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Tabu search
working process

Input: s(o) - the initial solution;
Output: s∗ - the best found solution;
Initialize the Tabu List T ;
set: Aspiration criteria;
set: s = s(o) and s∗ = s;
Repeat

Generate solutions in the neighborhood of s;
Select the best possible solution s ′ /∈ T or satisfying the aspiration criteria;
set s = s ′;
Insert the solution s (or its attribute) into the tabu list T ;
if f (s) < f (s∗)

set s∗ = s;
end if;
Update the tabu list T ;

Until (stopping condition is satisfied);

Table: Pseudocode of Tabu
Search

Figure: Tabu search
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Tabu search
components

Aspiration criteria:

if the tabu solution is better than the best found solution.

if the tabu solution possesses a particular attribute.
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Tabu search
components

Tabu list:

A short term memory

Stores visited solutions or moves/solutions attributes

Prevents cycling

The length of the list, called tabu tenure, controls diversification.
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Types of Tabu list:

Static [tabu tenure: 3-10].

Dynamic: The size changes during the search in a given interval
(Robust Tabu Search Algorithm)

Adaptive: The size is increased or decreased according the search
information (e.g, Reactive Tabu search increases the tabu list if
cycling occurs.)
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An illustration on the travelling salesman problem (tabu tenure = 3):

2 3 4 5 6 7
1 0 0 0 0 0 0

2 0 0 0 0 0
3 0 0 0 0

4 0 0 0
5 0 0

6 0

1 2 3 4 5 6 7
2 5 7 3 4 6 1

Tabu list: 

Starting solution: Value = 234 

Figure: Iteration 0
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1 2 3 4 5 6 7
2 5 7 3 4 6 1

Current solution: Value = 234 

1 2 3 4 5 6 7
2 4 7 3 5 6 1

After move: Value = 200 

2 3 4 5 6 7
1 0 0 0 0 0 0

2 0 0 0 0 0
3 0 0 0 0

4 3 0 0
5 0 0

6 0

Tabu list: 

Exchange Value
5.4 -34
7.4 -4
3.6 -2
2.3 0
4.1 4

Candidate list: 

Figure: Iteration 1
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2 3 4 5 6 7
1 0 0 0 0 0 0

2 0 0 0 0 0
3 0 0 0 0

4 3 0 0
5 0 0

6 0

Current solution: Value = 200 
1 2 3 4 5 6 7
2 4 7 3 5 6 1

Tabu list: 

Candidate list: 
Exchange Value

3.1 -2
2.3 -1
3.6 1
7.1 2
6.1 4

Choose move (3,1) 

Figure: Iteration 2
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Exchange Value
3.1 -2
2.3 -1
3.6 1
7.1 2
6.1 4

Current solution: Value = 200 
1 2 3 4 5 6 7
2 4 7 3 5 6 1

Tabu list: 

Candidate list: Choose move (3,1) 

2 3 4 5 6 7
1 0 3 0 0 0 0

2 0 0 0 0 0
3 0 0 0 0

4 2 0 0
5 0 0

6 0

Update tabu list 

Figure: Iteration 2
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Current solution: Value = 198 

Tabu list: 

Candidate list: 
Choose move (2,4) 

2 3 4 5 6 7
1 0 3 0 0 0 0

2 0 0 0 0 0
3 0 0 0 0

4 2 0 0
5 0 0

6 0

1 2 3 4 5 6 7
2 4 7 1 5 6 3

Exchange Value
1.3 2
2.4 4
7.6 6
4.5 7
5.3 9

Tabu! 

NB: Worsening move! 

Figure: Iteration 3
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Tabu search
tabu list

Current solution: Value = 198 

Tabu list: 

Candidate list: 
Choose move (2,4) 

1 2 3 4 5 6 7
2 4 7 1 5 6 3

Exchange Value
1.3 2
2.4 4
7.6 6
4.5 7
5.3 9

Tabu! 

NB: Worsening move! 

2 3 4 5 6 7
1 0 2 0 0 0 0

2 0 3 0 0 0
3 0 0 0 0

4 1 0 0
5 0 0

6 0

Update 
tabu list 

Figure: Iteration 3
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Current solution: Value = 202 

Tabu list: 

Candidate list: 

1 2 3 4 5 6 7
4 2 7 1 5 6 3

Exchange Value
4.5 -6
5.3 -2
7.1 0
1.3 3
2.6 6

Tabu! 
Choose move (4,5) 
Aspiration! 

2 3 4 5 6 7
1 0 2 0 0 0 0

2 0 3 0 0 0
3 0 0 0 0

4 1 0 0
5 0 0

6 0

Figure: Iteration 4
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Tabu search
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Observations:

In the example 3 out of 21 moves are prohibited.

More restrictive tabu effect can be achieved by

Using stronger tabu-restrictions
Using OR instead of AND for the 2 cities in a move
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Tabu search
strategies

Intensification:

Use a medium term recency memory, which will memorize for each
specified component the number of successive iterations the
component is present in the visited solutions.

Start the intensification process in a given period or after a certain
number of iterations without improvement.

Start the search with the best solution obtained, introducing the
most visited component(s).
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Diversification:

Restart

Continuous

Strategic oscillation
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Tabu search
diversification

Restart diversification:

Use a long term frequency memory, which will memorize for each
specified component the number of times the component is present
in all visited solutions.

Start the diversification process periodically or after a certain
number of iterations without improvement.

Start the search with the best solution obtained, introducing the
least visited component(s).

Santosh Kumar Mandal, Ph.D research fellow Meta-Heuristics



Tabu search
Genetic algorithm

References

Tabu search
strategies

Continuous diversification:
� This is achieved by penalizing worsening moves.

f (x) := f (x) + δpenalty (1.1)

For VRP (Taillard (1993)):

δpenalty = γ ×
√

mn × fru (1.2)

fru: frequency of moving vertex u in the past.
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Strategic oscillation:

Proceed beyond the feasible
boundary for a set depth.

Turn around to enforce
feasibility.

For CVRP:

f (x) = f (x) + α× |Q(x)| (1.3)

Q(x): total violation in the loading
capacity.

Figure: strategic oscillation
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Genetic algorithm
working process

Quick overview:

Developed by Holland (1975).

A population based
meta-heuristic.

Based on Darwinian’s principle
of competition.

A very successful algorithm, but
not too fast.

Figure: GA illustration
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Genetic algorithm

Components:

Solution representation

Population initialization

Fitness function

Parent selection mechanism

Crossover and mutation operators

Survivor selection

Parameter settings
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components

Solution representation:
� In the Genetic algorithm, the encoded solution is referred as
chromosome while the decision variables within a solution (chromosome)
are genes. The possible values of variables (genes) are the alleles and the
position of an element (gene) within a chromosome is named locus.

0 1 1 0 0 0 1 0 1 0

Table: Binary chromosome

10 8 7 1 2 5 3 9 4 6

Table: Permutation chromosome

0.23 0.10 1.0 0.89 0.95 0.64 1.0 0.45 0.76 0.34

Table: Real-valued chromosome
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Population initialization:

Uniformly at random

Use any heuristic

Facts:

Lower population size: poor solution quality

Higher population size: good solution quality, but more
computational time

Find a satisfactory balance point.
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Parent selection methods:

Two widely used:

Tournament selection.
Roulette-wheel selection.

Others:

Rank-based selection.
Sigma scaling
Boltzmann selection
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selection methods

Roulette wheel procedure:

step 1: Consider a roulette wheel and assign
each solution i some portion of the wheel.
The area of the wheel allocated to an
individual solution i is equal to:

fitness(i)∑
i fitness(i)

× 100 % (2.1)

step 2: Rotate the wheel and select the
solution corresponding to the selection
point.
step 3: Inset a copy of the selected solution
in the mating pool, and repeat the process
until it is full (population size times).

Figure: Roulette wheel
illustration
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selection methods

Tournament selection:
step 1: Draw t solutions from the population and select the fittest one
with some probability.

step 2: Inset a copy of the selected solution in the mating pool, and put
solutions back into the population.

step 3: Repeat the process until the mating pool is full.
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Genetic algorithm
selection methods

Tournament selection:

Deterministic tournament: Always select the best one.

Binary tournament: Only two players are involved.

Facts:

Better in maintaining selection pressure than the Roulette wheel
procedure.

Tournament size should be set appropriately.
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Crossover/Recombination:
� It is the process of generating new solutions, called off-springs, by
mixing genes of two or more parent solutions from the mating pool. The
operation is executed with some probability.

� The crossover probability should be set high.
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crossover

1 2 3 4 5 6 7 8 9 Parent 1 

3 4 5 6 Proto-Child 1 

9 1 3 4 5 6 2 8 7 Offspring 1 

Random selection of  substring 

Copying substring to the child solution 

5 7 4 9 1 3 6 2 8 Parent 2 

Figure: An illustration of Order crossover [Oliver et al. (1987)]
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Figure: An illustration of one-point crossover
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β: Spread factor
p1&p2: Parent solutions
c1&c2: Off-springs
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crossover

Simulated binary crossover [Agrawal and Deb (1994)]:
� High values of n will create off-springs near the parents; vice versa in
the case of low values of n.
n = 2 for mono − objective problems
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Simulated binary crossover

� Generates off-springs symmetrically about the parents.

c1 =
p1 + p2

2
− 0.5× β∗ × (p2 − p1) (2.2)

c2 =
p1 + p2

2
+ 0.5× β∗ × (p2 − p1) (2.3)

To calculate β∗:

Generate a random number µ in [0, 1]

Get β value that makes area under the curve = µ
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Mutation:
� In this process, the structure of off-spring generated via crossover is
further changed slightly. The mutation is also with some probability.

Facts:

The mutation probability (i.e. probability of mutating each gene)
should be set low.

Pm =
1

L
L : length of string (2.4)

Probability of mutating an individual becomes

Pstring = 1− (1− Pm)L (2.5)
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mutation

5 7 1 3 8 9 6 4 10 2 

5 7 4 6 9 8 3 1 10 2 

Figure: An illustration of Inversion mutation
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mutation

Figure: An illustration of flip mutation
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Genetic algorithm
mutation

Polynomial mutation:

P(δ): Probability distribution function
ηm = 20 is generally used

To calculate δi :

Generate a random number µ in [0, 1]
Get δ value that makes area under the curve = µ
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Survivor selection:
� Select the top best individuals among parent and offspring solutions
for the next generation of search.

Facts:

This strategy promotes faster convergence.

Premature convergence may occur.
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