotus Notes

I It is not a relational database management system

I Instead of storing data in rows and columns, the database
manages a collection of JSON documents

I The documents in a collection need not share a schema, but
retain query abilities via views

I Views are defined with aggregate functions and filters are
computed in parallel, much like MapReduce



Design

CouchDB is most similar to other document stores like MongoDB
and Lotus Notes

I It is not a relational database management system

I Instead of storing data in rows and columns, the database
manages a collection of JSON documents

I The documents in a collection need not share a schema, but
retain query abilities via views

I Views are defined with aggregate functions and filters are
computed in parallel, much like MapReduce



Design

CouchDB is most similar to other document stores like MongoDB
and Lotus Notes

I It is not a relational database management system

I Instead of storing data in rows and columns, the database
manages a collection of JSON documents

I The documents in a collection need not share a schema, but
retain query abilities via views

I Views are defined with aggregate functions and filters are
computed in parallel, much like MapReduce



Design

CouchDB is most similar to other document stores like MongoDB
and Lotus Notes

I It is not a relational database management system

I Instead of storing data in rows and columns, the database
manages a collection of JSON documents

I The documents in a collection need not share a schema, but
retain query abilities via views

I Views are defined with aggregate functions and filters are
computed in parallel, much like MapReduce



Document Storage

CouchDB stores documents in their entirety

I You can think of a document as one or more field/value pairs
expressed as JSON

I Field values can be simple things like strings, numbers, or dates

I But you can also use ordered lists (arrays) and associative
maps (associative array, hash, whatever your language may call
them)

I Every document in a CouchDB database has a unique id and
there is no required document schema



Document Storage

CouchDB stores documents in their entirety

I You can think of a document as one or more field/value pairs
expressed as JSON

I Field values can be simple things like strings, numbers, or dates

I But you can also use ordered lists (arrays) and associative
maps (associative array, hash, whatever your language may call
them)

I Every document in a CouchDB database has a unique id and
there is no required document schema



Document Storage

CouchDB stores documents in their entirety

I You can think of a document as one or more field/value pairs
expressed as JSON

I Field values can be simple things like strings, numbers, or dates

I But you can also use ordered lists (arrays) and associative
maps (associative array, hash, whatever your language may call
them)

I Every document in a CouchDB database has a unique id and
there is no required document schema



Document Storage

CouchDB stores documents in their entirety

I You can think of a document as one or more field/value pairs
expressed as JSON

I Field values can be simple things like strings, numbers, or dates

I But you can also use ordered lists (arrays) and associative
maps (associative array, hash, whatever your language may call
them)

I Every document in a CouchDB database has a unique id and
there is no required document schema



Document Storage

CouchDB stores documents in their entirety

I You can think of a document as one or more field/value pairs
expressed as JSON

I Field values can be simple things like strings, numbers, or dates

I But you can also use ordered lists (arrays) and associative
maps (associative array, hash, whatever your language may call
them)

I Every document in a CouchDB database has a unique id and
there is no required document schema



Map/Reduce Views and Indexes
To provide some structure to the data stored in CouchDB, you can
develop views that are similar to their relational database
counterparts

I In CouchDB, each view is constructed by a JavaScript function
(server-side JavaScript by using CommonJS and
SpiderMonkey) that acts as the Map half of a MapReduce
operation

I The function takes a document and transforms it into a single
value which it returns

I The logic in your JavaScript functions can be arbitrarily
complex

I Since computing a view over a large database can be an
expensive operation, CouchDB can index views and keep those
indexes updated as documents are added, removed, or updated

I This provides a very powerful indexing mechanism that you get
unprecedented control over compared to most databases



Map/Reduce Views and Indexes
To provide some structure to the data stored in CouchDB, you can
develop views that are similar to their relational database
counterparts

I In CouchDB, each view is constructed by a JavaScript function
(server-side JavaScript by using CommonJS and
SpiderMonkey) that acts as the Map half of a MapReduce
operation

I The function takes a document and transforms it into a single
value which it returns

I The logic in your JavaScript functions can be arbitrarily
complex

I Since computing a view over a large database can be an
expensive operation, CouchDB can index views and keep those
indexes updated as documents are added, removed, or updated

I This provides a very powerful indexing mechanism that you get
unprecedented control over compared to most databases



Map/Reduce Views and Indexes
To provide some structure to the data stored in CouchDB, you can
develop views that are similar to their relational database
counterparts

I In CouchDB, each view is constructed by a JavaScript function
(server-side JavaScript by using CommonJS and
SpiderMonkey) that acts as the Map half of a MapReduce
operation

I The function takes a document and transforms it into a single
value which it returns

I The logic in your JavaScript functions can be arbitrarily
complex

I Since computing a view over a large database can be an
expensive operation, CouchDB can index views and keep those
indexes updated as documents are added, removed, or updated

I This provides a very powerful indexing mechanism that you get
unprecedented control over compared to most databases



Map/Reduce Views and Indexes
To provide some structure to the data stored in CouchDB, you can
develop views that are similar to their relational database
counterparts

I In CouchDB, each view is constructed by a JavaScript function
(server-side JavaScript by using CommonJS and
SpiderMonkey) that acts as the Map half of a MapReduce
operation

I The function takes a document and transforms it into a single
value which it returns

I The logic in your JavaScript functions can be arbitrarily
complex

I Since computing a view over a large database can be an
expensive operation, CouchDB can index views and keep those
indexes updated as documents are added, removed, or updated

I This provides a very powerful indexing mechanism that you get
unprecedented control over compared to most databases



Map/Reduce Views and Indexes
To provide some structure to the data stored in CouchDB, you can
develop views that are similar to their relational database
counterparts

I In CouchDB, each view is constructed by a JavaScript function
(server-side JavaScript by using CommonJS and
SpiderMonkey) that acts as the Map half of a MapReduce
operation

I The function takes a document and transforms it into a single
value which it returns

I The logic in your JavaScript functions can be arbitrarily
complex

I Since computing a view over a large database can be an
expensive operation, CouchDB can index views and keep those
indexes updated as documents are added, removed, or updated

I This provides a very powerful indexing mechanism that you get
unprecedented control over compared to most databases



Map/Reduce Views and Indexes
To provide some structure to the data stored in CouchDB, you can
develop views that are similar to their relational database
counterparts

I In CouchDB, each view is constructed by a JavaScript function
(server-side JavaScript by using CommonJS and
SpiderMonkey) that acts as the Map half of a MapReduce
operation

I The function takes a document and transforms it into a single
value which it returns

I The logic in your JavaScript functions can be arbitrarily
complex

I Since computing a view over a large database can be an
expensive operation, CouchDB can index views and keep those
indexes updated as documents are added, removed, or updated

I This provides a very powerful indexing mechanism that you get
unprecedented control over compared to most databases



Distributed Architecture with Replication

CouchDB was designed with bi-direction replication (or
synchronization) and off-line operation in mind

I That means multiple replicas can have their own copies of the
same data, modify it, and then sync those changes at a later
time

I The biggest gotcha typically associated with this level of
flexibility is conflicts

-



Distributed Architecture with Replication

CouchDB was designed with bi-direction replication (or
synchronization) and off-line operation in mind

I That means multiple replicas can have their own copies of the
same data, modify it, and then sync those changes at a later
time

I The biggest gotcha typically associated with this level of
flexibility is conflicts

-



Distributed Architecture with Replication

CouchDB was designed with bi-direction replication (or
synchronization) and off-line operation in mind

I That means multiple replicas can have their own copies of the
same data, modify it, and then sync those changes at a later
time

I The biggest gotcha typically associated with this level of
flexibility is conflicts

-



RESTful API

CouchDB treats all stored items (there is more than documents) as
a resource

I All items have a unique URI that gets exposed via HTTP

I REST uses the HTTP methods PUT, GET, POST and
DELETE for the four basic CRUD (Create, Read, Update,
Delete) operations on all resources

I HTTP is wildly understood, interoperable, scalable and proven
technology

I A lot of tools, software and hardware, are available to do all
sorts of things with HTTP like caching, proxying and load
balancing



RESTful API

CouchDB treats all stored items (there is more than documents) as
a resource

I All items have a unique URI that gets exposed via HTTP

I REST uses the HTTP methods PUT, GET, POST and
DELETE for the four basic CRUD (Create, Read, Update,
Delete) operations on all resources

I HTTP is wildly understood, interoperable, scalable and proven
technology

I A lot of tools, software and hardware, are available to do all
sorts of things with HTTP like caching, proxying and load
balancing



RESTful API

CouchDB treats all stored items (there is more than documents) as
a resource

I All items have a unique URI that gets exposed via HTTP

I REST uses the HTTP methods PUT, GET, POST and
DELETE for the four basic CRUD (Create, Read, Update,
Delete) operations on all resources

I HTTP is wildly understood, interoperable, scalable and proven
technology

I A lot of tools, software and hardware, are available to do all
sorts of things with HTTP like caching, proxying and load
balancing



RESTful API

CouchDB treats all stored items (there is more than documents) as
a resource

I All items have a unique URI that gets exposed via HTTP

I REST uses the HTTP methods PUT, GET, POST and
DELETE for the four basic CRUD (Create, Read, Update,
Delete) operations on all resources

I HTTP is wildly understood, interoperable, scalable and proven
technology

I A lot of tools, software and hardware, are available to do all
sorts of things with HTTP like caching, proxying and load
balancing



RESTful API

CouchDB treats all stored items (there is more than documents) as
a resource

I All items have a unique URI that gets exposed via HTTP

I REST uses the HTTP methods PUT, GET, POST and
DELETE for the four basic CRUD (Create, Read, Update,
Delete) operations on all resources

I HTTP is wildly understood, interoperable, scalable and proven
technology

I A lot of tools, software and hardware, are available to do all
sorts of things with HTTP like caching, proxying and load
balancing



Contents

The CouchDB Project
Features

MapReduce
Dataflow

ERLANG for Concurrent programming



The MapReduce Algorithm

I MapReduce is a patented software framework introduced by
Google to support distributed computing on large data sets on
clusters of computers.

I The framework is inspired by map and reduce functions
commonly used in functional programming, although their
purpose in the MapReduce framework is not the same as their
original forms.

I MapReduce libraries have been written in C++, C, Erlang,
Java, Python, Ruby, F, R and other programming languages.



The MapReduce Algorithm

I MapReduce is a patented software framework introduced by
Google to support distributed computing on large data sets on
clusters of computers.

I The framework is inspired by map and reduce functions
commonly used in functional programming, although their
purpose in the MapReduce framework is not the same as their
original forms.

I MapReduce libraries have been written in C++, C, Erlang,
Java, Python, Ruby, F, R and other programming languages.



The MapReduce Algorithm

I MapReduce is a patented software framework introduced by
Google to support distributed computing on large data sets on
clusters of computers.

I The framework is inspired by map and reduce functions
commonly used in functional programming, although their
purpose in the MapReduce framework is not the same as their
original forms.

I MapReduce libraries have been written in C++, C, Erlang,
Java, Python, Ruby, F, R and other programming languages.



The MapReduce Algorithm

I MapReduce is a patented software framework introduced by
Google to support distributed computing on large data sets on
clusters of computers.

I The framework is inspired by map and reduce functions
commonly used in functional programming, although their
purpose in the MapReduce framework is not the same as their
original forms.

I MapReduce libraries have been written in C++, C, Erlang,
Java, Python, Ruby, F, R and other programming languages.



Overview

Processing huge datasets on clusters
MapReduce is a framework for processing huge datasets on certain
kinds of distributable problems using a large number of computers
(nodes), collectively referred to as a cluster.

Computational processing can occur on data stored:

1. either in a filesystem (unstructured)

2. or within a database (structured).



Overview

Processing huge datasets on clusters
MapReduce is a framework for processing huge datasets on certain
kinds of distributable problems using a large number of computers
(nodes), collectively referred to as a cluster.

Computational processing can occur on data stored:

1. either in a filesystem (unstructured)

2. or within a database (structured).



Overview

Processing huge datasets on clusters
MapReduce is a framework for processing huge datasets on certain
kinds of distributable problems using a large number of computers
(nodes), collectively referred to as a cluster.

Computational processing can occur on data stored:

1. either in a filesystem (unstructured)

2. or within a database (structured).



Overview

Processing huge datasets on clusters
MapReduce is a framework for processing huge datasets on certain
kinds of distributable problems using a large number of computers
(nodes), collectively referred to as a cluster.

Computational processing can occur on data stored:

1. either in a filesystem (unstructured)

2. or within a database (structured).



"Map" step

The master node takes the input, chops it up into smaller
sub-problems, and distributes those to worker nodes

I A worker node may do this again in turn, leading to a
multi-level tree structure

I The worker node processes that smaller problem, and passes
the answer back to its master node



"Map" step

The master node takes the input, chops it up into smaller
sub-problems, and distributes those to worker nodes

I A worker node may do this again in turn, leading to a
multi-level tree structure

I The worker node processes that smaller problem, and passes
the answer back to its master node



"Map" step

The master node takes the input, chops it up into smaller
sub-problems, and distributes those to worker nodes

I A worker node may do this again in turn, leading to a
multi-level tree structure

I The worker node processes that smaller problem, and passes
the answer back to its master node



"Reduce" step

The master node then takes the answers to all the sub-problems

I it combines them in a way to get the output

I returning the answer to the problem it was originally trying to
solve



"Reduce" step

The master node then takes the answers to all the sub-problems

I it combines them in a way to get the output

I returning the answer to the problem it was originally trying to
solve



"Reduce" step

The master node then takes the answers to all the sub-problems

I it combines them in a way to get the output

I returning the answer to the problem it was originally trying to
solve



"Reduce" step

The master node then takes the answers to all the sub-problems

I it combines them in a way to get the output

I returning the answer to the problem it was originally trying to
solve



The advantage of MapReduce

The advantage of MapReduce is that it allows for distributed
processing of the map and reduction operations

I Provided each mapping operation is independent of the other,
all maps can be performed in parallel - though in practice it is
limited by the data source and/or the number of CPUs near
that data

I Similarly, a set of reducers can perform the reduction phase -
all that is required is that all outputs of the map operation
which share the same key are presented to the same reducer,
at the same time



The advantage of MapReduce

The advantage of MapReduce is that it allows for distributed
processing of the map and reduction operations

I Provided each mapping operation is independent of the other,
all maps can be performed in parallel - though in practice it is
limited by the data source and/or the number of CPUs near
that data

I Similarly, a set of reducers can perform the reduction phase -
all that is required is that all outputs of the map operation
which share the same key are presented to the same reducer,
at the same time



The advantage of MapReduce

The advantage of MapReduce is that it allows for distributed
processing of the map and reduction operations

I Provided each mapping operation is independent of the other,
all maps can be performed in parallel - though in practice it is
limited by the data source and/or the number of CPUs near
that data

I Similarly, a set of reducers can perform the reduction phase -
all that is required is that all outputs of the map operation
which share the same key are presented to the same reducer,
at the same time



The advantage of MapReduce

The advantage of MapReduce is that it allows for distributed
processing of the map and reduction operations

I Provided each mapping operation is independent of the other,
all maps can be performed in parallel - though in practice it is
limited by the data source and/or the number of CPUs near
that data

I Similarly, a set of reducers can perform the reduction phase -
all that is required is that all outputs of the map operation
which share the same key are presented to the same reducer,
at the same time



Efficient process?

While this process can often appear inefficient compared to
algorithms that are more sequential, MapReduce can be applied to
significantly larger datasets than that which "commodity" servers
can handle

I A large server farm can use MapReduce to sort a petabyte of
data in only a few hours

I The parallelism also offers some possibility of recovering from
partial failure of servers or storage during the operation

I If one mapper or reducer fails, the work can be rescheduled —
assuming the input data is still available



Efficient process?

While this process can often appear inefficient compared to
algorithms that are more sequential, MapReduce can be applied to
significantly larger datasets than that which "commodity" servers
can handle

I A large server farm can use MapReduce to sort a petabyte of
data in only a few hours

I The parallelism also offers some possibility of recovering from
partial failure of servers or storage during the operation

I If one mapper or reducer fails, the work can be rescheduled —
assuming the input data is still available



Efficient process?

While this process can often appear inefficient compared to
algorithms that are more sequential, MapReduce can be applied to
significantly larger datasets than that which "commodity" servers
can handle

I A large server farm can use MapReduce to sort a petabyte of
data in only a few hours

I The parallelism also offers some possibility of recovering from
partial failure of servers or storage during the operation

I If one mapper or reducer fails, the work can be rescheduled —
assuming the input data is still available



Efficient process?

While this process can often appear inefficient compared to
algorithms that are more sequential, MapReduce can be applied to
significantly larger datasets than that which "commodity" servers
can handle

I A large server farm can use MapReduce to sort a petabyte of
data in only a few hours

I The parallelism also offers some possibility of recovering from
partial failure of servers or storage during the operation

I If one mapper or reducer fails, the work can be rescheduled —
assuming the input data is still available



Efficient process?

While this process can often appear inefficient compared to
algorithms that are more sequential, MapReduce can be applied to
significantly larger datasets than that which "commodity" servers
can handle

I A large server farm can use MapReduce to sort a petabyte of
data in only a few hours

I The parallelism also offers some possibility of recovering from
partial failure of servers or storage during the operation

I If one mapper or reducer fails, the work can be rescheduled —
assuming the input data is still available



The frozen part of the MapReduce framework is a large distributed
sort.

The hot spots, which are application dependent, are:

1. an input reader

2. a Map function

3. a partition function

4. a compare function

5. a Reduce function

6. an output writer



The frozen part of the MapReduce framework is a large distributed
sort.

The hot spots, which are application dependent, are:

1. an input reader

2. a Map function

3. a partition function

4. a compare function

5. a Reduce function

6. an output writer



The frozen part of the MapReduce framework is a large distributed
sort.

The hot spots, which are application dependent, are:

1. an input reader

2. a Map function

3. a partition function

4. a compare function

5. a Reduce function

6. an output writer



The frozen part of the MapReduce framework is a large distributed
sort.

The hot spots, which are application dependent, are:

1. an input reader

2. a Map function

3. a partition function

4. a compare function

5. a Reduce function

6. an output writer



The frozen part of the MapReduce framework is a large distributed
sort.

The hot spots, which are application dependent, are:

1. an input reader

2. a Map function

3. a partition function

4. a compare function

5. a Reduce function

6. an output writer



The frozen part of the MapReduce framework is a large distributed
sort.

The hot spots, which are application dependent, are:

1. an input reader

2. a Map function

3. a partition function

4. a compare function

5. a Reduce function

6. an output writer



The frozen part of the MapReduce framework is a large distributed
sort.

The hot spots, which are application dependent, are:

1. an input reader

2. a Map function

3. a partition function

4. a compare function

5. a Reduce function

6. an output writer



The frozen part of the MapReduce framework is a large distributed
sort.

The hot spots, which are application dependent, are:

1. an input reader

2. a Map function

3. a partition function

4. a compare function

5. a Reduce function

6. an output writer



Input reader

The input reader divides the input into 16MB to 128MB splits and
the framework assigns one split to each Map function

I The input reader reads data from stable storage (typically a
distributed file system) and generates key/value pairs

I A common example will read a directory full of text files and
return each line as a record



Input reader

The input reader divides the input into 16MB to 128MB splits and
the framework assigns one split to each Map function

I The input reader reads data from stable storage (typically a
distributed file system) and generates key/value pairs

I A common example will read a directory full of text files and
return each line as a record



Input reader

The input reader divides the input into 16MB to 128MB splits and
the framework assigns one split to each Map function

I The input reader reads data from stable storage (typically a
distributed file system) and generates key/value pairs

I A common example will read a directory full of text files and
return each line as a record



Input reader

The input reader divides the input into 16MB to 128MB splits and
the framework assigns one split to each Map function

I The input reader reads data from stable storage (typically a
distributed file system) and generates key/value pairs

I A common example will read a directory full of text files and
return each line as a record



Map function

Each Map function takes a series of key/value pairs, processes
each, and generates zero or more output key/value pairs

I The input and output types of the map can be (and often are)
different from each other

I If the application is doing a word count, the map function
would break the line into words and output the word as the
key and "1" as the value



Map function

Each Map function takes a series of key/value pairs, processes
each, and generates zero or more output key/value pairs

I The input and output types of the map can be (and often are)
different from each other

I If the application is doing a word count, the map function
would break the line into words and output the word as the
key and "1" as the value



Map function

Each Map function takes a series of key/value pairs, processes
each, and generates zero or more output key/value pairs

I The input and output types of the map can be (and often are)
different from each other

I If the application is doing a word count, the map function
would break the line into words and output the word as the
key and "1" as the value



Map function

Each Map function takes a series of key/value pairs, processes
each, and generates zero or more output key/value pairs

I The input and output types of the map can be (and often are)
different from each other

I If the application is doing a word count, the map function
would break the line into words and output the word as the
key and "1" as the value



Partition function

The output of all of the maps is allocated to a particular reducer by
the application’s partition function

I The partition function is given the key and the number of
reducers and returns the index of the desired reduce

I A typical default is to hash the key and modulo the number of
reducers



Partition function

The output of all of the maps is allocated to a particular reducer by
the application’s partition function

I The partition function is given the key and the number of
reducers and returns the index of the desired reduce

I A typical default is to hash the key and modulo the number of
reducers



Partition function

The output of all of the maps is allocated to a particular reducer by
the application’s partition function

I The partition function is given the key and the number of
reducers and returns the index of the desired reduce

I A typical default is to hash the key and modulo the number of
reducers



Partition function

The output of all of the maps is allocated to a particular reducer by
the application’s partition function

I The partition function is given the key and the number of
reducers and returns the index of the desired reduce

I A typical default is to hash the key and modulo the number of
reducers



Comparison function

The input for each reduce is pulled from the machine where the
map ran and sorted using the application’s comparison function.



Reduce function

The framework calls the application’s reduce function once for each
unique key in the sorted order

I The reduce can iterate through the values that are associated
with that key and output 0 or more values

I In the word count example, the reduce function takes the input
values, sums them and generates a single output of the word
and the final sum



Reduce function

The framework calls the application’s reduce function once for each
unique key in the sorted order

I The reduce can iterate through the values that are associated
with that key and output 0 or more values

I In the word count example, the reduce function takes the input
values, sums them and generates a single output of the word
and the final sum



Reduce function

The framework calls the application’s reduce function once for each
unique key in the sorted order

I The reduce can iterate through the values that are associated
with that key and output 0 or more values

I In the word count example, the reduce function takes the input
values, sums them and generates a single output of the word
and the final sum



Reduce function

The framework calls the application’s reduce function once for each
unique key in the sorted order

I The reduce can iterate through the values that are associated
with that key and output 0 or more values

I In the word count example, the reduce function takes the input
values, sums them and generates a single output of the word
and the final sum



Output writer

The Output Writer writes the output of the reduce to stable
storage, usually a distributed file system.



CouchDB uses a MapReduce framework for defining views over
distributed documents and is implemented in Erlang.



Contents

The CouchDB Project
Features

MapReduce
Dataflow

ERLANG for Concurrent programming



The sequential subset of Erlang

I The sequential subset of Erlang is a general-purpose
concurrent programming language and runtime system.

I is a functional language, with strict evaluation, single
assignment, and dynamic typing. For concurrency it follows
the Actor model. It was designed by Ericsson to support
distributed, fault-tolerant, soft-real-time, non-stop
applications. The first version was developed by Joe
Armstrong in 1986.[1] It supports hot swapping thus code can
be changed without stopping a system.[2]

I was originally a proprietary language within Ericsson, but was
released as open source in 1998.



The sequential subset of Erlang

I The sequential subset of Erlang is a general-purpose
concurrent programming language and runtime system.

I is a functional language, with strict evaluation, single
assignment, and dynamic typing. For concurrency it follows
the Actor model. It was designed by Ericsson to support
distributed, fault-tolerant, soft-real-time, non-stop
applications. The first version was developed by Joe
Armstrong in 1986.[1] It supports hot swapping thus code can
be changed without stopping a system.[2]

I was originally a proprietary language within Ericsson, but was
released as open source in 1998.



The sequential subset of Erlang

I The sequential subset of Erlang is a general-purpose
concurrent programming language and runtime system.

I is a functional language, with strict evaluation, single
assignment, and dynamic typing. For concurrency it follows
the Actor model. It was designed by Ericsson to support
distributed, fault-tolerant, soft-real-time, non-stop
applications. The first version was developed by Joe
Armstrong in 1986.[1] It supports hot swapping thus code can
be changed without stopping a system.[2]

I was originally a proprietary language within Ericsson, but was
released as open source in 1998.



The sequential subset of Erlang

I The sequential subset of Erlang is a general-purpose
concurrent programming language and runtime system.

I is a functional language, with strict evaluation, single
assignment, and dynamic typing. For concurrency it follows
the Actor model. It was designed by Ericsson to support
distributed, fault-tolerant, soft-real-time, non-stop
applications. The first version was developed by Joe
Armstrong in 1986.[1] It supports hot swapping thus code can
be changed without stopping a system.[2]

I was originally a proprietary language within Ericsson, but was
released as open source in 1998.



Erlang concurrent programming model

I While threads are considered a complicated and error-prone
topic in most languages

I Erlang provides language-level features for creating and
managing processes with the aim of simplifying concurrent
programming

I Though all concurrency is explicit in Erlang, processes
communicate using message passing instead of shared
variables, which removes the need for locks



Erlang concurrent programming model

I While threads are considered a complicated and error-prone
topic in most languages

I Erlang provides language-level features for creating and
managing processes with the aim of simplifying concurrent
programming

I Though all concurrency is explicit in Erlang, processes
communicate using message passing instead of shared
variables, which removes the need for locks



Erlang concurrent programming model

I While threads are considered a complicated and error-prone
topic in most languages

I Erlang provides language-level features for creating and
managing processes with the aim of simplifying concurrent
programming

I Though all concurrency is explicit in Erlang, processes
communicate using message passing instead of shared
variables, which removes the need for locks



Erlang concurrent programming model

I While threads are considered a complicated and error-prone
topic in most languages

I Erlang provides language-level features for creating and
managing processes with the aim of simplifying concurrent
programming

I Though all concurrency is explicit in Erlang, processes
communicate using message passing instead of shared
variables, which removes the need for locks



Philosophy

The philosophy used to develop Erlang fits equally well with the
development of Erlang based systems. Quoting Mike Williams, one
of the three inventors of Erlang:

I Find the right methods: Design by Prototyping

I It is not good enough to have ideas, you must also be able to
implement them and know they work.

I Make mistakes on a small scale, not in a production project.



Philosophy

The philosophy used to develop Erlang fits equally well with the
development of Erlang based systems. Quoting Mike Williams, one
of the three inventors of Erlang:

I Find the right methods: Design by Prototyping

I It is not good enough to have ideas, you must also be able to
implement them and know they work.

I Make mistakes on a small scale, not in a production project.



Philosophy

The philosophy used to develop Erlang fits equally well with the
development of Erlang based systems. Quoting Mike Williams, one
of the three inventors of Erlang:

I Find the right methods: Design by Prototyping

I It is not good enough to have ideas, you must also be able to
implement them and know they work.

I Make mistakes on a small scale, not in a production project.



Philosophy

The philosophy used to develop Erlang fits equally well with the
development of Erlang based systems. Quoting Mike Williams, one
of the three inventors of Erlang:

I Find the right methods: Design by Prototyping

I It is not good enough to have ideas, you must also be able to
implement them and know they work.

I Make mistakes on a small scale, not in a production project.



Philosophy

The philosophy used to develop Erlang fits equally well with the
development of Erlang based systems. Quoting Mike Williams, one
of the three inventors of Erlang:

I Find the right methods: Design by Prototyping

I It is not good enough to have ideas, you must also be able to
implement them and know they work.

I Make mistakes on a small scale, not in a production project.



Erlang Tutorial

Erlang Tutorial

http://www.erlang.org/download/getting_started-5.4.pdf







	The CouchDB Project
	Features

	MapReduce
	Dataflow

	ERLANG for Concurrent programming

