
Lezione 8
Bioinformatica

Mauro Ceccanti‡ e Alberto Paoluzzi†

†Dip. Informatica e Automazione – Università “Roma Tre”
‡Dip. Medicina Clinica – Università “La Sapienza”

Esercitazione
Introduzione al linguaggio di shell

Sommario

Esercitazione
Introduzione al linguaggio di shell

Shell command language
Introduction

I A Unix shell is a command-line interpreter (see shell) and script host
that provides a traditional user interface for the Unix operating system
and for Unix-like systems.

I The most generic sense of the term shell means any program that
users employ to type commands.

I In the Unix operating system users may select which shell to use for
interactive sessions.

I Many shells created for other operating systems (e.g. DOS for
Windows) offer rough equivalents to Unix shell functionality.

Shell command language
Introduction

I A Unix shell is a command-line interpreter (see shell) and script host
that provides a traditional user interface for the Unix operating system
and for Unix-like systems.

I The most generic sense of the term shell means any program that
users employ to type commands.

I In the Unix operating system users may select which shell to use for
interactive sessions.

I Many shells created for other operating systems (e.g. DOS for
Windows) offer rough equivalents to Unix shell functionality.

Shell command language
Introduction

I A Unix shell is a command-line interpreter (see shell) and script host
that provides a traditional user interface for the Unix operating system
and for Unix-like systems.

I The most generic sense of the term shell means any program that
users employ to type commands.

I In the Unix operating system users may select which shell to use for
interactive sessions.

I Many shells created for other operating systems (e.g. DOS for
Windows) offer rough equivalents to Unix shell functionality.

Shell command language
Introduction

I A Unix shell is a command-line interpreter (see shell) and script host
that provides a traditional user interface for the Unix operating system
and for Unix-like systems.

I The most generic sense of the term shell means any program that
users employ to type commands.

I In the Unix operating system users may select which shell to use for
interactive sessions.

I Many shells created for other operating systems (e.g. DOS for
Windows) offer rough equivalents to Unix shell functionality.

Shell command languages
Unix shells can be broadly divided into Bourne-like and C shell-like

Bourne shell compatible

sh Bourne shell – Written by Steve Bourne, while at Bell Labs. First
distributed with Version 7 Unix, circa 1978,

bash Bourne-Again shell – Written as part of the GNU project to provide a
superset of Bourne Shell functionality.

zsh Z shell – considered as the most complete shell: it is the closest thing
that exists to a superset of sh, ash, bash, csh, ksh, and tcsh.

C shell compatible

csh C shell – Written by Bill Joy, while at the University of California,
Berkeley. First distributed with BSD, circa 1979.

tcsh Tenex shell – It is essentially the C shell with programmable command
line completion and command-line editing.

Shell command languages
Unix shells can be broadly divided into Bourne-like and C shell-like

Bourne shell compatible

sh Bourne shell – Written by Steve Bourne, while at Bell Labs. First
distributed with Version 7 Unix, circa 1978,

bash Bourne-Again shell – Written as part of the GNU project to provide a
superset of Bourne Shell functionality.

zsh Z shell – considered as the most complete shell: it is the closest thing
that exists to a superset of sh, ash, bash, csh, ksh, and tcsh.

C shell compatible

csh C shell – Written by Bill Joy, while at the University of California,
Berkeley. First distributed with BSD, circa 1979.

tcsh Tenex shell – It is essentially the C shell with programmable command
line completion and command-line editing.

Shell command languages
Unix shells can be broadly divided into Bourne-like and C shell-like

Bourne shell compatible

sh Bourne shell – Written by Steve Bourne, while at Bell Labs. First
distributed with Version 7 Unix, circa 1978,

bash Bourne-Again shell – Written as part of the GNU project to provide a
superset of Bourne Shell functionality.

zsh Z shell – considered as the most complete shell: it is the closest thing
that exists to a superset of sh, ash, bash, csh, ksh, and tcsh.

C shell compatible

csh C shell – Written by Bill Joy, while at the University of California,
Berkeley. First distributed with BSD, circa 1979.

tcsh Tenex shell – It is essentially the C shell with programmable command
line completion and command-line editing.

Shell command languages
Unix shells can be broadly divided into Bourne-like and C shell-like

Bourne shell compatible

sh Bourne shell – Written by Steve Bourne, while at Bell Labs. First
distributed with Version 7 Unix, circa 1978,

bash Bourne-Again shell – Written as part of the GNU project to provide a
superset of Bourne Shell functionality.

zsh Z shell – considered as the most complete shell: it is the closest thing
that exists to a superset of sh, ash, bash, csh, ksh, and tcsh.

C shell compatible

csh C shell – Written by Bill Joy, while at the University of California,
Berkeley. First distributed with BSD, circa 1979.

tcsh Tenex shell – It is essentially the C shell with programmable command
line completion and command-line editing.

Shell command languages
Unix shells can be broadly divided into Bourne-like and C shell-like

Bourne shell compatible

sh Bourne shell – Written by Steve Bourne, while at Bell Labs. First
distributed with Version 7 Unix, circa 1978,

bash Bourne-Again shell – Written as part of the GNU project to provide a
superset of Bourne Shell functionality.

zsh Z shell – considered as the most complete shell: it is the closest thing
that exists to a superset of sh, ash, bash, csh, ksh, and tcsh.

C shell compatible

csh C shell – Written by Bill Joy, while at the University of California,
Berkeley. First distributed with BSD, circa 1979.

tcsh Tenex shell – It is essentially the C shell with programmable command
line completion and command-line editing.

Unix shells are Bourne-like or C shell-like
a typical prompt to the user is structured as <host>:<path> <account>$,
where the char tilde (∼) stands for the user’s home directory:

1 baruc3:~ paoluzzi$

The Bourne shell is immediately recognized when active by its characteristic
default command line prompt character, the dollar sign ($). The default for
new Mac OS X accounts is bash.

1 <prompt>$ echo $SHELL
2 /bin/bash

A command is followed by the shell’s answer on the following row. No answer
just means that the command was executed with no errors. Conversely, the
shell complains quite strongly for errors.

Introduction to shell command language
First Unix commands

1 <prompt>$ ls
2 Desktop Movies Sites lib
3 Documents Music System libexec
4 Downloads Pictures bin scipy
5 Library Public ebooks share
6 <prompt>$ pwd
7 /Users/paoluzzi
8 <prompt>$ ls Users
9 <prompt>$ ls /Users

10 Shared paoluzzi
11 <prompt>$ ls /
12 Applications Volumes net
13
14 <prompt>$ cd /
15 ...

1 ls is a command to list files in Unix and Unix-like operating systems
6 pwd short for print working directory
9 ls /Users absolute path of a directory

14 cd / stands for change directory to root (directory)

Introduction to shell command language
First Unix commands

1 <prompt>$ ls
2 Desktop Movies Sites lib
3 Documents Music System libexec
4 Downloads Pictures bin scipy
5 Library Public ebooks share
6 <prompt>$ pwd
7 /Users/paoluzzi
8 <prompt>$ ls Users
9 <prompt>$ ls /Users

10 Shared paoluzzi
11 <prompt>$ ls /
12 Applications Volumes net
13
14 <prompt>$ cd /
15 ...

1 ls is a command to list files in Unix and Unix-like operating systems
6 pwd short for print working directory
9 ls /Users absolute path of a directory

14 cd / stands for change directory to root (directory)

Introduction to shell command language
First Unix commands

1 <prompt>$ ls
2 Desktop Movies Sites lib
3 Documents Music System libexec
4 Downloads Pictures bin scipy
5 Library Public ebooks share
6 <prompt>$ pwd
7 /Users/paoluzzi
8 <prompt>$ ls Users
9 <prompt>$ ls /Users

10 Shared paoluzzi
11 <prompt>$ ls /
12 Applications Volumes net
13
14 <prompt>$ cd /
15 ...

1 ls is a command to list files in Unix and Unix-like operating systems
6 pwd short for print working directory
9 ls /Users absolute path of a directory

14 cd / stands for change directory to root (directory)

Introduction to shell command language
First Unix commands

1 <prompt>$ ls
2 Desktop Movies Sites lib
3 Documents Music System libexec
4 Downloads Pictures bin scipy
5 Library Public ebooks share
6 <prompt>$ pwd
7 /Users/paoluzzi
8 <prompt>$ ls Users
9 <prompt>$ ls /Users

10 Shared paoluzzi
11 <prompt>$ ls /
12 Applications Volumes net
13
14 <prompt>$ cd /
15 ...

1 ls is a command to list files in Unix and Unix-like operating systems
6 pwd short for print working directory
9 ls /Users absolute path of a directory

14 cd / stands for change directory to root (directory)

Shell Variables and Environment Variables
These variables cause the shell to work in a particular way

1 <prompt>$ cd Users/
2 -bash: cd: Users/: No such file or directory
3 <prompt>$ ls
4 Desktop Movies Sites lib
5 Documents Music System libexec
6 Downloads Pictures bin scipy
7 Library Public ebooks share
8 <prompt>$ echo $PATH
9 /opt/local/bin:/opt/local/sbin:/usr/bin:/bin:/usr/sbin:/

sbin:/usr/local/bin:/usr/X11/bin:/usr/local/bin:/
Users/paoluzzi/bin

10 <prompt>$ cd .
11 <prompt>$ cd ..
12 <prompt>$ pwd
13 /Users

8 echo shows the contents ($) of the shell variable PATH searched for
executing programs (including shell commands). Paths are separated
by colon “:” punctuation mark

Change directory

1 <prompt>$ cd ..
2 <prompt>$ cd Volumes/
3 <prompt>$ ls
4 Macintosh HD
5 <prompt>$ ls /bin/ls
6 /bin/ls*
7 <prompt>$ ls /bin/
8 [df launchctl pwd tcsh bash domainname link rcp test
9 cat echo ln rm unlink chmod ed ls rmdir wait4path

10 cp expr mkdir sh zsh csh hostname mv sleep
11 date kill pax stty dd ksh ps sync
12 <prompt>$ cd
13 <prompt>$ ls
14 Desktop Movies Sites ebooks share
15

1 cd to .. (parent directory)

5 no results for

6 OK

11 cd without parameters changes the directory to the user’s home

Change directory

1 <prompt>$ cd ..
2 <prompt>$ cd Volumes/
3 <prompt>$ ls
4 Macintosh HD
5 <prompt>$ ls /bin/ls
6 /bin/ls*
7 <prompt>$ ls /bin/
8 [df launchctl pwd tcsh bash domainname link rcp test
9 cat echo ln rm unlink chmod ed ls rmdir wait4path

10 cp expr mkdir sh zsh csh hostname mv sleep
11 date kill pax stty dd ksh ps sync
12 <prompt>$ cd
13 <prompt>$ ls
14 Desktop Movies Sites ebooks share
15

1 cd to .. (parent directory)

5 no results for

6 OK

11 cd without parameters changes the directory to the user’s home

Change directory

1 <prompt>$ cd ..
2 <prompt>$ cd Volumes/
3 <prompt>$ ls
4 Macintosh HD
5 <prompt>$ ls /bin/ls
6 /bin/ls*
7 <prompt>$ ls /bin/
8 [df launchctl pwd tcsh bash domainname link rcp test
9 cat echo ln rm unlink chmod ed ls rmdir wait4path

10 cp expr mkdir sh zsh csh hostname mv sleep
11 date kill pax stty dd ksh ps sync
12 <prompt>$ cd
13 <prompt>$ ls
14 Desktop Movies Sites ebooks share
15

1 cd to .. (parent directory)

5 no results for

6 OK

11 cd without parameters changes the directory to the user’s home

Change directory

1 <prompt>$ cd ..
2 <prompt>$ cd Volumes/
3 <prompt>$ ls
4 Macintosh HD
5 <prompt>$ ls /bin/ls
6 /bin/ls*
7 <prompt>$ ls /bin/
8 [df launchctl pwd tcsh bash domainname link rcp test
9 cat echo ln rm unlink chmod ed ls rmdir wait4path

10 cp expr mkdir sh zsh csh hostname mv sleep
11 date kill pax stty dd ksh ps sync
12 <prompt>$ cd
13 <prompt>$ ls
14 Desktop Movies Sites ebooks share
15

1 cd to .. (parent directory)

5 no results for

6 OK

11 cd without parameters changes the directory to the user’s home

Output redirection and text editing

1 <prompt>$ echo "ciao"
2 ciao
3 <prompt>$ echo "ciao" > hello.txt
4 <prompt>$ ls
5 <prompt>$ cat hello.txt
6 ciao
7 <prompt>$ vi hello.txt
8 <prompt>$ emacs hello.txt
9 <prompt>$ nano hello.txt

1 echo of the string at console

3 output of echo command redirected to the hello.txt file

5 cat (concatenate) the contents hello.txt file on the console

7 editor vi opens the hello.txt file (:q<enter> to quit)

8 editor emacs opens hello.txt (<cntl>x<cntl>c to close)

9 editor nano opens hello.txt (uses menus: ∧ stands for <cntl>)

Output redirection and text editing

1 <prompt>$ echo "ciao"
2 ciao
3 <prompt>$ echo "ciao" > hello.txt
4 <prompt>$ ls
5 <prompt>$ cat hello.txt
6 ciao
7 <prompt>$ vi hello.txt
8 <prompt>$ emacs hello.txt
9 <prompt>$ nano hello.txt

1 echo of the string at console

3 output of echo command redirected to the hello.txt file

5 cat (concatenate) the contents hello.txt file on the console

7 editor vi opens the hello.txt file (:q<enter> to quit)

8 editor emacs opens hello.txt (<cntl>x<cntl>c to close)

9 editor nano opens hello.txt (uses menus: ∧ stands for <cntl>)

Output redirection and text editing

1 <prompt>$ echo "ciao"
2 ciao
3 <prompt>$ echo "ciao" > hello.txt
4 <prompt>$ ls
5 <prompt>$ cat hello.txt
6 ciao
7 <prompt>$ vi hello.txt
8 <prompt>$ emacs hello.txt
9 <prompt>$ nano hello.txt

1 echo of the string at console

3 output of echo command redirected to the hello.txt file

5 cat (concatenate) the contents hello.txt file on the console

7 editor vi opens the hello.txt file (:q<enter> to quit)

8 editor emacs opens hello.txt (<cntl>x<cntl>c to close)

9 editor nano opens hello.txt (uses menus: ∧ stands for <cntl>)

Output redirection and text editing

1 <prompt>$ echo "ciao"
2 ciao
3 <prompt>$ echo "ciao" > hello.txt
4 <prompt>$ ls
5 <prompt>$ cat hello.txt
6 ciao
7 <prompt>$ vi hello.txt
8 <prompt>$ emacs hello.txt
9 <prompt>$ nano hello.txt

1 echo of the string at console

3 output of echo command redirected to the hello.txt file

5 cat (concatenate) the contents hello.txt file on the console

7 editor vi opens the hello.txt file (:q<enter> to quit)

8 editor emacs opens hello.txt (<cntl>x<cntl>c to close)

9 editor nano opens hello.txt (uses menus: ∧ stands for <cntl>)

Output redirection and text editing

1 <prompt>$ echo "ciao"
2 ciao
3 <prompt>$ echo "ciao" > hello.txt
4 <prompt>$ ls
5 <prompt>$ cat hello.txt
6 ciao
7 <prompt>$ vi hello.txt
8 <prompt>$ emacs hello.txt
9 <prompt>$ nano hello.txt

1 echo of the string at console

3 output of echo command redirected to the hello.txt file

5 cat (concatenate) the contents hello.txt file on the console

7 editor vi opens the hello.txt file (:q<enter> to quit)

8 editor emacs opens hello.txt (<cntl>x<cntl>c to close)

9 editor nano opens hello.txt (uses menus: ∧ stands for <cntl>)

Output redirection and text editing

1 <prompt>$ echo "ciao"
2 ciao
3 <prompt>$ echo "ciao" > hello.txt
4 <prompt>$ ls
5 <prompt>$ cat hello.txt
6 ciao
7 <prompt>$ vi hello.txt
8 <prompt>$ emacs hello.txt
9 <prompt>$ nano hello.txt

1 echo of the string at console

3 output of echo command redirected to the hello.txt file

5 cat (concatenate) the contents hello.txt file on the console

7 editor vi opens the hello.txt file (:q<enter> to quit)

8 editor emacs opens hello.txt (<cntl>x<cntl>c to close)

9 editor nano opens hello.txt (uses menus: ∧ stands for <cntl>)

Nano screen editing
Useful commend menus. Easy to use

Copy command

1 <prompt>$ cp hello.txt hello2.txt
2 <prompt>$ cp hello.txt hello3.txt
3 <prompt>$ cp hello.txt hello4.txt
4 <prompt>$ cp hello.txt hello5.txt
5 <prompt>$ ls
6 Desktop Music bin hello3.txt scipy
7 Documents Pictures cd hello4.txt share
8 Downloads Public ebooks hello5.txt
9 Library Sites hello.txt lib

10 Movies System hello2.txt libexec
11 <prompt>$ cat hello.txt hello2.txt hello3.txt
12 ciao
13 ciao
14 ciao

1 copy <input file name> <output file name>

5 the working directory now contains the new files

11 cat concatenates several input files

Copy command

1 <prompt>$ cp hello.txt hello2.txt
2 <prompt>$ cp hello.txt hello3.txt
3 <prompt>$ cp hello.txt hello4.txt
4 <prompt>$ cp hello.txt hello5.txt
5 <prompt>$ ls
6 Desktop Music bin hello3.txt scipy
7 Documents Pictures cd hello4.txt share
8 Downloads Public ebooks hello5.txt
9 Library Sites hello.txt lib

10 Movies System hello2.txt libexec
11 <prompt>$ cat hello.txt hello2.txt hello3.txt
12 ciao
13 ciao
14 ciao

1 copy <input file name> <output file name>

5 the working directory now contains the new files

11 cat concatenates several input files

Copy command

1 <prompt>$ cp hello.txt hello2.txt
2 <prompt>$ cp hello.txt hello3.txt
3 <prompt>$ cp hello.txt hello4.txt
4 <prompt>$ cp hello.txt hello5.txt
5 <prompt>$ ls
6 Desktop Music bin hello3.txt scipy
7 Documents Pictures cd hello4.txt share
8 Downloads Public ebooks hello5.txt
9 Library Sites hello.txt lib

10 Movies System hello2.txt libexec
11 <prompt>$ cat hello.txt hello2.txt hello3.txt
12 ciao
13 ciao
14 ciao

1 copy <input file name> <output file name>

5 the working directory now contains the new files

11 cat concatenates several input files

Move command
the mv command just changes the file name. It is used to rename files and directories

1 <prompt>$ mv hello2.txt hello21.txt
2 <prompt>$ mv hello3.txt hello31.txt
3 <prompt>$ mv hello4.txt hello41.txt
4 <prompt>$ mv hello5.txt hello51.txt
5 <prompt>$ ls
6 Desktop Music bin hello31.txt scipy
7 Documents Pictures cd hello41.txt share
8 Downloads Public ebooks hello51.txt
9 Library Sites hello.txt lib

10 Movies System hello21.txt libexec
11 <prompt>$ cat hello.txt hello21.txt hello31.txt
12 ciao
13 ciao
14 ciao

1 move <input file name> <output file name>

Iteration
using the for cycle, the “;” command terminator, and a shell variable i

1 A number of characters are interpreted by the Unix shell before any other
action takes place. These characters are known as wildcard characters.
Usually these characters are used in place of filenames or directory names.

1 <prompt>$ for i in *.txt; do ls $i; done
2 hello.txt
3 hello2.txt
4 hello3.txt
5 hello4.txt
6 hello5.txt
7 <prompt>$ ls -l hello*
8 --w-r--r-- 1 paoluzzi staff 5 Nov 9 19:14 hello.txt
9 -rw-r--r-- 1 paoluzzi staff 5 Nov 9 19:17 hello21.txt

10 -rw-r--r-- 1 paoluzzi staff 5 Nov 9 19:17 hello31.txt
11 -rw-r--r-- 1 paoluzzi staff 5 Nov 9 19:17 hello41.txt
12 -rw-r--r-- 1 paoluzzi staff 5 Nov 9 19:17 hello51.txt

1 Notice the different use of i and $i.

7 An asterisk matches any number of characters in a filename, including none.

Iteration
using the for cycle, the “;” command terminator, and a shell variable i

1 A number of characters are interpreted by the Unix shell before any other
action takes place. These characters are known as wildcard characters.
Usually these characters are used in place of filenames or directory names.

1 <prompt>$ for i in *.txt; do ls $i; done
2 hello.txt
3 hello2.txt
4 hello3.txt
5 hello4.txt
6 hello5.txt
7 <prompt>$ ls -l hello*
8 --w-r--r-- 1 paoluzzi staff 5 Nov 9 19:14 hello.txt
9 -rw-r--r-- 1 paoluzzi staff 5 Nov 9 19:17 hello21.txt

10 -rw-r--r-- 1 paoluzzi staff 5 Nov 9 19:17 hello31.txt
11 -rw-r--r-- 1 paoluzzi staff 5 Nov 9 19:17 hello41.txt
12 -rw-r--r-- 1 paoluzzi staff 5 Nov 9 19:17 hello51.txt

1 Notice the different use of i and $i.

7 An asterisk matches any number of characters in a filename, including none.

Iteration
using the for cycle, the “;” command terminator, and a shell variable i

1 A number of characters are interpreted by the Unix shell before any other
action takes place. These characters are known as wildcard characters.
Usually these characters are used in place of filenames or directory names.

1 <prompt>$ for i in *.txt; do ls $i; done
2 hello.txt
3 hello2.txt
4 hello3.txt
5 hello4.txt
6 hello5.txt
7 <prompt>$ ls -l hello*
8 --w-r--r-- 1 paoluzzi staff 5 Nov 9 19:14 hello.txt
9 -rw-r--r-- 1 paoluzzi staff 5 Nov 9 19:17 hello21.txt

10 -rw-r--r-- 1 paoluzzi staff 5 Nov 9 19:17 hello31.txt
11 -rw-r--r-- 1 paoluzzi staff 5 Nov 9 19:17 hello41.txt
12 -rw-r--r-- 1 paoluzzi staff 5 Nov 9 19:17 hello51.txt

1 Notice the different use of i and $i.

7 An asterisk matches any number of characters in a filename, including none.

Permissions and chmod
chmod is short for change mode. When executed, it can change file system modes of
files and directories: $ chmod <references><operator><modes> file1 ...

1 <prompt>$ chmod u-r hello.txt
2 <prompt>$ ls -l hello.txt
3 --w-r--r-- 1 paoluzzi staff 5 Nov 9 19:14 hello.txt
4 <prompt>$ chmod u+r hello.txt
5 <prompt>$ ls -l hello.txt
6 -rw-r--r-- 1 paoluzzi staff 5 Nov 9 19:14 hello.txt
7 <prompt>$ cat hello.txt
8 cat: hello.txt: Permission denied
9 <prompt>$ chmod a-r hello.txt

10 <prompt>$ ls -l hello.txt
11 --w------- 1 paoluzzi staff 5 Nov 9 19:14 hello.txt
12 <prompt>$ chmod a+r hello.txt
13 -rw-r--r-- 1 paoluzzi staff 5 Nov 9 19:14 hello.txt

references u (user) | g (group) | o (others) | a (all)

operator + (add) | - (remove) | = (no change)

modes r (read) | w (write) | x (execute)

Permissions and chmod
chmod is short for change mode. When executed, it can change file system modes of
files and directories: $ chmod <references><operator><modes> file1 ...

1 <prompt>$ chmod u-r hello.txt
2 <prompt>$ ls -l hello.txt
3 --w-r--r-- 1 paoluzzi staff 5 Nov 9 19:14 hello.txt
4 <prompt>$ chmod u+r hello.txt
5 <prompt>$ ls -l hello.txt
6 -rw-r--r-- 1 paoluzzi staff 5 Nov 9 19:14 hello.txt
7 <prompt>$ cat hello.txt
8 cat: hello.txt: Permission denied
9 <prompt>$ chmod a-r hello.txt

10 <prompt>$ ls -l hello.txt
11 --w------- 1 paoluzzi staff 5 Nov 9 19:14 hello.txt
12 <prompt>$ chmod a+r hello.txt
13 -rw-r--r-- 1 paoluzzi staff 5 Nov 9 19:14 hello.txt

references u (user) | g (group) | o (others) | a (all)

operator + (add) | - (remove) | = (no change)

modes r (read) | w (write) | x (execute)

Permissions and chmod
chmod is short for change mode. When executed, it can change file system modes of
files and directories: $ chmod <references><operator><modes> file1 ...

1 <prompt>$ chmod u-r hello.txt
2 <prompt>$ ls -l hello.txt
3 --w-r--r-- 1 paoluzzi staff 5 Nov 9 19:14 hello.txt
4 <prompt>$ chmod u+r hello.txt
5 <prompt>$ ls -l hello.txt
6 -rw-r--r-- 1 paoluzzi staff 5 Nov 9 19:14 hello.txt
7 <prompt>$ cat hello.txt
8 cat: hello.txt: Permission denied
9 <prompt>$ chmod a-r hello.txt

10 <prompt>$ ls -l hello.txt
11 --w------- 1 paoluzzi staff 5 Nov 9 19:14 hello.txt
12 <prompt>$ chmod a+r hello.txt
13 -rw-r--r-- 1 paoluzzi staff 5 Nov 9 19:14 hello.txt

references u (user) | g (group) | o (others) | a (all)

operator + (add) | - (remove) | = (no change)

modes r (read) | w (write) | x (execute)

Executable script
The first line (bang command #!) tells the shell where to find the program to interpret
the file

Executing the script
assign execution permission & correct the path of the sh command in a.sh file

1 $ nano a.sh
2 $ ls -l a.sh
3 -rw-r--r-- 1 paoluzzi staff 50 Nov 10 09:43 a.sh
4 $ a.sh
5 -bash: a.sh: command not found
6 $ pwd
7 /Users/paoluzzi
8 $ /Users/paoluzzi/a.sh
9 -bash: /Users/paoluzzi/a.sh: Permission denied

10 $ chmod a+x a.sh
11 $ ls -l a.sh
12 -rwxr-xr-x 1 paoluzzi staff 50 Nov 10 09:43 a.sh
13 $ /Users/paoluzzi/a.sh
14 -bash: /Users/paoluzzi/a.sh: /usr/bin/sh: bad

interpreter: No such file or directory
15 $./a.sh
16 -bash: ./a.sh: /usr/bin/sh: bad interpreter: No such

file or directory
17 $ which sh
18 /bin/sh

Executable script
correct the path of the sh program and save the file

Executing the script
assign execution permission & correct the path of the sh command in a.sh file

Executing the script
REMARK: launch the script with a path

1 $ a.sh
2 $./a.sh
3 ciao
4 ciao
5 ciao
6 ciao
7 ciao

1 no effect, even if the file exists in the current directory, and is provided
with permission for execution.

2 it executes if launched from the current directory, because now the shell
knows where to find it

Executable programs are searched in the directories listed in the $PATH
variable. The current directory (.) and its father (..) are not included by default
for security reasons.

Executing the script
REMARK: launch the script with a path

1 $ a.sh
2 $./a.sh
3 ciao
4 ciao
5 ciao
6 ciao
7 ciao

1 no effect, even if the file exists in the current directory, and is provided
with permission for execution.

2 it executes if launched from the current directory, because now the shell
knows where to find it

Executable programs are searched in the directories listed in the $PATH
variable. The current directory (.) and its father (..) are not included by default
for security reasons.

Executing on a remote machine
Using a secure shell command ssh

1 baruc3:~ paoluzzi$ ssh paoluzzi@plm.dia.uniroma3.it
2 Password:
3

4 Last login: Fri May 22 12:29:46 2009 from authentication
.uniroma3.it

5

6 paoluzzi@plm:~$
7 paoluzzi@plm:~$ ls
8 Desktop/ Music/ download/ local/

tower-last/
9

10 paoluzzi@plm:~$ exit
11 logout
12 Connection to plm.dia.uniroma3.it closed by remote host.
13 Connection to plm.dia.uniroma3.it closed.

1 <prompt>$ ssh <account>@<remotehost>

2 Of course you need an account on the remote host

6 Notice the change in the user prompt

Executing on a remote machine
Using a secure shell command ssh

1 baruc3:~ paoluzzi$ ssh paoluzzi@plm.dia.uniroma3.it
2 Password:
3

4 Last login: Fri May 22 12:29:46 2009 from authentication
.uniroma3.it

5

6 paoluzzi@plm:~$
7 paoluzzi@plm:~$ ls
8 Desktop/ Music/ download/ local/

tower-last/
9

10 paoluzzi@plm:~$ exit
11 logout
12 Connection to plm.dia.uniroma3.it closed by remote host.
13 Connection to plm.dia.uniroma3.it closed.

1 <prompt>$ ssh <account>@<remotehost>

2 Of course you need an account on the remote host

6 Notice the change in the user prompt

Executing on a remote machine
Using a secure shell command ssh

1 baruc3:~ paoluzzi$ ssh paoluzzi@plm.dia.uniroma3.it
2 Password:
3

4 Last login: Fri May 22 12:29:46 2009 from authentication
.uniroma3.it

5

6 paoluzzi@plm:~$
7 paoluzzi@plm:~$ ls
8 Desktop/ Music/ download/ local/

tower-last/
9

10 paoluzzi@plm:~$ exit
11 logout
12 Connection to plm.dia.uniroma3.it closed by remote host.
13 Connection to plm.dia.uniroma3.it closed.

1 <prompt>$ ssh <account>@<remotehost>

2 Of course you need an account on the remote host

6 Notice the change in the user prompt

Fundamental programming in the Bourne again shell
(bash)
for a professional introduction to bash shell programming, see:

Bash by example, Part 1
Bash by example, Part 2
Bash by example, Part 3

http://www.ibm.com/developerworks/library/l-bash.html
http://www.ibm.com/developerworks/library/l-bash2.html
http://www.ibm.com/developerworks/library/l-bash3.html

	Outline
	Esercitazione
	Introduzione al linguaggio di shell

