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Abstract

We study the problem of designing layout facilities for the navigation of an “infinite” graph, i.e.
a graph that is so large that its visualization is unfeasible, even by gluing together all the screen
snapshots that a user can take during the navigation. We propose a framework for designing
layout facilities that support the navigation of an infinite tree. The framework allows to exploit
the knowledge of future moves of the user in order to reduce the changes in her mental map
during the navigation. Variants of the classical Reingold-Tilford algorithm are presented and
their performance is studied both experimentally and analytically.

1 Introduction

Designing layout facilities for the navigation of “infinite” graphs is one of the challenges of the
Graph Drawing field. By “infinite” we mean that it would be unfeasible to visualize the graph
entirely, even by gluing together all the screen snapshots that a user can take during the naviga-
tion. Examples of graphs that can be considered infinite in the above sense come from disparate
application areas including World Wide Web, Knowledge Bases, Communication Networks, and
Semantic Networks.

Several papers on the visualization of very large graphs appear in the literature. A limited
list includes [9, 13, 11, 20, 16, 17, 6]. However, the classical assumption is that the input graph,
even if huge, is completely known in advance.

We adopt a different point of view making the assumption, similar to the one in [7], that either
the graph is too large to be entirely known or it is practically unfeasible to draw it all. Hence,
during the navigation, the user is allowed to see only the content of a limited size window that
she can move for exploring the graph. It is clear that such a window cannot be purely geometric:
If the graph is so large to be impossible to visualize or even to know, then the idea of moving a
window on a pre-computed drawing does not make sense. Therefore, our idea of window is that
of a topological window, defined in terms of the structure of the graph. For example, at each time
of the navigation the topological window may display the subgraph induced by the vertices that
have a constant topological distance from a given vertex, considered as the center of the window.

Hence, the graph is displayed as a sequence of drawings determined by the navigation path
followed by the user. Since consecutive drawings in the sequence can have a large overlap, it is
essential to devise visualization strategies that preserve the mental map [8, 14, 12, 2] of the user.
Algorithms devised to preserve the mental map are usually evaluated in terms of both static and
dynamic quality measures [15, 3]. Static measures evaluate standard Graph Drawing aesthetics
like number of crossings or area used by the drawing. Dynamic measures evaluate how much a
drawing is similar to the one(s) preceding it in the sequence.

Our work starts from two main observations.
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†Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, via Salaria 113, 00198 Roma, Italy.
demetres@dis.uniroma1.it

‡Dipartimento di Informatica e Automazione, Università di Roma Tre, via della Vasca Navale 79, 00146 Roma, Italy.
{gdb,patrigna,pizzonia}@dia.uniroma3.it
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• While the display area is bounded by the size of the screen, the size of the portion of graph
that the system can know at each instant of time is only bounded by the resources of the
computer.

• Very often, even if the graph is infinite, the visit of vertices follows an almost predictable
pattern. For example, it can be experimentally verified that most users access a Web site
following a limited set of favorite patterns.

This naturally gives rise to the following question. Is it possible to devise a drawing strategy
that takes advantage of the knowledge of part of the future navigation moves of the user in order
to achieve better performance in terms of dynamic quality measures? In other words, suppose
that the user is observing the drawing of a certain subgraph G1 and suppose to know in advance
that the next navigation step will require the visualization of a subgraph G2; given this knowledge,
is it possible to draw G1 so to reduce the changes in the overlapping portions of the drawings of
G1 and G2? The idea is to exploit the knowledge of future moves in the current visualization. It
is interesting to note that the importance of knowing in advance the sequence of graphs to display
within an off-line visualization framework has been discussed in [18].

The main components of our framework are:

• A visualization window defining, at each step of the navigation, what is the graph (a portion
of the infinite graph) to visualize.

• A knowledge window defining, at each step of the navigation, a supergraph of the visualized
one. The size of the knowledge window affects the drawing of the visualization window.

• A favorite neighbor for each vertex of the infinite graph. The favorite neighbor defines what
is the next navigation step that the user is going to perform.

As an application of the above framework, we study the problem of navigating in an infinite
tree. In spite of the structural simplicity of trees, designing drawing strategies for navigating
in infinite trees offers several experimental and theoretical challenges. Also, the Web is often
visualized as a tree-like structure (see e.g. [1, 10]). We devise variants of the classical Reingold-
Tilford algorithm [19]. This choice is motivated by the fact that the Reingold-Tilford algorithm
is among the most robust, simple, effective, and well known algorithms of Graph Drawing. The
main results of this paper can be listed as follows.

• We formally define a framework for designing Graph Drawing facilities that support the
navigation of an infinite graph (Section 2). The framework is especially targeted to take
into account the knowledge of the future moves of the user.

• We design a set of simple strategies based on the Reingold-Tilford algorithm for visualizing
infinite trees (Section 2).

• We perform an experimental analysis of the above strategies (Section 3). The analysis shows
that exploiting the knowledge of the future moves of the user is not a trivial task, and that
some simple strategies can have more drawbacks than benefits from the knowledge of the
future.

• Motivated by the experimental results, we perform a theoretical analysis of the drawing
algorithms (Section 4). The analysis both explains our experimental results and allows us
to compare the performance of the drawing algorithms as the size of the knowledge window
goes to infinity.

Through the paper we make use of standard Graph Drawing terminology [5]. For reasons of
space, some proofs are only sketched or omitted in this extended abstract.

2 The Framework and the Drawing Strategies

All our trees are finite subtrees of an infinite tree T and each edge is oriented from the parent to
the child. The time of the framework is discrete. Hence, it assumes integer values starting from
0. At instant t the user can look at a visualization window of a given positive integer size h. The
visualization window is a subtree Th(t) of T rooted at a certain vertex r(t) and induced by the
vertices of T at (oriented) distance at most h from r(t). Vertex r(t) is the point of view of the
user at instant t. If the point of view at instant t is r(t), then the user can move it at instant
t + 1 to any child of r(t).

A navigation of T in any interval [t1, t2] of time consists of the path (visualization path)
r(t1), . . . , r(t2). The overlap between two visualization windows at consecutive instants t and
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t + 1 is Th(t)∩ Th(t + 1) = Th−1(t + 1). An overlap between consecutive visualization windows is
illustrated in Figure 1.

Figure 1: Two successive snapshots produced by the system Leonardo [4] showing the effect of a single
navigation step in a randomly generated tree: the light boxes show Th(t) and Th(t + 1), the shaded
boxes show the portion of the tree visible both before and after the navigation step, that is Th−1(t+1).
The value of h is 3.

From the point of view of the readability of the visualization, we consider static and dynamic
quality measures. The static quality measures evaluate the drawings of Th(t) and of Th(t + 1)
separately. Among the possible static quality measures we focus on the width of the drawing,
since it is one of the few degrees of freedom when drawing a rooted tree. The dynamic quality
measures evaluate the variations in the overlap of the drawings of Th(t) and Th(t + 1). Namely,
they measure the differences between the drawing of Th−1(t + 1) inside the drawing of Th(t) and
the drawing of Th−1(t + 1) inside the drawing of Th(t + 1).

In order to optimize the drawing with respect to the dynamic quality measure we exploit the
following two observations:

• Even if the visualization window is constrained to have size h, the drawing algorithm that
computes the drawing of the visualization window at instant t can know a subtree of T

larger than Th(t). This subtree is denoted as Th+k(t). It has root r(t) and is induced by
the vertices of T at (oriented) distance at most h + k from r(t). Constant k ≥ 0 is an
integer that describes how much the algorithm is allowed to know about T more than what
belongs to the visualization window. Tree Th+k(t) is called knowledge window; the size of
the knowledge window is h + k.

• Very often, even if the graph is infinite, the visit of vertices follows an almost predictable
pattern. One possibility for modeling this issue is to weight the children of each vertex with
their probability to be visited after their parent. We make here the simpler assumption that
for each vertex one favorite child is defined. Under this assumption the visualization path
in any interval [t1, t2] is r(t1), . . . , r(t2), where r(t + 1) (t1 ≤ t < t2) is always the favorite
child of r(t).

The drawing algorithms that we study are variants of the classical Reingold-Tilford algorithm
[19]. This choice is motivated by the fact that the Reingold-Tilford algorithm is among the most
robust, simple, effective, and well known algorithms of Graph Drawing.

Suppose to have a visualization window of size h and to have a knowledge window of size h+k.
At instant t our algorithms compute a drawing of a tree larger than Th(t). Namely, they receive
as input Th+k(t) and perform the following two steps:

• They prune Th+k(t) of the vertices that will never be part of any visualization window
during the navigation. The resulting pruned tree is called Th,k(t) and is defined as Th,k(t) =
⋃k

i=0
Th(t + i).

• They compute a drawing of Th,k(t) and display the portion Th(t) of height h.
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Note that the definition of tree Th,k(t) relies on the knowledge of the vertices r(t), r(t +
1), . . . , r(t + k) of the visualization path. Also, observe that Th,k(t) has height h + k and that
Th,0(t) = Th(t).

Figure 2 shows a portion of an infinite tree with a visualization window of height h = 3 and a
knowledge window of height h+k = 9. In the figure, the black vertices belong to the visualization
path and together with the grey vertices induce Th,k(t).

h+k=9

h=3

Figure 2: A portion of an infinite tree, a visualization window of height h = 3, and a knowledge window
of height h + k = 9. A drawing algorithm computes a drawing of Th,k(t) (grey and black vertices).
Only the portion of the drawing inside the visualization window is displayed on the screen. The
portion of the tree induced by the white vertices is not taken into account by the drawing algorithm.

Our variants of the Reingold-Tilford Algorithms are characterized by a different choice for the
embedding of Th,k(t).

Leftmost-Embedding Algorithm : The embedding of Th,k(t) is chosen so that for each vertex v

along the visualization path, the favorite child of v is the leftmost child of v. As a result,
the leftmost vertex at any given level of Th,k(t) is a vertex of the visualization path.

Central-Embedding Algorithm : The embedding of Th,k(t) is chosen so that for each vertex v

along the visualization path, the favorite child of v is the middle child of v. A vertex u is
the middle child of v if the number of vertices preceding u in the adjacency list of v differs
by at most one from the number of vertices following u in the adjacency list of v.

Random-Embedding Algorithm : The embedding of Th,k(t) is chosen so that the favorite child of
each vertex v along the visualization path can be in any position of the adjacency list of v.

We are interested in evaluating the performance of the above algorithms with respect to both
dynamic and static quality measures. The total-shift dynamic quality measures the change of
the x-value of a non-root vertex v of Th−1(t + 1) with respect to its parent p(v). Since our
algorithms perform a pruning step before computing the drawing, we evaluate the total-shift
dynamic quality measure with respect to pruned subtrees. Namely, we denote the total-shift
dynamic quality measure as mD(h, k, t) and define it as follows:

mD(h, k, t) =
∑

v∈Th−1(t+1)−{r(t+1)}

|x(v, t) − x(p(v), t) − (x(v, t + 1) − x(p(v), t + 1))|.

In the definition, x(v, t) is the x-coordinate of vertex v at instant t computed by an algorithm
that considers Th,k(t).

The static quality measure that we use to compare our algorithms evaluates the width of the
drawing of the visualization window. More precisely, let Bh,k(t) be the smallest isothetic box
that contains the first h levels of a drawing of Th,k(t). We denote as mS(h, k, t) the width of box
Bh,k(t).

3 Experimental Results

This section contains the results of an experimental comparison of Random-Embedding Algorithm,
Central-Embedding Algorithm, and Leftmost-Embedding Algorithm with respect to the dy-
namic and static quality measures mD and mS introduced in Section 2.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Experimental results for h = 5, 0 ≤ k ≤ 6, minimum vertex outdegree 0, and maximum
vertex outdegree between 2 and 5. On the left (right) the improvement or worsening of the dynamic
(static) quality measure, for Random, Central, and Leftmost Embedding Algorithm, respectively, is
shown.
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In each experiment we consider a random path on a randomly generated tree. Since we actually
perform a finite number l of navigation steps on each tree, once the visualization window height h

and the knowledge k have been fixed, it suffices producing a tree with height h+ k + l to simulate
the behavior of the algorithms on an infinite tree. Furthermore, in order to simulate a random
infinite path on an infinite tree, we need to avoid choosing those random paths ending with a leaf
before the expected length is reached.

The generation of a random tree and of the corresponding random path is performed as follows.
In order to generate a tree of given height and with vertex outdegree ranging in a fixed interval, we
randomly choose in such interval the number of children of each vertex, according to the uniform
distribution, starting from the root and considering one level at a time, until we reach the desired
tree height. Then we randomly select a leaf on the last level of the tree, implicitly defining a
random path from the root to the chosen leaf.

In each experiment we fix the parameters h, k, and l, we randomly generate a tree of height
h + k + l and a path over it, and we perform l navigation steps, computing at each step the value
of mD(h, k, t) and mS(h, k, t). For each tree, we average the values of the dynamic and static
quality measures over the whole navigation and then we average these values over the entire set
of randomly generated trees. The resulting measures are denoted as mD(h, k) for the total-shift
dynamic quality measure and mS(h, k) for width static quality measure.

Instead of plotting the raw values of mD(h, k) and mS(h, k), we display their relative improve-

ments, denoted as iD(h, k) = mD(h,0)−mD(h,k)
mD(h,0)

and iS(h, k) = mS(h,0)
mS(h,k)

, respectively.

Figure 3 shows the results of the experiments performed with h = 5, 0 ≤ k ≤ 6, mini-
mum vertex outdegree 0, and maximum vertex outdegree between 2 and 6. In particular, Fig-
ure 3.a, Figure 3.c, and Figure 3.e show the values of iD(h, k) for the Random, Central, and
Leftmost-Embedding Algorithm, respectively, while Figure 3.b, Figure 3.d, and Figure 3.f show
the corresponding values of iS(h, k). Each point on the diagrams is obtained computing the av-
erage over 1000 trees. The axes scales are chosen with the purpose of producing diagrams in the
range [0, 1] × [0, 1].

Concerning the static quality measure, the behavior of iS(h, k) shows the expected worsening
of the width of the drawing k increases.

For what concerns the dynamic quality measure, the diagrams show that the best values
are obtained by Leftmost-Embedding Algorithm and the worst values by Central-Embedding
Algorithm. In all charts, as the average outdegree of tree T increases, the dynamic improve-
ment for any fixed value of k decreases. Also notice that iD(h, k) measured for Random and
Central-Embedding Algorithm can be negative when the outdegree of the vertices increases (see
Figure 3.a and Figure 3.b). This shows that not all strategies are able to take advantage of the
knowledge of the future. On the other hand, iD(h, k) is always positive for Leftmost-Embedding

Algorithm, which performs better than the other two in all experiments that we have run.
The charts relative to Leftmost-Embedding Algorithm illustrate tradeoffs between the values

of the dynamic and static quality measures. In particular, as k increases, there is an improvement
of the performances with respect to mD(h, k) and a worsening with respect to mS(h.k).

We can summarize the outcome of our experimental study as follows.

• Each level of knowledge identifies a tradeoff between the aesthetics of the drawing and the
preservation of the mental map.

• An effective approach to the design of a drawing algorithm that achieves a pleasing compro-
mise between aesthetic requirements and preservation of the mental map is based on using
only a limited knowledge of the future.

4 Analysis

In this section we analytically compare the performances of Leftmost-Embedding Algorithm and
of Central-Embedding Algorithm. This comparison considers the behavior of the total-shift
quality measures for both algorithms when k goes to infinity. The analytical behavior of the
curves of mD(h, k, t) for large values of k is consistent with the behavior observed experimentally
for small values of k. We start by introducing some definitions and basic tools.

Let v be a vertex of Th,k(t) and consider a drawing Γ of Th,k(t). The difference between
the x-coordinate of v and the x-coordinate of p(v) in Γ is denoted as δh,k(v, t), i.e., δh,k(v, t) =
x(p(v), t) − x(v, t). The following lemma shows the interplay between time and knowledge by
relating the values of δ() at consecutive instants of time with the values of δ() for consecutive
values of k.
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Lemma 1 Let v be a non-root vertex in Th,k(t)∩Th,k(t+1) = Th,k−1(t+1). For any drawing pro-
duced by Leftmost-Embedding Algorithm (Central-Embedding Algorithm) we have δh,k(v, t) =
δh,k−1(v, t + 1).

Sketch of Proof: δh,k(v, t) is measured on the drawing of Th,k(t), while δh,k−1(v, t + 1) is
measured on the drawing of Th,k−1(t + 1). Because Th,k−1(t + 1) is the subtree of Th,k(t) rooted
at r(t + 1), and since Leftmost-Embedding Algorithm (Central-Embedding Algorithm) draws
a subtree with a bottom-up-strategy independent of the size of the enclosing supertree, we have
that δh,k(v, t) = δh,k−1(v, t + 1). 2

From the previous lemma we have that the variation of δ from instant t to instant t + 1 is
equal to the variation of δ when the knowledge at instant t + 1 varies from k − 1 to k.

Corollary 1 δh,k(v, t + 1) − δh,k(v, t) = δh,k(v, t + 1) − δh,k−1(v, t + 1).

Corollary 1 allows us to study the variation of δ by considering Th,k−1(t + 1) and Th,k(t + 1),
instead of looking at Th,k(t) and Th,k(t + 1). Since Th,k−1(t + 1) and Th,k(t + 1) share the root,
we can univocally define a level for their vertices; we assume that the root has level 0.

4.1 Analysis of Leftmost-Embedding Algorithm

Consider a drawing Γ of Th,k(t + 1) produced by Leftmost-Embedding Algorithm. All vertices
that have the same level in Th,k(t + 1) also have the same y-coordinate in Γ. Thus, we also talk
about levels of Γ.

• Let 0 ≤ i ≤ k be a level of Γ, let r(t + 1 + i) be the vertex of the visualization path at
level i, and let u be its rightmost child. We denote with ω(i, k) the quantity ω(i, k) =
x(u, t + 1) − x(r(t + 1 + i), t + 1)) = |δh,k(u, t + 1)|. Also, we denote with µ(k) the quantity
µ(k) = ω(k, k).

• Let 1 ≤ i ≤ k be a level of Γ, let r(t+ i) be the vertex of the visualization path at level i−1,
and let r(t+1+ i) its leftmost child. Also, let v be the rightmost child of r(t+ i) and let u be
the rightmost child of r(t+1+ i). We denote with λ(i, k) the quantity λ(i, k) = x(v)−x(u).

Examples of the quantities λ(i, k), ω(i, k), and µ(k) are depicted in Figure 4.

ω (k-2,k)

(k-1,k)ω

.....

ω (k,k)(k) =µ

λ (k,k)

(k-1,k)λ

ω (i,k) (i,k)λ

ω (0,k)

ω (2,k) (2,k)λ

ω (1,k) (1,k)λ

k+h

k+1
k

k+h-1

h

.....
.....

k .....

0

i-1
i

........
....

......
r(t+i)

vr(t+i+1)

u

Figure 4: Quantities λ(i, k), ω(i, k), and µ(k) for the analysis of the drawings produced by
Leftmost-Embedding Algorithm.

Lemma 2 For any positive integer k and for any integer 0 ≤ i ≤ k − 1, we have that λ(i, k) =
λ(i, k − 1).

Lemma 3 Let t be an instant of time, and let h and k be the integers that define the size of
the visualization window and of the knowledge window. For a drawing of Th,k(t) produced by
Leftmost-Embedding Algorithm we have that we have that:

ω(i, k) =
µ(k)

2k−i
+

k−i
∑

j=1

λ(i + j, k)

2j
i ∈ [0, k]
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Sketch of Proof: The proof follows from the solution of the following recurrence equation
(see also Figure 4):

ω(i, k) =

{ 1
2
[ω(i + 1, k) + λ(i + j, k)] 0 ≤ i < k

µ(k) i = k

2

By means of Lemma 2 and Lemma 3 the following can be proved.

Lemma 4 Let t be an instant of time, and let h and k be the integers that define the size of
the visualization window and of the knowledge window. For a drawing of Th,k(t) produced by
Leftmost-Embedding Algorithm we have that we have that:

ω(i, k) − ω(i, k − 1) =
λ(k, k) − µ(k) + 2µ(k − 1)

2k−i
i ∈ [0, k]

We are now ready to study the variation of ω as k goes to infinity. In order to ensure a finite
limit, we need to bound the values of µ(k), µ(k − 1), and λ(k, k). Lemma 5 shows that this is
always possible under the assumption that the maximum vertex degree of T is finite. The limit
for the variation of ω as k goes to infinity is computed in Lemma 6.

Lemma 5 Let T be an infinite tree whose maximum vertex outdegree is bounded by a constant.
Then there exists a constant ξ such that ∀k λ(k, k) − µ(k) + 2µ(k − 1) ≤ ξ.

Lemma 6 Let T be an infinite tree whose maximum vertex outdegree is bounded by a constant.
Then,

∀i ∈ [0, k] lim
k→∞

(ω(i, k) − ω(i, k − 1)) = 0

Sketch of Proof: In view of Lemma 5, a constant ξ exists such that ∀k λ(k, k) − µ(k) +
2µ(k − 1) ≤ ξ. The claim immediately follows from Lemma 4:

lim
k→∞

(ω(i, k) − ω(i, k − 1)) = lim
k→∞

λ(k, k) − µ(k) + 2µ(k − 1)

2k−i
≤ lim

k→∞

ξ

2k−i
= 0

2

The following lemma provides a concise formula for the sum of the contributes to the dynamic
quality measure mD(h, k, t) due to the vertices laying on the same level of Th,k(t).

Lemma 7 Let t be an instant of time, and let h and k be the integers that define the size of
the visualization window and of the knowledge window. For a drawing of Th,k(t) produced by
Leftmost-Embedding Algorithm, we have that:

∀i ∈ [0, h−2]
∑

v ∈ Th−1(t + 1)
at level i + 1

|δh,k−1(v, t+1)−δh,k(v, t+1)| = outdeg(ri)(ω(i, k)−ω(i, k−1))

We are now able to express the dynamic quality measure mD(h, k, t) as a function of ω(i, k)

and to compute the limit of the improvement iD(h, k, t) = mD(h,0,t)−mD(h,k,t)
mD(h,0,t)

as k goes to infinity.

Theorem 1 Let t be an instant of time, and let h and k be the integers that define the size of
the visualization window and of the knowledge window. For a drawing of Th,k(t) produced by
Leftmost-Embedding Algorithm, let mD(h, k, t) be the total-shift dynamic quality measure. Then

lim
k→∞

mD(h, 0, t) − mD(h, k, t)

mD(h, 0, t)
= 1

Sketch of Proof: We recall from Section 2 the definition of the dynamic quality measure
mD:

mD(h, k, t) =
∑

v∈Th−1(t+1)−{r(t+1)}

|x(p(v), t) − x(v, t) − (x(p(v), t + 1) − x(v, t + 1))|

According to the definition of δ we have that x(p(v), t) − x(v, t) = δh,k(v, t) and x(p(v), t + 1) −
x(v, t + 1 ) = δh,k(v, t + 1) and that, in view of Lemma 1, δh,k(v, t) = δh,k−1(v, t + 1). Hence
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mD(h, k, t) =
∑

v∈Th−1(t+1)−{r(t+1)}

|δh,k−1(v, t + 1) − δh,k(v, t + 1)|

Partitioning vertices in Th−1(t + 1) according to their level we have

mD(h, k, t) =

h−2
∑

i=0

∑

v ∈ Th−1(t + 1)
at level i + 1

|δh,k−1(v, t + 1) − δh,k(v, t + 1)|

which, in view of Lemma 7, and supposing k ≥ h in order to use ω in its domain, gives

mD(h, k, t) =

h−2
∑

i=0

outdeg(r(t + 1 + i))|ω(i, k) − ω(i, k − 1)|

Therefore, the truth of the statement follows from Lemma 6. 2

4.2 Analysis of Central-Embedding Algorithm

In this section we compare the behavior of Central-Embedding Algorithm to that of Leftmost-Embedding
Algorithm with respect to the total-shift dynamic quality measure.

Consider a drawing of Th,k(t+1) produced by Central-Embedding Algorithm. The quantities
ω(i, k) and µ(k) can be defined in the same way as in Subsection 4.1. We need two new definitions.
Refer also to Figure 5.

Let r(t+1+ i) be a vertex at level 1 ≤ i ≤ k in the visualization path and let p(r(t+1+ i)) be
its parent. Let u and v be the rightmost and the leftmost children of r(t+1+ i), respectively. Let
w and z be the rightmost and the leftmost children of p(r(t+1+ i)), respectively. We denote with
λl(i, k) the quantity λl(i, k) = x(v) − x(z) and with λr(i, k) the quantity λr(i, k) = x(w) − x(u).

k

h

0

k+h

k+1
k

k+h-1

2ω(1,k)λ
l
(1,k) λ

r
(1,k)

(k-1,k)2ωλ
l
(k-1,k)

l
λ (k,k)

r
λ (k,k)

r
λ (k-1,k)

..... ........
..........

..... .....

(k,k)2ω(k) =2µ

r(t+k-1)

r(t+k)
v

z

u

w

Figure 5: Pruned tree and quantities λl(i, k), λr(i, k), ω(i, k), and µ(k) for the analysis of the drawings
produced by Central-Embedding Algorithm.

With reasoning similar to that of Lemma 3 and Lemma 7, the following lemmas can be proved.

Lemma 8 Let t be an instant of time, and let h and k be the integers that define the size of
the visualization window and of the knowledge window. For a drawing of Th,k(t) produced by
Central-Embedding Algorithm we have that:

ω(i, k) = µ(k) +

k−i
∑

j=1

λl(i + j, k) + λl(i + j, k)

2
i ∈ [0, k]
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Lemma 9 Let t be an instant of time, and let h and k be the integers that define the size of
the visualization window and of the knowledge window. For a drawing of Th,k(t) produced by
Central-Embedding Algorithm we have that:

∀i ∈ [0, h−2]
∑

v ∈ Th−1(t + 1)
at level i + 1

|δh,k−1(v, t+1)−δh,k(v, t+1)| = [outdeg(ri)−1](ω(i, k)−ω(i, k−1))

By means of Lemma 7 and Lemma 9, we can prove the following theorem, which states that for
any sufficiently large value of k the performances of Leftmost-Embedding Algorithm are always
better than the performances of Central-Embedding Algorithm .

Theorem 2 Let t be an instant of time, and let h and k be the integers that define the size of
the visualization window and of the knowledge window. Let mD

l(h, k, t) and mD
c(h, k, t) be the

total-shift dynamic quality measure of Leftmost-Embedding Algorithm and Central-Embedding
Algorithm, respectively. Then

∃k0 ≥ 0 : ∀k ≥ k0 mD
c(h, k, t) ≥ mD

l(h, k, t)

5 Conclusions and Open Problems

This paper has proposed a new framework for visually supporting the navigation of infinite graphs
in which the knowledge of part of the future moves of the user can be exploited to preserve her
mental map. As an illustration of this framework, the problem of drawing the portions of an
infinite tree that the user visits during her navigation has been studied. Our research seems to
open several new problems.

We mention here some of those that in our opinion are among the most relevant.

1. Devise new strategies for supporting the navigation of infinite trees.

2. Extend our study to different families of graphs, for example planar graphs.

3. The model in which every vertex v of an infinite graph has one favorite neighbor can be
extended by assuming that each neighbor of v has a certain probability to be visited by the
user in her next navigation step.
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