
Lezione 13
Bioinformatica

Mauro Ceccanti‡ e Alberto Paoluzzi†

†Dip. Informatica e Automazione – Università “Roma Tre”
‡Dip. Medicina Clinica – Università “La Sapienza”

Lecture 13: Alignment of sequences
Sequence alignment
Dot Matrix of two sequences
Introduction to dynamic programming
Longest common subsequence (LCS) problem

Sommario

Lecture 13: Alignment of sequences
Sequence alignment
Dot Matrix of two sequences
Introduction to dynamic programming
Longest common subsequence (LCS) problem

Background
Biomolecules are strings from a restricted alphabet

� Let Σ be an alphabet, a non-empty finite set.

� Elements of Σ are called symbols or characters.

� A string (or word) over Σ is any finite sequence of
characters from Σ.

� For example, if Σ = {0, 1}, then 0101 is a string over Σ

Background
Biomolecules are strings from a restricted alphabet

DNA alphabet Length=4
� 4 nucleotides

Protein alphabet Length=20
� 20 amino acids

Shape determines function
� Protein is a string

(sequence of amino acids)
� Proteins do not stay linear

in space
� Folding happens
� Folding determines overall

3-D shape
� Shape determines function

1 RIBOSOME =
2 "MARIAGVEIPRNKRVDVALTYIYG

IGKARAKEALEKTGINPATRVK
DLTEAEVVRLREYVENTWKLE
GELRAEVAANIKRLMDIGCYR
GLRHRRGLPVRGQRTRTNAR
TRKGPRKTVAGKKKAPRK . . . "

After solving the structures of the individual small and large subunits, the next
step in ribosome structure research was to determine the structure of the
whole ribosome. This work is the culmination of decades of research, which
started with blurry pictures of the ribosome from electron microscopy,
continued with more detailed cryoelectron micrographic reconstructions, and
now includes many atomic structures. These structures are so large that they
don’t fit into a single PDB file–for instance, the structure shown here was split
into PDB entries 2wdk and 2wdl.

Shape determines function

� Protein is a string
(sequence of amino acids)

� Proteins do not stay linear
in space

� Folding happens
� Folding determines overall

3-D shape
� Shape determines function

In 2000, structural biologists Venkatraman Ramakrishnan, Thomas A. Steitz
and Ada E. Yonath made the first structures of ribosomal subunits available in
the PDB, and in 2009, they each received a Nobel Prize for this work.

Sequence ⇒ Structure ⇒ Function
bbbbbb

� the amino acids in a protein sequence interact locally and
establish hydrogen (and even covalent) bounds

� the interaction folds the protein in space and gives it a 3D
structure

� the 3D structure determines the protein function

� each protein within the body has a specific function

Sequence alone does not reveal structure
Much less function ... So?

Nature does not solve the same problem twice (usually)

� Short sequence with a specific function (or shape) is called
a domain

� The same domain appears in multiple proteins

� If we find the same domain in multiple proteins that
provides a clue to function and/or structure

Sequence is easier to get than structure or function
How biologists study proteins

� To study the 3D structure of proteins is hard and expensive
(NMR, x-ray crystallography)

� Analogously, the discovery of function through laboratory
(in-vitro) and animal (in-vivo) experiments is difficult

� Therefore, few (tens of) thousands of proteins are
understood in detail

� Many (i.e. millions) are known only by sequence

SEQUENCE ALIGNMENT SCENARIO
sequence of a new protein with unknown function

� Biologist discovers the sequence of a new protein with
unknown function

� If sequence can be associated with a known protein
sequence we have a clue about structure and/or function

� Vast quantities of sequence, structure, function info is
deposited into public databases

� The new sequence should be compared to the database to
find the more similar domains

Main Alignment Methods

� Dot Matrix
� Dynamic Programming
� BLAST, FASTA

Sommario

Lecture 13: Alignment of sequences
Sequence alignment
Dot Matrix of two sequences
Introduction to dynamic programming
Longest common subsequence (LCS) problem

Similarity of Sequences as homology of structures
bbbbbbb

� Locating regions of similarity between two DNA or protein
sequences

� Provide a lot of information about the function and
structure of the query sequence

� Similarity of sequences indicates homology

� Two structures are called homologous if they represent
corresponding parts of organisms which are built according
to the same body plan

� The existence of corresponding structures in different
species is explained by derivation from a common ancestor

Similarity relation
matrix picture of sequence similarity

A picture of the similarity of two sequences X ,Y can be given
by the graph of the similarity relation S ⊆ X × Y such that:

xi S yj ≡ (xi , yj) ∈ S ⇐⇒ xi = yj

By the way, the interesting part of the similarity relation S is
given by its reflexive subsets

Si,j,k = {(xi , yj) | xi+� = yj+�, � = 0, . . . , k}

Similarity relation
matrix picture of sequence similarity

B A S K E T B A L L

B + +
A + +
S +
E +
B + +
A + +
L + +
L + +

Similarity relation
matrix picture of sequence similarity

B A S K E T B A L L

B + +
A + +
S +
E +
B + +
A + +
L + +
L + +

Similarity relation
drop out the reflexive subset that are non maximal1

B A S K E T B A L L

B + +
A + +
S +
E +
B + +
A + +
L + +
L + +

1if we (i.e. that are contained within another reflexive subset)

Similarity relation
finally project the maximal reflexive subrelations in one (or both) starting sequence

getting the Longest Common Subsequence

B A S E B A L L

Sommario

Lecture 13: Alignment of sequences
Sequence alignment
Dot Matrix of two sequences
Introduction to dynamic programming
Longest common subsequence (LCS) problem

Introduction to dynamic programming
Bellman optimality principle

Principle of Optimality: An optimal policy has the

property that whatever the initial state and initial

decision are, the remaining decisions must constitute

an optimal policy with regard to the state resulting

from the first decision.

Richard Bellman, 1957. Dynamic Programming. Princeton
University Press, Princeton, NJ.

Optimal substructure
necessary condition

necessary condition for optimality associated with the
mathematical optimization method known as dynamic
programming

It breaks a dynamic optimization problem into simpler
subproblems

In computer science, a problem that can be broken apart like
this is said to have optimal substructure

Optimal substructure
a global optimal policy

The (optimal) solution of a problem with optimal substructure is
made by composition of (optimal) solutions to subproblems,
each having in turn optimal substructure

A

B

Optimal substructure
a global optimal policy

The (optimal) solution of a problem with optimal substructure is
made by composition of (optimal) solutions to subproblems,
each having in turn optimal substructure

A

B

Optimal substructure
a global optimal policy

The (optimal) solution of a problem with optimal substructure is
made by composition of (optimal) solutions to subproblems,
each having in turn optimal substructure

A

B

Optimal substructure
a local optimal policy

The (optimal) solution of a problem with optimal substructure is
made by composition of (optimal) solutions to subproblems,
each having in turn optimal substructure

A

B

Sommario

Lecture 13: Alignment of sequences
Sequence alignment
Dot Matrix of two sequences
Introduction to dynamic programming
Longest common subsequence (LCS) problem

Longest common subsequence
LCS function defined

Let X ,Y ∈ Seq be the sequences to compare, and Xi , Yj be the
subsequences of their first i , j characters, respectively.
The integer function

LCS : Seq × Seq → Nat

gives the integer length of longest common subsequence of any two
(sub)sequences, as follows:

LCS(Xi ,Yj) =






0 if i = 0 or j = 0

LCS(Xi−1,Yj−1) + 1 if xi = yj

max(LCS(Xi ,Yj−1), LCS(Xi−1,Yj)) if xi �= yj

Longest common subsequence
LCS function defined

Xi−1

Xi−1

Yj−1

Yj−1

Yj

X i

xi

yj

xi = yj

xi �= yj

LCS(Xi, Yj) = LCS(Xi−1, Yj−1) + 1

LCS(Xi, Yj) = max(LCS(Xi, Yj−1), LCS(Xi−1, Yj))

Recursive implementation
just write down in Python the recursive equations above

1 def c l s (X,Y) :
2 i , j = len (X) , len (Y)
3 if i == 0 or j == 0 : return 0
4 elif X[i −1] == Y[j −1]: return c l s (X [: i −1] ,Y [: j −1])+1
5 else : return max(c l s (X [: i] ,Y [: j −1]) , c l s (X [: i −1] ,Y [: j]))

1 print c l s ("BASKETBALL" , "BASEBALL") ≡ 8

OK !

1 print c l s ("ABRACADABRA" , "SUPERCALIFRAGILISTICESPIRALIDOSO")

VERY long execution time ... WHY ?

... because of recursion nonlinearity
the execution time is exponential with the sequence lengths

a recursion is said linear if the definition right-hand side contains at
most one recursive function call

� nonlinear recursion:
�

n

k

�
=

�
n−1

k

�
+

�
n−1
k−1

�
complexity: O(2n)

1 def b inomia l (n , k) :
2 if k == 0 or n == k : return 1
3 else : return b inomia l (n−1,k) + b inomia l (n−1,k−1)

� linear recursion:
�

n

k

�
=

�
n−1
k−1

�
× n

k
complexity: O(n)

1 def b inomia l (n , k) :
2 if k == 0 or n == k : return 1
3 else : return b inomia l (n−1,k−1) ∗ n / k

Memoization technique

In computing, “memoization” is an optimization technique used
primarily to speed up computer programs by having function
calls avoid repeating the calculation of results for
previously-processed input

� This technique of saving values that have already been
calculated is frequently used

� Memoization is a means of lowering a function’s time cost
in exchange for space cost; that is, memoized functions
become optimized for speed in exchange for a higher use
of computer memory space.

� An efficient LCS procedure requires: saving the solutions
to one level of subproblem in a table so that the solutions
are available to the next level of subproblems.

Length of the Longest Common Subsequence
computing the function LCS : Seq × Seq → Nat with memoization

1 def LCS(X, Y) :
2 m, n = len (X) , len (Y)
3 # An (m+1) t imes (n+1) mat r i x

4 C = [[0] ∗ (n+1) for i in range (m+1)]
5 for i in range (1 , m+1) :
6 for j in range (1 , n+1) :
7 if X[i −1] == Y[j −1]:
8 C[i] [j] = C[i −1][j −1] + 1
9 else :

10 C[i] [j] = max(C[i] [j −1] , C[i −1][j])
11 return C

Length of the Longest Common Subsequence
value of LCS(Xi , Yj), for every pair (i , j)

EXAMPLE

1 LCS("ANGDF" , "BADFXXU") =

=

�
− B A D F X X U

�




−
A

N

G

D

F









0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 2 2 2 2 2
0 0 1 2 3 3 3 3





