Lezione 7 Bioinformatica

Mauro Ceccanti[‡] e Alberto Paoluzzi[†]

[†]Dip. Informatica e Automazione – Università "Roma Tre" [‡]Dip. Medicina Clinica – Università "La Sapienza"

BioPython Installing and exploration Tutorial

First Course Project

First Start First Start with Biopython

Contents

BioPython Installing and exploration

First Course Project

First Start First Start with Biopython

BioPython

Biopython is a set of freely available tools for biological computation written in Python by an international team of developers.

[<+->]

The web site provides an online resource for modules, scripts, and web links for developers of Python-based software for life science

 BioPython makes it as easy as possible to use Python for bioinformatics by creating high-quality, reusable modules and scripts

BioPython

Biopython is a set of freely available tools for biological computation written in Python by an international team of developers.

[<+->]

The web site provides an online resource for modules, scripts, and web links for developers of Python-based software for life science

 BioPython makes it as easy as possible to use Python for bioinformatics by creating high-quality, reusable modules and scripts

BioPython

Biopython is a set of freely available tools for biological computation written in Python by an international team of developers.

This wiki will help you download and install Biopython, and start using the libraries and tools

Download

Current Release - 1.52

http://biopython.org/wiki/Download

Short version

[<+->]

- installer for windows: download Python-2.6.2.msi
- standard install on MacOSX, Linux and Unix:
 - download the source
 - From command line in a terminal:
 - 1 > python setup.py build
 - 2 > python setup.py test
 - 3 > sudo python setup.py install

ъ

・ロン ・聞 と ・ ヨ と ・ ヨ と

Short version

[<+->]

- installer for windows: download Python-2.6.2.msi
- standard install on MacOSX, Linux and Unix:
 - download the source
 - from command line in a terminal:
 - 1 > python setup.py build
 - 2 > python setup.py test
 - 3 > sudo python setup.py install

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

Short version

[<+->]

- installer for windows: download Python-2.6.2.msi
- standard install on MacOSX, Linux and Unix:
 - download the source
 - from command line in a terminal:
 - 1 > python setup.py build
 - 2 > python setup.py test
 - 3 > sudo python setup.py install

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

Short version

[<+->]

- installer for windows: download Python-2.6.2.msi
- standard install on MacOSX, Linux and Unix:
 - download the source
 - from command line in a terminal:
 - 1 > python setup.py build
 - 2 > python setup.py test
 - 3 > sudo python setup.py install

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

Long version

http://biopython.org/DIST/docs/install/Installation.html

Best version ;-)

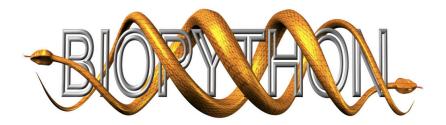
from a terminal, with easy_install package already installed:

1 > easy_install -f http://biopython.org/DIST/biopython

Contents

BioPython Installing and exploration Tutorial

First Course Project


First Start First Start with Biopython

Biopython Tutorial and Cookbook

by Jeff Chang, Brad Chapman, Iddo Friedberg, Thomas Hamelryck, Michiel de Hoon, Peter Cock, and Tiago Antão

Biopython Tutorial and Cookbook

·	
Chapter 1	Introduction
Chapter 2	Quick Start – What can you do with Biopython?
Chapter 3	Sequence objects
Chapter 4	Sequence Record objects
Chapter 5	Sequence Input/Output
Chapter 6	Sequence Alignment Input/Output, and Alignment Tools
Chapter 7	BLAST
Chapter 8	Accessing NCBI's Entrez databases
Chapter 9	Swiss-Prot and ExPASy
Chapter 10	Going 3D: The PDB module
Chapter 11	Bio.PopGen: Population genetics
Chapter 12	Supervised learning methods
Chapter 13	Graphics including GenomeDiagram
Chapter 14	Cookbook – Cool things to do with it
Chapter 15	The Biopython testing framework
Chapter 16	Advanced
Chapter 17	Where to go from here – contributing to Biopython
Chapter 18	Appendix: Useful stuff about Python
	<日> <局> <長> <長> <長> <長

- 1. The ability to parse bioinformatics files into Python utilizable data structures, including support for the following formats:
 - Blast output both from standalone and WWW Blast
 - Clustalw
 - ► FASTA
 - GenBank
 - PubMed and Medline
 - ExPASy files, like Enzyme and Prosite
 - SCOP, including 'dom' and 'lin' files
 - UniGene
 - SwissProt

- 1. The ability to parse bioinformatics files into Python utilizable data structures, including support for the following formats:
 - Blast output both from standalone and WWW Blast
 - Clustalw
 - ► FASTA
 - GenBank
 - PubMed and Medline
 - ExPASy files, like Enzyme and Prosite
 - SCOP, including 'dom' and 'lin' files
 - UniGene
 - SwissProt

- 1. The ability to parse bioinformatics files into Python utilizable data structures, including support for the following formats:
 - Blast output both from standalone and WWW Blast
 - Clustalw
 - ► FASTA
 - GenBank
 - PubMed and Medline
 - ExPASy files, like Enzyme and Prosite
 - SCOP, including 'dom' and 'lin' files
 - UniGene
 - SwissProt

- 1. The ability to parse bioinformatics files into Python utilizable data structures, including support for the following formats:
 - Blast output both from standalone and WWW Blast
 - Clustalw
 - FASTA
 - GenBank
 - PubMed and Medline
 - ExPASy files, like Enzyme and Prosite
 - SCOP, including 'dom' and 'lin' files
 - UniGene
 - SwissProt

- 1. The ability to parse bioinformatics files into Python utilizable data structures, including support for the following formats:
 - Blast output both from standalone and WWW Blast
 - Clustalw
 - FASTA
 - GenBank
 - PubMed and Medline
 - ExPASy files, like Enzyme and Prosite
 - SCOP, including 'dom' and 'lin' files
 - UniGene
 - SwissProt

- 1. The ability to parse bioinformatics files into Python utilizable data structures, including support for the following formats:
 - Blast output both from standalone and WWW Blast
 - Clustalw
 - FASTA
 - GenBank
 - PubMed and Medline
 - ExPASy files, like Enzyme and Prosite
 - SCOP, including 'dom' and 'lin' files
 - UniGene
 - SwissProt

- 1. The ability to parse bioinformatics files into Python utilizable data structures, including support for the following formats:
 - Blast output both from standalone and WWW Blast
 - Clustalw
 - FASTA
 - GenBank
 - PubMed and Medline
 - ExPASy files, like Enzyme and Prosite
 - SCOP, including 'dom' and 'lin' files
 - UniGene
 - SwissProt

- 1. The ability to parse bioinformatics files into Python utilizable data structures, including support for the following formats:
 - Blast output both from standalone and WWW Blast
 - Clustalw
 - FASTA
 - GenBank
 - PubMed and Medline
 - ExPASy files, like Enzyme and Prosite
 - SCOP, including 'dom' and 'lin' files
 - UniGene
 - SwissProt

- 1. The ability to parse bioinformatics files into Python utilizable data structures, including support for the following formats:
 - Blast output both from standalone and WWW Blast
 - Clustalw
 - FASTA
 - GenBank
 - PubMed and Medline
 - ExPASy files, like Enzyme and Prosite
 - SCOP, including 'dom' and 'lin' files
 - UniGene
 - SwissProt

- 1. The ability to parse bioinformatics files into Python utilizable data structures, including support for the following formats:
 - Blast output both from standalone and WWW Blast
 - Clustalw
 - FASTA
 - GenBank
 - PubMed and Medline
 - ExPASy files, like Enzyme and Prosite
 - SCOP, including 'dom' and 'lin' files
 - UniGene
 - SwissProt

The main Biopython releases have lots of functionality, including:

- 1. Files in the supported formats can be iterated over record by record or indexed and accessed via a Dictionary interface.
- 2. Code to deal with popular on-line bioinformatics destinations such as:
 - NCBI Blast, Entrez and PubMed services
 - ExPASy Swiss-Prot and Prosite entries, as well as Prosite searches
- 3. Interfaces to common bioinformatics programs such as:
 - Standalone Blast from NCBI
 - Clustalw alignment program
 - EMBOSS command line tools
- 4. A standard sequence class that deals with sequences, ids on sequences, and sequence features.
- 5. Tools for performing common operations on sequences, such as translation, transcription and weight calculations.

人口 医水黄 医水黄 医水黄 化口

The main Biopython releases have lots of functionality, including:

- 1. Files in the supported formats can be iterated over record by record or indexed and accessed via a Dictionary interface.
- 2. Code to deal with popular on-line bioinformatics destinations such as:
 - NCBI Blast, Entrez and PubMed services
 - ExPASy Swiss-Prot and Prosite entries, as well as Prosite searches
- 3. Interfaces to common bioinformatics programs such as:
 - Standalone Blast from NCBI
 - Clustalw alignment program
 - EMBOSS command line tools
- 4. A standard sequence class that deals with sequences, ids on sequences, and sequence features.
- 5. Tools for performing common operations on sequences, such as translation, transcription and weight calculations.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

The main Biopython releases have lots of functionality, including:

- 1. Files in the supported formats can be iterated over record by record or indexed and accessed via a Dictionary interface.
- 2. Code to deal with popular on-line bioinformatics destinations such as:
 - NCBI Blast, Entrez and PubMed services
 - ExPASy Swiss-Prot and Prosite entries, as well as Prosite searches
- 3. Interfaces to common bioinformatics programs such as:
 - Standalone Blast from NCBI
 - Clustalw alignment program
 - EMBOSS command line tools
- 4. A standard sequence class that deals with sequences, ids on sequences, and sequence features.
- 5. Tools for performing common operations on sequences, such as translation, transcription and weight calculations.

イロト イポト イヨト イヨト 三日

The main Biopython releases have lots of functionality, including:

- 1. Files in the supported formats can be iterated over record by record or indexed and accessed via a Dictionary interface.
- 2. Code to deal with popular on-line bioinformatics destinations such as:
 - NCBI Blast, Entrez and PubMed services
 - ExPASy Swiss-Prot and Prosite entries, as well as Prosite searches
- 3. Interfaces to common bioinformatics programs such as:
 - Standalone Blast from NCBI
 - Clustalw alignment program
 - EMBOSS command line tools
- 4. A standard sequence class that deals with sequences, ids on sequences, and sequence features.
- 5. Tools for performing common operations on sequences, such as translation, transcription and weight calculations.

- 1. Files in the supported formats can be iterated over record by record or indexed and accessed via a Dictionary interface.
- 2. Code to deal with popular on-line bioinformatics destinations such as:
 - NCBI Blast, Entrez and PubMed services
 - ExPASy Swiss-Prot and Prosite entries, as well as Prosite searches
- 3. Interfaces to common bioinformatics programs such as:
 - Standalone Blast from NCBI
 - Clustalw alignment program
 - EMBOSS command line tools
- 4. A standard sequence class that deals with sequences, ids on sequences, and sequence features.
- 5. Tools for performing common operations on sequences, such as translation, transcription and weight calculations.

- 1. Files in the supported formats can be iterated over record by record or indexed and accessed via a Dictionary interface.
- 2. Code to deal with popular on-line bioinformatics destinations such as:
 - NCBI Blast, Entrez and PubMed services
 - ExPASy Swiss-Prot and Prosite entries, as well as Prosite searches
- 3. Interfaces to common bioinformatics programs such as:
 - Standalone Blast from NCBI
 - Clustalw alignment program
 - EMBOSS command line tools
- 4. A standard sequence class that deals with sequences, ids on sequences, and sequence features.
- 5. Tools for performing common operations on sequences, such as translation, transcription and weight calculations.

- 1. Files in the supported formats can be iterated over record by record or indexed and accessed via a Dictionary interface.
- 2. Code to deal with popular on-line bioinformatics destinations such as:
 - NCBI Blast, Entrez and PubMed services
 - ExPASy Swiss-Prot and Prosite entries, as well as Prosite searches
- 3. Interfaces to common bioinformatics programs such as:
 - Standalone Blast from NCBI
 - Clustalw alignment program
 - EMBOSS command line tools
- 4. A standard sequence class that deals with sequences, ids on sequences, and sequence features.
- 5. Tools for performing common operations on sequences, such as translation, transcription and weight calculations.

- 1. Files in the supported formats can be iterated over record by record or indexed and accessed via a Dictionary interface.
- 2. Code to deal with popular on-line bioinformatics destinations such as:
 - NCBI Blast, Entrez and PubMed services
 - ExPASy Swiss-Prot and Prosite entries, as well as Prosite searches
- 3. Interfaces to common bioinformatics programs such as:
 - Standalone Blast from NCBI
 - Clustalw alignment program
 - EMBOSS command line tools
- 4. A standard sequence class that deals with sequences, ids on sequences, and sequence features.
- 5. Tools for performing common operations on sequences, such as translation, transcription and weight calculations.

- 1. Files in the supported formats can be iterated over record by record or indexed and accessed via a Dictionary interface.
- 2. Code to deal with popular on-line bioinformatics destinations such as:
 - NCBI Blast, Entrez and PubMed services
 - ExPASy Swiss-Prot and Prosite entries, as well as Prosite searches
- 3. Interfaces to common bioinformatics programs such as:
 - Standalone Blast from NCBI
 - Clustalw alignment program
 - EMBOSS command line tools
- 4. A standard sequence class that deals with sequences, ids on sequences, and sequence features.
- 5. Tools for performing common operations on sequences, such as translation, transcription and weight calculations.

- 1. Files in the supported formats can be iterated over record by record or indexed and accessed via a Dictionary interface.
- 2. Code to deal with popular on-line bioinformatics destinations such as:
 - NCBI Blast, Entrez and PubMed services
 - ExPASy Swiss-Prot and Prosite entries, as well as Prosite searches
- 3. Interfaces to common bioinformatics programs such as:
 - Standalone Blast from NCBI
 - Clustalw alignment program
 - EMBOSS command line tools
- 4. A standard sequence class that deals with sequences, ids on sequences, and sequence features.
- 5. Tools for performing common operations on sequences, such as translation, transcription and weight calculations.

The main Biopython releases have lots of functionality, including:

- 1. Code to perform classification of data using k Nearest Neighbors, Naive Bayes or Support Vector Machines.
- 2. Code for dealing with alignments, including a standard way to create and deal with substitution matrices.
- 3. Code making it easy to split up parallelizable tasks into separate processes.
- 4. GUI-based programs to do basic sequence manipulations, translations, BLASTing, etc.
- 5. Extensive documentation and help with using the modules, including this file, on-line wiki documentation,
- 6. the web site, and the mailing list.
- 7. Integration with BioSQL, a sequence database schema also supported by the BioPerl and BioJava projects.

・ロット (口) ・ ((U)) ・ ((U))) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U))) ・ ((U)) ・ ((U)))

The main Biopython releases have lots of functionality, including:

- 1. Code to perform classification of data using k Nearest Neighbors, Naive Bayes or Support Vector Machines.
- 2. Code for dealing with alignments, including a standard way to create and deal with substitution matrices.
- 3. Code making it easy to split up parallelizable tasks into separate processes.
- 4. GUI-based programs to do basic sequence manipulations, translations, BLASTing, etc.
- 5. Extensive documentation and help with using the modules, including this file, on-line wiki documentation,
- 6. the web site, and the mailing list.
- 7. Integration with BioSQL, a sequence database schema also supported by the BioPerl and BioJava projects.

・ロット (口) ・ ((U)) ・ ((U))) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U))) ・ ((U)) ・ ((U)))

The main Biopython releases have lots of functionality, including:

- 1. Code to perform classification of data using k Nearest Neighbors, Naive Bayes or Support Vector Machines.
- 2. Code for dealing with alignments, including a standard way to create and deal with substitution matrices.
- Code making it easy to split up parallelizable tasks into separate processes.
- 4. GUI-based programs to do basic sequence manipulations, translations, BLASTing, etc.
- 5. Extensive documentation and help with using the modules, including this file, on-line wiki documentation,
- 6. the web site, and the mailing list.
- 7. Integration with BioSQL, a sequence database schema also supported by the BioPerl and BioJava projects.

- 1. Code to perform classification of data using k Nearest Neighbors, Naive Bayes or Support Vector Machines.
- 2. Code for dealing with alignments, including a standard way to create and deal with substitution matrices.
- Code making it easy to split up parallelizable tasks into separate processes.
- 4. GUI-based programs to do basic sequence manipulations, translations, BLASTing, etc.
- 5. Extensive documentation and help with using the modules, including this file, on-line wiki documentation,
- 6. the web site, and the mailing list.
- 7. Integration with BioSQL, a sequence database schema also supported by the BioPerl and BioJava projects.

- 1. Code to perform classification of data using k Nearest Neighbors, Naive Bayes or Support Vector Machines.
- 2. Code for dealing with alignments, including a standard way to create and deal with substitution matrices.
- Code making it easy to split up parallelizable tasks into separate processes.
- 4. GUI-based programs to do basic sequence manipulations, translations, BLASTing, etc.
- 5. Extensive documentation and help with using the modules, including this file, on-line wiki documentation,
- 6. the web site, and the mailing list.
- 7. Integration with BioSQL, a sequence database schema also supported by the BioPerl and BioJava projects.

- 1. Code to perform classification of data using k Nearest Neighbors, Naive Bayes or Support Vector Machines.
- 2. Code for dealing with alignments, including a standard way to create and deal with substitution matrices.
- 3. Code making it easy to split up parallelizable tasks into separate processes.
- 4. GUI-based programs to do basic sequence manipulations, translations, BLASTing, etc.
- 5. Extensive documentation and help with using the modules, including this file, on-line wiki documentation,
- 6. the web site, and the mailing list.
- 7. Integration with BioSQL, a sequence database schema also supported by the BioPerl and BioJava projects.

- 1. Code to perform classification of data using k Nearest Neighbors, Naive Bayes or Support Vector Machines.
- 2. Code for dealing with alignments, including a standard way to create and deal with substitution matrices.
- Code making it easy to split up parallelizable tasks into separate processes.
- 4. GUI-based programs to do basic sequence manipulations, translations, BLASTing, etc.
- 5. Extensive documentation and help with using the modules, including this file, on-line wiki documentation,
- 6. the web site, and the mailing list.
- 7. Integration with BioSQL, a sequence database schema also supported by the BioPerl and BioJava projects.

Learn to parse PDB files, locally and on the web

Protein Data Bank Contents Guide

Introduction

- Title Section
- Primary Structure Section
- Heterogen Section
- Secondary Structure Section
- Connectivity Annotation Section
- Miscellaneous Features Section
- Crystallographic and Coordinate Transformation Section
- Coordinate Section
- Connectivity Section
- Bookkeeping Section

Learn to parse PDB files, locally and on the web

- Introduction
- Title Section
- Primary Structure Section
- Heterogen Section
- Secondary Structure Section
- Connectivity Annotation Section
- Miscellaneous Features Section
- Crystallographic and Coordinate Transformation Section
- Coordinate Section
- Connectivity Section
- Bookkeeping Section

Learn to parse PDB files, locally and on the web

- Introduction
- Title Section
- Primary Structure Section
- Heterogen Section
- Secondary Structure Section
- Connectivity Annotation Section
- Miscellaneous Features Section
- Crystallographic and Coordinate Transformation Section
- Coordinate Section
- Connectivity Section
- Bookkeeping Section

Learn to parse PDB files, locally and on the web

- Introduction
- Title Section
- Primary Structure Section
- Heterogen Section
- Secondary Structure Section
- Connectivity Annotation Section
- Miscellaneous Features Section
- Crystallographic and Coordinate Transformation Section
- Coordinate Section
- Connectivity Section
- Bookkeeping Section

Learn to parse PDB files, locally and on the web

- Introduction
- Title Section
- Primary Structure Section
- Heterogen Section
- Secondary Structure Section
- Connectivity Annotation Section
- Miscellaneous Features Section
- Crystallographic and Coordinate Transformation Section
- Coordinate Section
- Connectivity Section
- Bookkeeping Section

Learn to parse PDB files, locally and on the web

- Introduction
- Title Section
- Primary Structure Section
- Heterogen Section
- Secondary Structure Section
- Connectivity Annotation Section
- Miscellaneous Features Section
- Crystallographic and Coordinate Transformation Section
- Coordinate Section
- Connectivity Section
- Bookkeeping Section

Learn to parse PDB files, locally and on the web

- Introduction
- Title Section
- Primary Structure Section
- Heterogen Section
- Secondary Structure Section
- Connectivity Annotation Section
- Miscellaneous Features Section
- Crystallographic and Coordinate Transformation Section
- Coordinate Section
- Connectivity Section
- Bookkeeping Section

Learn to parse PDB files, locally and on the web

Protein Data Bank Contents Guide

- Introduction
- Title Section
- Primary Structure Section
- Heterogen Section
- Secondary Structure Section
- Connectivity Annotation Section
- Miscellaneous Features Section
- Crystallographic and Coordinate Transformation Section
- Coordinate Section
- Connectivity Section
- Bookkeeping Section

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Learn to parse PDB files, locally and on the web

Protein Data Bank Contents Guide

- Introduction
- Title Section
- Primary Structure Section
- Heterogen Section
- Secondary Structure Section
- Connectivity Annotation Section
- Miscellaneous Features Section
- Crystallographic and Coordinate Transformation Section
- Coordinate Section
- Connectivity Section
- Bookkeeping Section

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Learn to parse PDB files, locally and on the web

- Introduction
- Title Section
- Primary Structure Section
- Heterogen Section
- Secondary Structure Section
- Connectivity Annotation Section
- Miscellaneous Features Section
- Crystallographic and Coordinate Transformation Section
- Coordinate Section
- Connectivity Section
- Bookkeeping Section

Learn to parse PDB files, locally and on the web

- Introduction
- Title Section
- Primary Structure Section
- Heterogen Section
- Secondary Structure Section
- Connectivity Annotation Section
- Miscellaneous Features Section
- Crystallographic and Coordinate Transformation Section
- Coordinate Section
- Connectivity Section
- Bookkeeping Section

Contents

BioPython Installing and exploration Tutorial

First Course Project

First Start First Start with Biopython

First project

Curation of records of PDB files of aminoacids

Start from:

Amino Acids web page

and

Library of 3-D Molecular Structures, in particular from Amino Acids Section

(日)

Contents

BioPython Installing and exploration Tutorial

First Course Project First Start

First Start with Biopython

Importing the package

help() on the package

```
>>> help(Bio)
1
   Help on package Bio:
2
3
   NAME
4
       Bio - Collection of modules for dealing with
5
           biological data in Python.
6
7
   FILE
       /Library/Frameworks/Python.framework/Versions/2.6/
8
           lib/python2.6/site-packages/biopython-1.51-py2.6-
           macosx-10.3-fat.egg/Bio/__init__.py
9
   DESCRIPTION
10
       The Biopython Project is an international
11
           association of developers
       of freely available Python tools for computational
12
           molecular biology.
13
       http://biopython.org
14
```

import the PDB package

```
1 >>> from Bio.PDB import *
2 >>> dir()
3
  ['AbstractPropertyMap', 'Atom', 'Bio', 'CaPPBuilder', '
      Chain', 'DSSP', 'Dice', 'Entity', 'ExposureCN', '
      FragmentMapper', 'HSExposure', 'HSExposureCA', '
      HSExposureCB', 'Model', 'NeighborSearch', '
      PDBExceptions', 'PDBIO', 'PDBList', 'PDBParser', '
      PPBuilder', 'Polypeptide', 'Residue', 'ResidueDepth',
       'Select', 'Selection', 'Structure', '
      StructureAlignment', 'StructureBuilder', '
      Superimposer', 'Vector', '__builtins_', '__doc__', '
      ___name__', '__package__', 'calc_angle', '
      calc_dihedral', 'extract', 'get_surface', 'is_aa', '
      m2rotaxis', 'make_dssp_dict', 'mmCIF', '
      parse_pdb_header', 'refmat', 'rotaxis', 'rotaxis2m',
      'rotmat', 'standard aa names', 'to one letter code',
      'vector_to_axis']
```


help() on the package

```
>>> help(Bio.PDB)
1
   Help on package Bio.PDB in Bio:
2
3
   NAME
4
       Bio.PDB
5
6
   FILE
7
       /Library/Frameworks/Python.framework/Versions/2.6/
8
           lib/python2.6/site-packages/biopython-1.51-py2.6-
           macosx-10.3-fat.egg/Bio/PDB/__init__.py
9
   DESCRIPTION
10
       Classes that deal with macromolecular crystal
11
           structures. (eq.
       PDB and mmCIF parsers, a Structure class, a module
12
           to keep
       a local copy of the PDB up-to-date, selective IO of
13
           PDB files,
       etc.). Author: Thomas Hamelryck. Additional code by
14
           TZ 1 1 1 1 1 1 1 1 1 1 1
```

help() on the module Atom

```
>>> Atom
1
   <module 'Bio.PDB.Atom' from '/Library/Frameworks/Python.
2
       framework/Versions/2.6/lib/python2.6/site-packages/
       biopython-1.51-py2.6-macosx-10.3-fat.egg/Bio/PDB/Atom
       .pyc'>
  >>> from Bio.PDB.Atom import *
3
   >>> help(Bio.PDB.Atom)
4
   Help on module Bio.PDB.Atom in Bio.PDB:
5
6
7
   NAME
       Bio.PDB.Atom - Atom class, used in Structure objects
8
9
   FILE
10
       /Library/Frameworks/Python.framework/Versions/2.6/
11
           lib/python2.6/site-packages/biopython-1.51-py2.6-
           macosx-10.3-fat.egg/Bio/PDB/Atom.py
12
   CLASSES
13
```

Look the atom.py file ...

```
# Copyright (C) 2002, Thomas Hamelryck (thamelry@binf.ku
1
  # This code is part of the Biopython distribution and
2
      governed by its
  # license. Please see the LICENSE file that should have
3
  # as part of this package.
4
5
   # Python stuff
6
7
   import numpy
8
  # Mv stuff
9
   from Entity import DisorderedEntityWrapper
10
   from Vector import Vector
11
12
   ___doc___="Atom_class,_used_in_Structure_objects."
13
14
   class Atom:
15
       def __init__(self, name, coord, bfactor, occupancy,
16
```