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AN ALGORITHM FOR SOLVING THE JOB-SHOP PROBLEM*

J. CARLIER AND E. PINSON
Université de Technologie de Compiégne
Institut de Mathématiques Appliquées d’Angers

In this paper, we propose a branch and bound method for solving the job-shop problem. It is
based on one-machine scheduling problems and is made more efficient by several propositions
which limit the search tree by using immediate selections.

It solved for the first time the famous 10 X 10 job-shop problem proposed by Muth and
Thompson in 1963.

(JOB SHOP SCHEDULING; BRANCH-AND-BOUND; COMPUTATIONAL EXPERI-
MENTS)

Introduction

The significant literature (Balas 1969, Baker 1974, Rinnooy Kan 1976, Bouma 1982,
Barker and McMahon 1985) on the job-shop problem begins with the book by Muth
and Thompson Industrial Scheduling, (1963), in which three examples were proposed.
So, for 20 years, authors have tested their algorithms on these examples. Two of them
were solved in the 70s (Carlier 1978, McMahon and Florian 1975). Lageweg improved
the best known solution to the third problem, but nobody has yet proved its optimality.
In this paper, we describe a method demonstrating this.

Let us recall that, in a job-shop problem, n jobs have to be processed on m machines
in order to minimize makespan. This problem is NP-hard in the strong sense (Rinnooy
Kan 1976, Garey and Johnson 1979). So, authors propose branch and bound methods
to solve it. Our method is based on one-machine problems and reconciles two conflicting
objectives: optimizing complexity of local algorithms and minimizing memory space.
The former is satisfied by information redundancy and the latter by a good choice of
data structures. In this paper, we describe the method and its results.

1. Generalities

Job-Shop

In a job-shop problem, n jobs have to be processed on m machines assuming the
following facts:

— A machine can process only one job at a time.

— The processing of a job on a machine is called an operation.

— An operation cannot be interrupted.

— A job consists of at most n operations.

— The processing order of a job is given according to this job.

— The operation sequence on the machines are unknown and have to be determined
in order to minimize makespan.

Disjunctive Graph

Two operations i and j, executed by the same machine, cannot be simultaneously
processed. So we associate with them a pair of disjunctive arcs [7, j] = {(i,)), (J, 1 Y}
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ALGORITHM FOR SOLVING THE JOB-SHOP PROBLEM 165

FIGURE 1. A 2 X 2 Job-Shop. Operation (a, b) is the processing of job @ on machine 4.

The problem is then modelled by a disjunctive graph ¢ = (G, D), where G = (X, U) is
a conjunctive graph and D a set of disjunctions. Figures 1 and 2 show two examples.

Notations

In this paper, p, denotes the processing time of operation i, r, its release date, and g;
its tail. Denoting the value of one of the longest paths from i to Jjin G by I(i, j), we have:
r, = Il(o, i) and g, = I(i, *) — p, where 0 and * are the source and the sink in G.

Schedule

A schedule on a disjunctive graph & = (G, D) is a set of starting times T = {¢,|i
€ X } such that:

— The conjunctive constraints are satisfied: L—t=2pVi,je U

— The disjunctive constraints are satisfied: ¢, — ¢, > p, or t; — L=2p Vi, jleD.

Selection

To build a schedule, we have to select the disjunctive constraints, and thus to choose
an operating sequence for each machine.

A selection A is a set of disjunctive arcs such that if (i, /) E A, then (J, i) & A. The
membership of (i, j) in A makes it necessary to process operation i before operation j.
We associate the conjunctive graph G, = (X, U U A) with the selection A.

By definition, a selection is complete if all the disjunctions of D are selected. It is
consistent if the associated conjunctive graph is acyclic. A schedule corresponds to a
consistent complete selection. Its makespan is the value of one of the longest paths
in G4.

For the first example, 4 = {((1, 1), (2, 1)), ((2, 2), (1,2))} is complete and consistent;
the makespan of the associated schedule is 11 (Figure 3).

2. The One-Machine Problem
Introduction
One-machine problems are associated with a Job-shop by choosing a machine and

relaxing the constraints concerning the other machines. In this section, we unify and
generalize results presented in two previous papers (Carlier 1978, 1982).

FIGURE 2. A 3 X 4 Job-Shop.
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166 J. CARLIER AND E. PINSON

FIGURE 3. A Consistent Complete Selection.

2.1. Definitions

In the one-machine problem, we have to sequence a set I of dependent operations on
a single machine in order to minimize makespan (McMahon and Florian 1975, Lageweg
et al. 1976). An operation i has a release date r,, a processing time p;, and a tail g,.

2.2. Lower Bound
Let K be a subset of I and H(K) defined by:

H(K)=Min {r,|i€EK} + 3 {p|i €K} + Min {q,|i EK}.

PROPOSITION 1. H(K) is a lower bound of the optimal makespan of the one-machine
problem.

PROPOSITION 2. Let V. be the optimal value of the preemptive one-machine problem
associated with machine k. LB = Max {Vy |k = 1, m} is a lower bound of the makespan
of the job-shop problem.

In Carlier (1982), it is proved that V is equal to Max {H(K)|K < I } and can be
computed in o(#n log n) steps.

2.3. Jackson’s Schedule

Jackson’s schedule is the list schedule associated with the MWR (Most Work Re-
maining) priority dispatching rule. To build it, we schedule, at the first moment ¢, where
the machine and at least one operation are available, the available operation i with
maximal ¢,; then we set ¢ := ¢ + p, and iterate until all the operations are scheduled
(Jackson 1955).

PROPOSITION 3. Let f, be the makespan of Jackson’s schedule. There exists a subset
J of I such that:

— either H(J) = f, and Jackson’s schedule is optimal,

— or f, — H(J) < p. for some operation c of INJ. J is called a critical set and c a
critical operation for J.

For the proof, see Carlier (1982).

2.4. Solution

Let f be a given integer.' By definition, a soluEion of the one-machine problem is a
schedule with a makespan smaller or equal than f.
2.5. Input and Output of a Clique

A clique C is a subset of 7 that contains at least two operations. Let T be a solution.
e € C (resp. s € C) is called the input (resp. output) of clique Cif e is sequenced in T

! Initially, fis either the best known solution or the lower bound of the makespan augmented by 5% or 10%.
Later, /+ 1 is equal to the makespan of the best known schedule of the job-shop problem.
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ALGORITHM FOR SOLVING THE JOB-SHOP PROBLEM 167

before (resp. after) all the other operations of C. E (resp. S) is the subset of operations
I € C such that there exists a solution T with 7 as input (resp. output) of C. E (resp. S)
is a subset of I that contains E (resp. S).
2.6. Evaluation of E and S
Let C < I'and k € C. We introduce conditions (1) and (2):
rk+2{pjlj€C}+Min {qjleS\{k}}>f; (1)
Min {r,|j€ EN{k}} + Z {PJEC} + g > /. )
PROPOSITION 4.  If condition (1) (resp. (2)) is satisfied, then k & E (resp. S).

PROOF. Let us suppose that (1) is satisfied and kK € E. The first member of the
inequality (1) is a lower boundAof the makespan when k is the input of C. So, this
makespan is strictly larger than £, and we obtain a contradiction. O
2.7. Immediate Selection of a Disjunctive Constraint

When C contains exactly two operations i and j, we obtain:
PROPOSITION 5. Ifr, + p, + p, + q, > f, then the disjunctive arc (J, 1) will be selected
in any solution.
2.8. Input and Output Determination
Let C < I'and k € C. We introduce condition (3):
H(C\{k})+ p > f. 3)

LEMMA. If (3) is satisfied, then, in any solution T, operation k is sequenced either
before all the other operations of C or after them.

Proof . Let T be a solution such that k is neither input nor output of C. Then, the
operations of C are sequenced in some order i, i, . . ., i, with iy # kand i, # k. So,
the makespan of this solution is larger than: r, + Zecp + q,. We have:

rwt 2 p+q,=Min {r|iEC\{k}} + 32 {pli€C\{k}} + pi

eC
+ Min {g,|i€ C\ {k}} = H(C\ {k}) + p,.
But this contradicts (3). O

PROPOSITION 6. If conditions (1) and (3) are satisfied, then k is the output of clique
C in any solution T.

PROPOSITION 7. If conditions (2) and (3) are satisfied, then k is the input of clique
C in any solution T.

PROPOSITION 8. If e is the input of cligue C, then the disjunctive arcs (e, k)
(k € C\{e}) will be selected in any solution. If s is the output of cligue C, then the
disjunctive arcs (k, s) (k € C\ {s}) will be selected in any solution.

2.9. Increase of Release Dates and Tails

Let us recall that a conjunctive constraint associated with a release date r, (resp. a tail
q)is:t,—t,=r (resp. t, — t, = p, + q,).

PROPOSITION 9.  If s is the output of clique C, then:
t—1,>Min {1 EE} + 3 {p|j € C\ {s}).

Copyright © 2001 All Rights Reserved



168 J. CARLIER AND E. PINSON

If e is the input of clique C, then:
ty— 1> 2 {p i €C} +Min {g,|j E S}.
PROPOSITION 10. Let the operations of C\ {s} be arranged in an ascending order of
r
C\{s}={i, 2, ..., in}5 Py ST, < s <1,
If s is the output of cliqgue C, then:
ty = to > Max [r,, + 2 {py1ji =P, h}]

PROOF. s is the output of clique Cp = {ip, ips1,..->in, 8}. O
PROPOSITION 11. Let the operations of C\ { e} be arranged in an ascending order of
q:
C\{e} = {ji,Jas---sJn}s @SS <G,
If e is the input of clique C, then:

t*—te>1}§g?§[2 {p]l|i=P’h}+p(?+qu]‘

PROOF. e is the input of clique C» = {€, jp, jp+1s -+ .»Jny. O

REMARK. Propositions 10 and 11 are more general than Proposition 9, but the cor-
responding test is more expensive. Our experience is that these two propositions do not
significantly improve the method.

PROPOSITION 12. Ifi € C\E, then: t,— t,> Min {r.+ p.|le EE}.
Ifi € C\S, then: t, — t, = Min {ps + qgs|sE S} + .

3. A Branch and Bound Method for the Job-Shop
3.1. Branching Scheme

A selection A is associated with each node N of the search tree. To branch, we choose
a disjunction [i, j] and we introduce two nodes with selections 4 U {(i, j)} and 4

U {(,}.
3.2. Bounds

The upper bound is equal to the value of the best known schedule of the job-shop.
The lower bound F(N) for node N is obtained by application of Proposition 2.

3.3. Computing of R and Q

With node N is associated a conjunctive graph G = (X, U U 4). The release dates
vector R (resp. tails vector Q) is computed by so}ving a longest path problem by applying
Bellman’s algorithm on this graph: r, = [(o, i) (resp. ¢, = (i, *) — p).

3.4. The Boolean Active

With the tree is associated a boolean Active, which is initialized to False. This boolean
takes the value True every time a proposition is efficient. For instance, Propositions 5
and 8 are efficient if they permit to select a dlsjuncnve constraint. Proposition 4 is efficient
if it improves the evaluation E of E (resp. S of S). Finally, Propositions 9, 10, 11 and
12 are efficient if they modify one release date or one tail.
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3.5. Treatments before Branching

We successively consider the m one-machine problems associated with the job-shop
problem. For each one, we compute the optimal preemptive schedule, a clique C and
evaluations E (resp. S) of E (resp. S) (Proposition 4).

Propositions 6 and 7 were only applied for the critical set J and the critical operation
¢ given by Jackson’s schedule. Propositions 5 and 8 permit the selection of disjunctive
constraints. Finally, the evaluations of t, — 7, and ¢, — ¢, by application of Propositions
9, 10, 11, and 12 allow the modification of vectors R and Q.

REMARK. Initially, the clique C, associated with a one-machine problem, is the whole
set 1. Then, progressively with the determination of inputs and outputs of C, we adjust
this clique by setting up:

C:= C\ {e} when an input is found;

C:= C\ {s} when an output is found.

3.6. Choice of a Disjunction

The branching scheme is based on the following remarks. When the cardinality of E
(resp. S) becomes O or 1, we can truncate the search tree and apply very efficiently the
previous propositions. Moreover, if we select a disjunction involving two operations of
a set E (resp. S), the cardinality of E (resp. S) will strictly decrease for the nodes created
in the search tree.

We found it better to select as a priority the disjunctions of the machine with the
largest initial lower bound, called the critical machine and indexed 1.

So, we propose the following heuristic method:

1—If the critical machine is not completely selected, choose a disjunction in the set
E, or S| with minimal cardinality.

2—Otherwise, choose a disjunction belonging to a set E, or S, (r # 1) with minimal
cardinality.

In case of several candidates, we use a penalty function and compute the quantities
(Bertier and Roy 1965):

— dy,=Max (0,r,+ p,+ p, + g — LB);

— d,=Max (0, r,+ p,+ p, + g, — LB);

— ay= Min (du9 djl)9

— v, = |d,—d,|.
Then we choose the disjunction with maximal vy, or, in case of ties, the one with
maximal a,.

REMARK. A second branching scheme was also tested with no great success up to
now. We computed Jackson’s solution for the critical machine, and determined the
critical set J and operation ¢ (whenever the latter exists). If H(J) + p. > f, we considered,
according to the previous lemma, both the following problems:

— ¢ —> J where operation c is processed before J;

— J —> ¢ where operation c is processed after J.

3.7. General Algorithm

Begin

Read the problem data ; initialize data structures ;
N:=1;fi=+w ; F(1):=0;

While the search tree is not empty

Begin ;
While F(N)> f Do
Begin
Suppress node N ;
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N:=N-1
End
Restore node N ;
Active:=True
While Active=True Do
Begin
Active:=False ;
Execute Treatments before branching ;
If Active=True Compute the vectors R and Q ;
End
Compute the new lower bound F(N) ;
If the selection is complete then
Begin
Print the solution ;
Compute the value of this solution : /1 ;
Si=Min(f,fi-1);
N:=N-1
End
Else
Begin
Apply the branching heuristic ;
Create the new nodes corresponding to the
selected disjunction ;
N:=N+1
End
Endif
End
End

3.8. Discussion

We expected Propositions 6 and 7 to be very powerful if applied to every subset C of
I and to every operation k of C. So, we looked for an efficient algorithm to reach this
goal. We found an o(n*) algorithm and used it. Generally, the size of the search tree was
divided by a factor of 2, but the algorithm was too time consuming. But a very interesting
property appeared: when the sequence is given for a machine, the two propositions permit
the selection of nearly all the other disjunctions. So, it provides a good method to build
heuristic schedules. At present, we are working on a better algorithm that detects in o( n?)
the useful couples (k, C) satisfying the conditions of Propositions 6 and 7.

3.9. Example

Let us explain the branch and bound method on the job-shop problem of Figure 2.
First we initialize f by f = 26 (the initial lower bound augmented of 10%) and we apply
the propositions to the one machine problem of machine 2. If (1, 2) was the input of
clique C, = I, the makespan would be larger than: i, + Z{pli €I} + Min {qli
€ I} = 3 + 24 = 27 (Proposition 4). This is impossible because f = 26. For the same
reason, (3, 2) (resp. (4, 2)) cannot be the input of C,. So, we select the disjunctive arcs:
((2,2),(1,2)),((2,2),(3,2)),((2,2),(4,2)) and set: C; := G\ {(2,2)}. By applying
Proposition 4, we obtain S; = {(4, 2)}. So, with C; := G\ {(4, 2)} and by applying
Proposition 5, machine 2 is entirely selected (Figure 4). Then Proposition 5 permits the
selection of the arcs ((1, 3), (2, 3)), ((3, 3), (2, 3)), and ((4, 3), (2, 3)). So, (2, 3)is
the output of machine 3. We set: C3:= C3\ {(2, 3)}, apply Proposition 5 to C; and get
Ss = {(1, 3)}. So, we obtain the conjunctive graph of Figure 5.

Next, we compute the new values of R and Q. Consequently, (3, 1) is the output of
machine 1 and (2, 1) is the output of C;\ {(3, 1)}. Propositions are no longer useful.
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FIGURE 4. Selection of Machine 2. (For clanty, disjunctions are omitted.)

Figure 6 shows the resulting conjunctive graph, and Figure 7 the two disjunctions left.
The tree is reported in Figure 8.

4. Data Structures

4.1. The Search Tree

The current tree is a path (1, 2, ..., N). It is coded with a stack in order to quickly
restore a node. To a node M corresponds a block of this stack containing the number
du of the disjunction that creates it and the set D, of disjunctions locally selected with
Propositions 5 and 8. (See Figure 9.) The maximal size of this stack is the number nds
of disjunctions. The lower bounds are in a table indexed by M.

4.2. The Disjunctions

In order to determine immediate selection, we associate with node N a table DIS
defined by:

FIGURE 5. Conjunctive Graph after Selection on Machines 2 and 3.
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FIGURE 6. Conjunctive Graph.

DIS(ky=M (resp. — M) if the disjunction £ is selected in
the direct (resp. reverse) sense at node M;

DIS(k)=0 if it is not selected.

4.3, The Conjunctive Graph

The graph of node N is redundantly coded by the successors file and the predecessors
file. These files are treated as a set of stacks: when we suppress (resp. add) a conjunctive
arc (i, j), we decrease (resp. increase) by one the number of successors of / and the
number of predecessors of j.

4.4, Release Dates and Tails

With node N are associated a couple of vectors R and Q. These vectors are computed
by Bellman’s algorithm.,

4.5. Cliques

To save memory spaces, the sets C,, E,, and S, (r = 1, m) are only stored for the node
N. It may be very costly to compute these sets after a backtracking, by applying the
propositions; so, we introduce, for each machine, a table ES defined by (i is an operation
of the corresponding machine):

FIGURE 7. Disjunctions Left.
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(61,1, (4,1))

¢4, 1), €1, 1))

selection
(3,3, 44,30 [ ((3‘3),(4,3))I I ((4,3),(3.3))[

makespan 25 makespan 26 makespan 26

FIGURE 8. Search Tree.

— ES()y=1ifi€e ENS;

— ES(i)=2ifi€ E\S;

— ES(i)=3ifi€ S\E;

— ES(i))=0ifiEC\EUS;

— ES(i) = —1 if i was determined as input;
— ES(i) = =2 if { was determined as output.

Proposition 13 shows that the number of modifications of ES for a machine with n
operations is very small in comparison with the cost of the storage of the sets at every
node of the tree. We keep in a stack the modifications of ES in order to restore ES when
we backtrack.

PROPOSITION 13. The maximal number of modifications of ES along a path of the
tree for a clique of cardinal n is strictly smaller than: (3/2)n(n + 1).

PROOF. When an input or an output is determined, the cardinality of the clique C
decrease by one and before such a determination, the number of modifications is smaller

than 3|C| (Figure 10). So, along a path of the tree, it is less than:

S3{n—ili=0,n—2}<(3/Q)n(n+1). O

5. Computational Experiments

We have implemented the algorithm on a mini-computer PRIME 2655 (1.3 Mips)
in FORTRAN77, and tested it on about 150 bench marks, some of them coming from
the literature (Muth and Thompson 1963, Carlier 1975), the others randomly generated.

Dy

;
%az

FIGURE 9. Search Tree and Corresponding Stack.
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FIGURE 10. States of Vertex 1.

We report the following characteristics of some experiments (see Table 1):

— n: number of jobs,

— m: number of machines,

— nds: number of disjunctions of the problem,

— f*: optimum value,

— LB: lower bound on the search tree root,

— t1: CPU time used for finding the optimal schedule, ?

— nd1: number of branching used for the optimum’s search,

— 12: CPU time used for the optimality control,3

— nd2: number of branching used for the optimality control,

— 1t: total CPU time,

— ndt: total number of branchings.

As a referee pointed out, the practical complexity of the 10 X 10 instance is probably
due to the gap of 15% between the initial lower bound and the value of an optimal
schedule.

We also tested this method on problems with 50 jobs and 10 machines. In this case,
we always obtain schedules near 5% of the optimum within 20 mn of CPU.

We used it as well for scheduling optimally a flexible work-shop with 4 machines and
a daily production of about 50 products.

TABLE 1

n m | nds f* LB tl ndl t2 nd2 t ndt Up*

1 6 6 90 55 52 1 1 0 0 1 1 55
2 7 6 126 63 62 12 17 13 19 25 36 65
3 8 8 | 224 | 6309 | 6213 47 52 51 63 98 115 | 6523
4 1 1l 5 | 275 | 7038 | 6917 40 47 1 0 41 47 | 6263
5 9 9 | 324 | 4223 | 4016 211 257 432 503 643 760 | 4417
6 12 5 330 | 7312 | 7103 13 25 1 0 14 25 | 7458
7] 14 4 | 364 | 8003 | 8003 62 55 2 1 64 56 | 8403
8 | 10 | 10 | 450 930 808 | 3305 | 4039 | 14680 | 17982 | 17985 | 22021 969
91| 15 S | 525 | 5422 | 5223 | 2315 | 2719 4023 5012 6338 7731 | 5484
10 | 20 51 95 | 1165 | 1164 | 1234 | 1609 214 253 1448 1862 | 1222

2 Up: upper bound used at the beginning of the treatment.

2 CPU time in seconds on PRIME 2655.

3 We separated the search of the optimum from the optimality control, the latter corresponding, for most
bench marks, to the largest consumption of CPU time. For instance, for the 10 X 10 job-shop, the optimum
search takes 53 mn and the optimality control 4h035.
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Glossary
i,] operations
1 set of operations on a given machine
Ccl clique of disjunction
Kci clique of disjunction
solution one-machine schedule of makespan less or equal than f
52 upper bound
e input of C
s output of C
E inputs set of C
S outputs set of C
E over set of E
S over set of §
J critical set (Jackson)
c critical operation (Jackson)
N number of a terminal node in the search tree
M number of a node in the search tree
n number of jobs
m number of machines
nds number of disjunctions in the problem
r, release date of operation {
D processing time of operation i
q, tail of operation ¢
G=(X,U) initial conjunctive graph
o source of G
* sink of G
A selection
G =(X,UUA4) conjunctive graph associated with selection A4
C, clique associated with machine r
E, S, inputs and outputs sets of C,
H(K) lower bound for chique K
F(N) lower bound for node N
I(i,)) value of a longest path from :1tojin G
T schedule
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