Interactive Partitioning

(System demonstration, short)

Neal Lesh!, Joe Marks', and Maurizio Patrignani?

! MERL — A Mitsubishi Electric Research Laboratory, Cambridge, MA 02139
{lesh,marks}@merl. com
2 Dip. di Informatica e Automazione, Universitd di Roma Tre, Rome, Italy
patrigna@dia.uniroma3d.it

Abstract. Partitioning is often used to support better graph drawing;
in this paper, we describe an interactive system in which graph drawing
is used to support better partitioning. In our system the user is presented
with a drawing of a current network partitioning, and is responsible for
choosing appropriate optimization procedures and for focusing their ap-
plication on portions of the network. Our pilot experiments show that our
network drawings succeed in conveying some of the information needed
by the human operator to steer the computation effectively, and sug-
gest that interactive, human-guided search may be a useful alternative
to fully automatic methods for network and graph partitioning.

1 Introduction

Interactive, semi-automatic systems have been developed for several conventional
optimization tasks, such as routing, scheduling, and layout; interactive systems
have also been developed for unconventional optimization tasks such as geometric
design and data analysis. One motivation to involve people in an optimization
process is to combine a computer’s fast processing speed with a human’s superior
ability in such areas as visual perception, learning from experience, and strategic
assessent.

Bringing a human into the loop requires the development of operators with
which a human user can steer or focus the optimization process, and visu-
alizations that allow the user to apply these operators effectively. In recent
work we have investigated a very tight integration of human and computer to
solve optimization problems; we call our approach Human-Guided Simple Search
(HuGSS), and we have applied it successfully to the problem of capacitated ve-
hicle routing with time windows [3]. We are currently trying to apply the same
general approach to the problem of k-way network partitioning, an important
NP-hard problem that arises in VLSI design and elsewhere [2].

In this paper we demonstrate the visualization aspects of our interactive
network-partitioning system. The networks that we consider are derived from
chip circuits modeled as hypergraphs; these hypergraphs have up to 200,000
nodes and as many hyperedges. We need to visualize those aspects of a net-
work that are relevant to partitioning it optimally: the number and strength of

hyperedges in the cut set; the size and structure of the partition blocks; and
ultimately the partition blocks and network nodes on which to focus the search
for best results. Furthermore, the computational time of the whole visualization
process should be appropriate for an interactive environment.

2 Problem Description

A network or hypergraph G is a pair (V, H), where V is a set of nodes and H is a
set of nonempty subsets of V', called hyperedges. Constrained k-way partitioning
is the NP-hard problem of partitioning the nodes of a network into & disjoint
subsets, called blocks, so as to minimize the number of hyperedges spanning two
or more blocks. The sizes of the blocks are allowed to vary around the value
%, where n = |V[; a typical value for the allowed variance is 10%. In current
state-of-the-art benchmark problems, |V| and |H| range from 10,000 to 200,000,
and k is less than 10 [1]. A recent survey describes the many heuristics that have
been devised for this problem [2].

Typical heuristics for difficult combinatorial optimization problems combine
some form of gradient descent to find local minima with some strategy for es-
caping nonoptimal local minima and exploring the solution space. The HuGSS
framework for interactive search [3] divides these two subtasks cleanly between
human and computer: the computer is responsible only for finding local minima
using a simple search method; using visualization and interaction techniques,
the human user identifies promising regions of the search space for the computer
to explore, and intervenes to help it escape nonoptimal local minima.

The HuGSS approach translates to the following search and focus operators
available to the user in our network-partitioning system:

1. Manually edit the current partition by moving nodes between blocks.

2. Launch a refinement heuristic on the whole network, or on a focused subset of
the blocks or nodes. Several heuristics are available in our current prototype,
ranging from simple hill-climbing methods to more sophisticated techniques.

3. Navigate a history list of previous solutions and revert to an earlier one.

The key to our system is the effective selection and focusing of search heuristics
in Step 2 by the human user. For this to be possible, the user must be able to
identify fruitful areas of the network on which to concentrate the computer’s
search, and also be able to choose appropriate heuristics for the subproblems
encountered in the focus areas. For example, he might try to identify groups of
nodes that are loosely connected to nodes in their current block but strongly
connected to nodes in other blocks. Including such nodes in a focused search
will allow the computer to spend more effort looking at ways to rearrange just
these nodes to achieve a better partition. And depending on the search focus and
the nature of the current partition, some search heuristics might be better than
others: for example, a tightly focused search might benefit from the application
of a more thorough search heuristic than one could afford to use on the whole
network.

3 Owur Network Visualization

We designed our visualization to help the user make decisions about how to focus
the search and to select search heuristics.

Because it is difficult to unambiguously draw a hypergraph, we convert the
hypergraph into a graph with weighted edges. We replace each hyperedge of

degree n with a clique of M edges whose weights are #ﬂ)

Fig. 1. A visualization of a partition of network ibm01.

We use a force-directed approach to determine the position of each node.
Each edge in the induced graph is replaced by a spring that opposes stretching
or compressing with a force proportional to its weight. Furthermore, a spring is
attached between each node and the hub of its block. The hubs themselves are
fixed and positioned uniformly around a circle. For reasons of efficiency, no other
forces are considered, including repulsive forces between nodes.

A drawing produced with this algorithm is shown in Figure 1. Since each node
is attracted towards the hub of its block, nodes in the same block tend to overlap
near their hub, and only the ones that are strongly linked to other blocks stretch
out and are easily distinguishable. These are typically the nodes that interest us
the most, since they are those most likely to move usefully between blocks.

In addition to node position, other visual methods are used to convey infor-
mation about the partition. Membership in a block is indicated by node color.

Edge weights are mapped onto intensity, so that edges of greater weight appear
brighter. And at each hub an icon comprising a star-shaped polygon and circle
indicates whether the block is near its minimum or maximum allowed size.

The visualization in Figure 1 is useful for comprehending the general struc-
ture of a partition and the relative sizes of the blocks. Figure 2 shows the result
of a second force-directed system we designed specifically for visualizing pairs
of blocks in isolation. We install a spring for each edge between nodes of the
block pair and add a rightwards-pulling force to each node in proportion to the
weight of its edges to the other blocks. Thus, each node is pulled towards the top
or bottom of the screen, depending on its affinity for the top or bottom block
and pulled towards the right depending on its affinity for the other blocks. The
nodes in the left center of the screen are those that are strongly connected to
both blocks and weakly connected to the other blocks (see Figure 2a); a focused
search involving these nodes' might have several chances for reducing the cut
set between the blocks by exchanging some of these nodes. A better scenario
is shown in Figure 2d: it is clear that many nodes in the bottom block would
prefer to be in the top block, but it is full—the circle surrounds the block icon
in the top-left corner—and cannot accommodate them at the moment. However,
if nodes can be moved out of the top block without incurring additional cut-set
costs (we envision providing an operator that allows the user to request such an
adjustment), the bottom-block nodes might then be included with some likely
savings in cut-set cost. Finally, Figures 2b and 2c show less promising cases:
there are few nodes loosely connected to the other blocks that are also strongly
connected to both blocks in the pair; moving nodes between these blocks is less
likely to reduce the cut-set cost.

4 Preliminary Experiments

We ran some initial experiments to measure the effectiveness of our visualization
in enabling users to identify promising pairs of blocks upon which to focus a
simple refinement algorithm. Although these “selection-only” experiments are
only a crude test —we anticipate focusing searches at a finer granularity in the
finished system—it served to validate that our visualizations contain useful cues.
In each experiment, a group of two or three users (the authors of the system)
were presented with a partition of a large network. Using only the visualization
capabilities of our system (i.e., they could not launch any optimization algo-
rithms or move any nodes between blocks manually), their task was to select
and rank the most promising pairs of blocks for subsequent focused searches.
For our experiments we obtained 8-way partitions of the ibm04,..., ibm08
networks from the benchmark set in [1] by running the Sanchis refinement algo-
rithm ([5]) on the best solution produced by 200 runs of the hMeTis system [4],
one of the most widely used network-partitioning systems. We computed a score

! A more useful search might focus on these nodes and their close neighbors in the
hypergraph structure. Our interface allows the user to expand the current set of
focused nodes to include all their neighbors.

Fig. 2. Visualizing pairs of blocks

for each pair of blocks by running the hMeTis algorithm on just those blocks 20
times and then launching the Sanchis algorithm on the best partition found. To
compute the score for each pair we repeated this process 10 times and averaged
the results.

As shown by the solid line in Figure 3, our visualizations easily allow people
to select the most promising pairs of blocks. For n = 1 to 14, the graph shows
the average sum of the scores of the first n selected pairs divided by the total
sum of the scores of all the pairs. For example, the scores of the first three pairs
selected were, on average, about 50% of the sum of the scores of all 28 possible
pairs. This shows that the user selections were far better than the expected value
of random selections, as indicated by the dotted line in the chart.

However, the relatively simple heuristic of ranking the pairs of blocks by
the total weight of the edges between them also produced excellent results, just
slightly worse than that achieved by human selection. Although the difference is
small (after three selections human selection is 8% better than the size heuristic
on average), it is not insignificant: given the current state of the art and the com-

—— human selection

0.8 — — size heuristic
random selection

Cumulative score

3 4 X 5
Rank of selection

Fig. 3. Experimental results

mercial significance of VLSI design, very small improvements in the performance
of partitioning systems are both hard to achieve and very useful. Furthermore,
when we correctly selected block pairs out of order relative to the size heuristic,
we usually did so based on our observation of complex patterns in the visual-
izations, as indicated by the discussion of Figure 2. We conjecture that future
work will allow us to take greater advantage of these observations by employing
search and focus operators that are more sophisticated than simply applying the
same refinement algorithm to all the nodes in a block pair.

5 Conclusions and Future Work

Traditionally graph drawing has been used to support analysis-oriented tasks
involving databases, software engineering, and computer and communication
networks. In this paper we demonstrate the potential use of graph drawing to
support an optimization-oriented task, network partitioning. Although at an
early stage in our research, we have implemented a fully working system and es-
tablished that graph drawing can supply useful information about large network
partitions to a human user. In future work we plan to refine our set of search
and focus operators and devise experiments to see if human users can use our
system to improve state-of-the-art solutions to network-partition problems.

References

1. C. J. Alpert. The ISPD98 circuit benchmark suite. In Proc. of the Intl. Symposium
of Physical Design (ISPD’98), pages 80-85, 1998.

2. C. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning: A survey.
Integration: The VLSI Journal, 19:1-81, 1995.

3. D. Anderson, E. Anderson, N. Lesh, J. Marks, B. Mirtich, D. Ratajczak, and
K. Ryall. Human-guided simple search. To Appear in Proc. of AAAT 2000. Also
http://www.merl.com/reports/TR2000-16/index.html.

4. G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. In Proc. of
the 36th Design Automation Conference, pages 343-348, 1999.

5. L. A. Sanchis. Multiple-way network partitioning. IEEE Trans. on Comp., 38:62-81,
1989.

