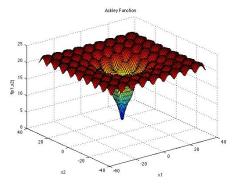
A Course on Meta-Heuristic Search Methods for Combinatorial Optimization Problems Assignment-I

Santosh Kumar Mandal, Ph.D research fellow

AutOrl LAB, DIA, Roma Tre Email: mandal@dia.uniroma3.it


January 13, 2014

Ackley function

$$a = 20, b = 0.2, c = 2\pi \& x_i \in [-32.768, 32.768]$$

$$f(\mathbf{x}) = -a \exp\left(-b\sqrt{\frac{1}{d}\sum_{i=1}^{d} x_i^2}\right) - \exp\left(\frac{1}{d}\sum_{i=1}^{d} \cos(cx_i)\right) + a + \exp(1)$$

Global minimum $f(x^*) = 0$ at $x^* = (0, ..., 0)$

Assignment

- Implement Simulated Annealing algorithm on the single-variable Ackley function using C++/MATLAB/Java.
- Check performance on different values of algorithmic parameters.
- Prepare a report of 3-5 pages:
 - State about the problem.
 - Write about the Simulated Annealing algorithm.
 - Write in detail your computational observations (why and how ?).
 - Support your claims by:
 - Providing tables showing results on different values of algorithmic parameters.
 - Providing graphs showing convergence of algorithm (w.r.t. number of iterations/computational time).
- Use binary string.
- Use flip mutation.

Binary string to real value

$$x = x_{min} + decimal(substring_x) \frac{x_{max} - x_{min}}{2^{l_x} - 1}$$

 l_x : length of binary string (number of bits) decimal(substring_x): decimal value of binary string

$$I_{x} = \lfloor \frac{\log\left(\frac{x_{max} - x_{min}}{\delta}\right)}{log 2} \rfloor + 1$$

$$\delta = 10^{-4}$$

Small δ : large string

