
Interactive Partitioning(System demonstration, short)Neal Lesh1, Joe Marks1, and Maurizio Patrignani21 MERL | A Mitsubishi Electric Research Laboratory, Cambridge, MA 02139flesh,marksg@merl.com2 Dip. di Informatica e Automazione, Universit�a di Roma Tre, Rome, Italypatrigna@dia.uniroma3.itAbstract. Partitioning is often used to support better graph drawing;in this paper, we describe an interactive system in which graph drawingis used to support better partitioning. In our system the user is presentedwith a drawing of a current network partitioning, and is responsible forchoosing appropriate optimization procedures and for focusing their ap-plication on portions of the network. Our pilot experiments show that ournetwork drawings succeed in conveying some of the information neededby the human operator to steer the computation e�ectively, and sug-gest that interactive, human-guided search may be a useful alternativeto fully automatic methods for network and graph partitioning.1 IntroductionInteractive, semi-automatic systems have been developed for several conventionaloptimization tasks, such as routing, scheduling, and layout; interactive systemshave also been developed for unconventional optimization tasks such as geometricdesign and data analysis. One motivation to involve people in an optimizationprocess is to combine a computer's fast processing speed with a human's superiorability in such areas as visual perception, learning from experience, and strategicassessment.Bringing a human into the loop requires the development of operators withwhich a human user can steer or focus the optimization process, and visu-alizations that allow the user to apply these operators e�ectively. In recentwork we have investigated a very tight integration of human and computer tosolve optimization problems; we call our approach Human-Guided Simple Search(HuGSS), and we have applied it successfully to the problem of capacitated ve-hicle routing with time windows [3]. We are currently trying to apply the samegeneral approach to the problem of k-way network partitioning, an importantNP-hard problem that arises in VLSI design and elsewhere [2].In this paper we demonstrate the visualization aspects of our interactivenetwork-partitioning system. The networks that we consider are derived fromchip circuits modeled as hypergraphs; these hypergraphs have up to 200; 000nodes and as many hyperedges. We need to visualize those aspects of a net-work that are relevant to partitioning it optimally: the number and strength of



hyperedges in the cut set; the size and structure of the partition blocks; andultimately the partition blocks and network nodes on which to focus the searchfor best results. Furthermore, the computational time of the whole visualizationprocess should be appropriate for an interactive environment.2 Problem DescriptionA network or hypergraph G is a pair (V;H), where V is a set of nodes and H is aset of nonempty subsets of V , called hyperedges. Constrained k-way partitioningis the NP-hard problem of partitioning the nodes of a network into k disjointsubsets, called blocks, so as to minimize the number of hyperedges spanning twoor more blocks. The sizes of the blocks are allowed to vary around the valuenk , where n = jV j; a typical value for the allowed variance is 10%. In currentstate-of-the-art benchmark problems, jV j and jH j range from 10,000 to 200,000,and k is less than 10 [1]. A recent survey describes the many heuristics that havebeen devised for this problem [2].Typical heuristics for di�cult combinatorial optimization problems combinesome form of gradient descent to �nd local minima with some strategy for es-caping nonoptimal local minima and exploring the solution space. The HuGSSframework for interactive search [3] divides these two subtasks cleanly betweenhuman and computer: the computer is responsible only for �nding local minimausing a simple search method; using visualization and interaction techniques,the human user identi�es promising regions of the search space for the computerto explore, and intervenes to help it escape nonoptimal local minima.The HuGSS approach translates to the following search and focus operatorsavailable to the user in our network-partitioning system:1. Manually edit the current partition by moving nodes between blocks.2. Launch a re�nement heuristic on the whole network, or on a focused subset ofthe blocks or nodes. Several heuristics are available in our current prototype,ranging from simple hill-climbing methods to more sophisticated techniques.3. Navigate a history list of previous solutions and revert to an earlier one.The key to our system is the e�ective selection and focusing of search heuristicsin Step 2 by the human user. For this to be possible, the user must be able toidentify fruitful areas of the network on which to concentrate the computer'ssearch, and also be able to choose appropriate heuristics for the subproblemsencountered in the focus areas. For example, he might try to identify groups ofnodes that are loosely connected to nodes in their current block but stronglyconnected to nodes in other blocks. Including such nodes in a focused searchwill allow the computer to spend more e�ort looking at ways to rearrange justthese nodes to achieve a better partition. And depending on the search focus andthe nature of the current partition, some search heuristics might be better thanothers: for example, a tightly focused search might bene�t from the applicationof a more thorough search heuristic than one could a�ord to use on the wholenetwork.



3 Our Network VisualizationWe designed our visualization to help the user make decisions about how to focusthe search and to select search heuristics.Because it is di�cult to unambiguously draw a hypergraph, we convert thehypergraph into a graph with weighted edges. We replace each hyperedge ofdegree n with a clique of n(n�1)2 edges whose weights are 2n(n�1) .

Fig. 1. A visualization of a partition of network ibm01.We use a force-directed approach to determine the position of each node.Each edge in the induced graph is replaced by a spring that opposes stretchingor compressing with a force proportional to its weight. Furthermore, a spring isattached between each node and the hub of its block. The hubs themselves are�xed and positioned uniformly around a circle. For reasons of e�ciency, no otherforces are considered, including repulsive forces between nodes.A drawing produced with this algorithm is shown in Figure 1. Since each nodeis attracted towards the hub of its block, nodes in the same block tend to overlapnear their hub, and only the ones that are strongly linked to other blocks stretchout and are easily distinguishable. These are typically the nodes that interest usthe most, since they are those most likely to move usefully between blocks.In addition to node position, other visual methods are used to convey infor-mation about the partition. Membership in a block is indicated by node color.



Edge weights are mapped onto intensity, so that edges of greater weight appearbrighter. And at each hub an icon comprising a star-shaped polygon and circleindicates whether the block is near its minimum or maximum allowed size.The visualization in Figure 1 is useful for comprehending the general struc-ture of a partition and the relative sizes of the blocks. Figure 2 shows the resultof a second force-directed system we designed speci�cally for visualizing pairsof blocks in isolation. We install a spring for each edge between nodes of theblock pair and add a rightwards-pulling force to each node in proportion to theweight of its edges to the other blocks. Thus, each node is pulled towards the topor bottom of the screen, depending on its a�nity for the top or bottom blockand pulled towards the right depending on its a�nity for the other blocks. Thenodes in the left center of the screen are those that are strongly connected toboth blocks and weakly connected to the other blocks (see Figure 2a); a focusedsearch involving these nodes1 might have several chances for reducing the cutset between the blocks by exchanging some of these nodes. A better scenariois shown in Figure 2d: it is clear that many nodes in the bottom block wouldprefer to be in the top block, but it is full|the circle surrounds the block iconin the top-left corner|and cannot accommodate them at the moment. However,if nodes can be moved out of the top block without incurring additional cut-setcosts (we envision providing an operator that allows the user to request such anadjustment), the bottom-block nodes might then be included with some likelysavings in cut-set cost. Finally, Figures 2b and 2c show less promising cases:there are few nodes loosely connected to the other blocks that are also stronglyconnected to both blocks in the pair; moving nodes between these blocks is lesslikely to reduce the cut-set cost.4 Preliminary ExperimentsWe ran some initial experiments to measure the e�ectiveness of our visualizationin enabling users to identify promising pairs of blocks upon which to focus asimple re�nement algorithm. Although these \selection-only" experiments areonly a crude test {we anticipate focusing searches at a �ner granularity in the�nished system{it served to validate that our visualizations contain useful cues.In each experiment, a group of two or three users (the authors of the system)were presented with a partition of a large network. Using only the visualizationcapabilities of our system (i.e., they could not launch any optimization algo-rithms or move any nodes between blocks manually), their task was to selectand rank the most promising pairs of blocks for subsequent focused searches.For our experiments we obtained 8-way partitions of the ibm04,. . . , ibm08networks from the benchmark set in [1] by running the Sanchis re�nement algo-rithm ([5]) on the best solution produced by 200 runs of the hMeTis system [4],one of the most widely used network-partitioning systems. We computed a score1 A more useful search might focus on these nodes and their close neighbors in thehypergraph structure. Our interface allows the user to expand the current set offocused nodes to include all their neighbors.



(a) (b)

(c) (d)Fig. 2. Visualizing pairs of blocksfor each pair of blocks by running the hMeTis algorithm on just those blocks 20times and then launching the Sanchis algorithm on the best partition found. Tocompute the score for each pair we repeated this process 10 times and averagedthe results.As shown by the solid line in Figure 3, our visualizations easily allow peopleto select the most promising pairs of blocks. For n = 1 to 14, the graph showsthe average sum of the scores of the �rst n selected pairs divided by the totalsum of the scores of all the pairs. For example, the scores of the �rst three pairsselected were, on average, about 50% of the sum of the scores of all 28 possiblepairs. This shows that the user selections were far better than the expected valueof random selections, as indicated by the dotted line in the chart.However, the relatively simple heuristic of ranking the pairs of blocks bythe total weight of the edges between them also produced excellent results, justslightly worse than that achieved by human selection. Although the di�erence issmall (after three selections human selection is 8% better than the size heuristicon average), it is not insigni�cant: given the current state of the art and the com-
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Fig. 3. Experimental resultsmercial signi�cance of VLSI design, very small improvements in the performanceof partitioning systems are both hard to achieve and very useful. Furthermore,when we correctly selected block pairs out of order relative to the size heuristic,we usually did so based on our observation of complex patterns in the visual-izations, as indicated by the discussion of Figure 2. We conjecture that futurework will allow us to take greater advantage of these observations by employingsearch and focus operators that are more sophisticated than simply applying thesame re�nement algorithm to all the nodes in a block pair.5 Conclusions and Future WorkTraditionally graph drawing has been used to support analysis-oriented tasksinvolving databases, software engineering, and computer and communicationnetworks. In this paper we demonstrate the potential use of graph drawing tosupport an optimization-oriented task, network partitioning. Although at anearly stage in our research, we have implemented a fully working system and es-tablished that graph drawing can supply useful information about large networkpartitions to a human user. In future work we plan to re�ne our set of searchand focus operators and devise experiments to see if human users can use oursystem to improve state-of-the-art solutions to network-partition problems.References1. C. J. Alpert. The ISPD98 circuit benchmark suite. In Proc. of the Intl. Symposiumof Physical Design (ISPD'98), pages 80{85, 1998.2. C. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning: A survey.Integration: The VLSI Journal, 19:1{81, 1995.3. D. Anderson, E. Anderson, N. Lesh, J. Marks, B. Mirtich, D. Ratajczak, andK. Ryall. Human-guided simple search. To Appear in Proc. of AAAI 2000. Alsohttp://www.merl.com/reports/TR2000-16/index.html.4. G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. In Proc. ofthe 36th Design Automation Conference, pages 343{348, 1999.5. L. A. Sanchis. Multiple-way network partitioning. IEEE Trans. on Comp., 38:62{81,1989.


