
Lezione 14
Bioinformatica

Mauro Ceccanti‡ e Alberto Paoluzzi†

†Dip. Informatica e Automazione – Università “Roma Tre”
‡Dip. Medicina Clinica – Università “La Sapienza”

Lecture 14: Longest Common Subsequence
Longest common subsequence (LCS) problem
BLAST (Basic Local Alignment Search Tool)
FASTA (FAST Alignement)

Sommario

Lecture 14: Longest Common Subsequence
Longest common subsequence (LCS) problem
BLAST (Basic Local Alignment Search Tool)
FASTA (FAST Alignement)

Dynamic Programming Approach
LCS : Longest Common Subsequence

Let X ,Y ∈ Seq be the sequences to compare, and Xi , Yj be the
subsequences of their first i , j characters, respectively.
The integer function

LCS : Seq × Seq → Nat

gives the integer length of longest common subsequence of any two
(sub)sequences, as follows:

LCS(Xi ,Yj) =

0 if i = 0 or j = 0

LCS(Xi−1,Yj−1) + 1 if xi = yj

max(LCS(Xi ,Yj−1), LCS(Xi−1,Yj)) if xi �= yj

Longest common subsequence
LCS function defined

Xi−1

Xi−1

Yj−1

Yj−1

Yj

Xi

xi

yj

xi = yj

xi �= yj

LCS(Xi, Yj) = LCS(Xi−1, Yj−1) + 1

LCS(Xi, Yj) = max(LCS(Xi, Yj−1), LCS(Xi−1, Yj))

Recursive implementation
just write down in Python the recursive equations above

1 def c l s (X,Y) :
2 i , j = len (X) , len (Y)
3 if i == 0 or j == 0 : return 0
4 elif X[i −1] == Y[j −1]: return c l s (X [: i −1] ,Y [: j −1])+1
5 else : return max(c l s (X [: i] ,Y [: j −1]) , c l s (X [: i −1] ,Y [: j]))

1 print c l s ("BASKETBALL" , "BASEBALL") ≡ 8

OK !

1 print c l s ("ABRACADABRA" , "SUPERCALIFRAGILISTICESPIRALIDOSO")

VERY long execution time ... WHY ?

... because of recursion nonlinearity
the execution time is exponential with the sequence lengths

a recursion is said linear if the definition right-hand side contains at
most one recursive function call

� nonlinear recursion:
�

n

k

�
=

�
n−1

k

�
+

�
n−1
k−1

�
complexity: O(2n)

1 def b inomia l (n , k) :
2 if k == 0 or n == k : return 1
3 else : return b inomia l (n−1,k) + b inomia l (n−1,k−1)

� linear recursion:
�

n

k

�
=

�
n−1
k−1

�
× n

k
complexity: O(n)

1 def b inomia l (n , k) :
2 if k == 0 or n == k : return 1
3 else : return b inomia l (n−1,k−1) ∗ n / k

Memoization technique

In computing, “memoization” is an optimization technique used
primarily to speed up computer programs by having function
calls avoid repeating the calculation of results for
previously-processed input

� This technique of saving values that have already been
calculated is frequently used

� Memoization is a means of lowering a function’s time cost
in exchange for space cost; that is, memoized functions
become optimized for speed in exchange for a higher use
of computer memory space.

� An efficient LCS procedure requires: saving the solutions
to one level of subproblem in a table so that the solutions
are available to the next level of subproblems.

Length of the Longest Common Subsequence
computing the function LCS : Seq × Seq → Nat with memoization

1 def LCS(X, Y) :
2 m, n = len (X) , len (Y)
3 # An (m+1) t imes (n+1) mat r i x

4 C = [[0] ∗ (n+1) for i in range (m+1)]
5 for i in range (1 , m+1) :
6 for j in range (1 , n+1) :
7 if X[i −1] == Y[j −1]:
8 C[i] [j] = C[i −1][j −1] + 1
9 else :

10 C[i] [j] = max(C[i] [j −1] , C[i −1][j])
11 return C

Usage example — LCSfunction

1 >>> X = "AATCC"
2 >>> Y = "ACACG"
3 >>> m = len (X)
4 >>> n = len (Y)
5 >>> C = LCS(X, Y)

1 >>> print C
2 [[0 , 0 , 0 , 0 , 0 , 0] ,
3 [0 , 1 , 1 , 1 , 1 , 1] ,
4 [0 , 1 , 1 , 2 , 2 , 2] ,
5 [0 , 1 , 1 , 2 , 2 , 2] ,
6 [0 , 1 , 2 , 2 , 3 , 3] ,
7 [0 , 1 , 2 , 2 , 3 , 3]]

Usage example — LCSfunction

1 >>> X = "ATGGCCTGGAC"
2 >>> Y = "ATCCGGACC"
3 >>> m = len (X)
4 >>> n = len (Y)
5 >>> C = LCS(X, Y)

1 >>> print C
2 [[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0] ,
3 [0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1] ,
4 [0 , 1 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2] ,
5 [0 , 1 , 2 , 2 , 2 , 3 , 3 , 3 , 3 , 3] ,
6 [0 , 1 , 2 , 2 , 2 , 3 , 4 , 4 , 4 , 4] ,
7 [0 , 1 , 2 , 3 , 3 , 3 , 4 , 4 , 5 , 5] ,
8 [0 , 1 , 2 , 3 , 4 , 4 , 4 , 4 , 5 , 6] ,
9 [0 , 1 , 2 , 3 , 4 , 4 , 4 , 4 , 5 , 6] ,

10 [0 , 1 , 2 , 3 , 4 , 5 , 5 , 5 , 5 , 6] ,
11 [0 , 1 , 2 , 3 , 4 , 5 , 6 , 6 , 6 , 6] ,
12 [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 7 , 7] ,
13 [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 8]]

Reading out an LCS
Backtracking on the table from the lower-right corner

1 def backTrack (C, X, Y, i , j) :
2 if i == 0 or j == 0 :
3 return " "
4 elif X[i −1] == Y[j −1]:
5 return backTrack (C, X, Y, i −1, j −1) + X[i −1]
6 else :
7 if C[i] [j −1] > C[i −1][j] :
8 return backTrack (C, X, Y, i , j −1)
9 else :

10 return backTrack (C, X, Y, i −1, j)

Usage example — backTrack function

1 >>> X = "AATCC"
2 >>> Y = "ACACG"
3 >>> m = len (X)
4 >>> n = len (Y)
5 >>> C = LCS(X, Y)

1 >>> print "Some LCS: ’%s ’ " % backTrack (C, X, Y, m, n)
2 Some LCS: ’AAC ’

Usage example — backTrack function

1 >>> X = "ATGGCCTGGAC"
2 >>> Y = "ATCCGGACC"
3 >>> m = len (X)
4 >>> n = len (Y)
5 >>> C = LCS(X, Y)

1 >>> print "Some LCS: ’%s ’ " % backTrack (C, X, Y, m, n)
2 Some LCS: ’ATCCGGAC ’

Reading out all LCSs

1 def backTrackAl l (C, X, Y, i , j) :
2 if i == 0 or j == 0 :
3 return set ([" "])
4 elif X[i −1] == Y[j −1]:
5 return set ([Z + X[i −1]
6 for Z in backTrackAl l (C, X, Y, i −1, j −1)

])
7 else :
8 R = set ()
9 if C[i] [j −1] >= C[i −1][j] :

10 R. update (backTrackAl l (C, X, Y, i , j −1))
11 if C[i −1][j] >= C[i] [j −1]:
12 R. update (backTrackAl l (C, X, Y, i −1, j))
13 return R

Usage example — backTrackAll function

1 >>> X = "AATCC"
2 >>> Y = "ACACG"
3 >>> m = len (X)
4 >>> n = len (Y)
5 >>> C = LCS(X, Y)

1 >>> print " A l l LCSs : %s " % backTrackAl l (C, X, Y, m, n)
2 A l l LCSs : set ([’ACC ’ , ’AAC ’])

Usage example — backTrackAll function

1 >>> X = "ATGGCCTGGAC"
2 >>> Y = "ATCCGGACC"
3 >>> m = len (X)
4 >>> n = len (Y)
5 >>> C = LCS(X, Y)

1 >>> print " A l l LCSs : %s " % backTrackAl l (C, X, Y, m, n)
2 A l l LCSs : set ([’ATCCGGAC ’])

Sommario

Lecture 14: Longest Common Subsequence
Longest common subsequence (LCS) problem
BLAST (Basic Local Alignment Search Tool)
FASTA (FAST Alignement)

BLAST program
Comparison of nucleotide or protein sequences

� The Basic Local Alignment Search Tool (BLAST) finds
regions of local similarity between sequences

� The program compares nucleotide or protein sequences to
sequence databases and calculates the statistical
significance of matches

� BLAST can be used to infer functional and evolutionary
relationships between sequences as well as help identify
members of gene families

� BLAST makes it easy to examine a large group of potential
gene candidates

BLAST
How to do Batch BLAST jobs

� BLAST makes it easy to examine a large group of potential gene
candidates

� Most likely these are isolated as amplified products from a
library of some sort

� There is no need to manually cut and paste a 100 sequences in
to the BLAST web pages

� Using the BLAST web pages it is possible to input "batches" of
sequences into one form and retrieve the results

� There are two methods to do batch BLAST jobs

� The first is through the web interface and the second is using the
standalone BLAST binaries and downloaded NCBI databases

TUTORIAL

BLAST
Example

� BLAST paper

� QuickStart: Example-Driven Web-Based BLAST Tutorial

Sommario

Lecture 14: Longest Common Subsequence
Longest common subsequence (LCS) problem
BLAST (Basic Local Alignment Search Tool)
FASTA (FAST Alignement)

FASTA
Example

FASTA stands for FAST-ALL, reflecting the fact that it can be used for
a fast protein comparison or a fast nucleotide comparison

� This program achieves a high level of sensitivity for similarity
searching at high speed

� This is achieved by performing optimised searches for local
alignments using a substitution matrix

� The high speed of this program is achieved by using the
observed pattern of word hits to identify potential matches
before attempting the more time consuming optimised search

� The trade-off between speed and sensitivity is controlled by the
ktup parameter, which specifies the size of the word

� Increasing the ktup decreases the number of background hits

� Not every word hit is investigated but instead initially looks for
segment’s containing several nearby hits

FASTA Web services
Both REST and SOAP web service interfaces are exposed

REST Sample clients are provided for a number of
programming languages.

SOAP RPC/encoded SOAP service

