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Abstract. In this paper we study the clustered graphs whose underlying graph
is a cycle. This is a simple family of clustered graphs that are “highly non con-
nected”. We start by studying 3-cluster cycles, that are clustered graphs such that
the underlying graph is a simple cycle and there are three clusters all at the same
level. We show that in this case testing the c-planarity can be done efficiently
and give an efficient drawing algorithm. Also, we characterize 3-cluster cycles in
terms of formal grammars. Finally, we generalize the results on 3-cluster cycles
considering clustered graphs that at each level of the inclusion tree have a cy-
cle structure. Even in this case we show efficient c-planarity testing and drawing
algorithms.

1 Introduction

Consider the following problem. A cycle is given where each vertex has a label. Is it
possible to add new edges so that: (i) the new graph (i.e. cycle plus new edges) is planar
and (ii) for each label, the subgraph induced by the vertices with that label is connected?
An exampleisin Fig. 1.a. In this case the problem admits a solution, depicted in Fig. 1.b.
In this paper we tackle problems of the above type. Such kind of problems arise in
the field ofclustered planarityf8,7]. Given a graph, alusteris a non empty subset of
its vertices. Aclustered grapltonsists of a grapty and a rooted tre&' such that the
leaves ofl" are the vertices ofr. Each node of T' corresponds to the clustéf(v) of
G whose vertices are the leaves of the subtree rootedHte subgraph of; induced
by V(v) is denoted a%7(v). An edgee between a vertex oV (v) and a vertex of
V — V(v) is said to bencidentonv. GraphG and tre€l" are calledunderlying graph
andinclusion treg respectively. A clustered graphdsnnectedf for each nodes of T’
we have that7(v) is connected.
In a drawing of a clustered graph each vertex@fis a point and each edge is a
simple curve between its end-vertices. For each nodéT, G(v) is drawn inside a
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Fig. 1. (a) An example of a cycle with labels ifu, b, c}. (b) The cycle with extra edges. (c) The
corresponding clustered drawing of the cycle.

simple closed regio®(v) such that: (i) for each nodeof T that is neither an ancestor
nor a descendant of, R(x) is completely contained in the exterior &{v); (ii) an
edgee incident onv crosses the boundary &f(v) exactly once. We say that edge
and regionRk have anedge-region crossing both endpoints ot are outsideR ande
crosses the boundary &. A drawing of a clustered graph tsplanarif it does not
have edge crossings and edge-region crossings. A clustered graplaisarif it has a
c-planar drawing.

Consider again the example of Fig. 1 according to the above definitions. The cycle
is the underlying graph of a clustered graph. Vertices with the same label are in the
same cluster. The inclusion tree consists of a root with three children, demobed
andc. The children of node are the vertices labeled The edges added to the cycle
are used to “simulate” the closed regions containing the clusters (See Fig. 1.c). In this
paper we callkaturator such set of edges. The clustered graph of the example is c-
planar. Further, the problem of adding extra edges to a labeled cycle admits a solution
iff the corresponding clustered graph is c-planar. Observe that the clustered graph of the
example is not connected.

Clustered planarity, because of its practical impact and because of its theoretical
appeal, attracted many research contributions. Feng, Cohen, and Eades devised the first
polynomial time c-planarity testing algorithm for connected clustered graphs [8]. A
planarization algorithm for connected clustered graph is shown in [5]. However, the
complexity of the c-planarity testing for a non connected clustered graph is still un-
known.

A contribution on this topic has been given by Gutwenger et al. that presented
a polynomial time algorithm for c-planarity testing fatmost connectedlustered
graphs [9]. In almost connected clustered graphs either all nodes corresponding to non
connected clusters are in the same patf istarting at the root of”, or for each non
connected cluster its parent and all its siblings are connected. Also, the works in [1,2]
by Biedl, Kaufmann, and Mutzel can be interpreted as a linear time c-planarity test for
non connected clustered graphs with exactly two clusters at the same level.

Another contribution studying the interplay between c-planarity and connectivity
has been presented in [3] by Cornelsen and Wagner. They showdbatdetely con-
nectedclustered graph is c-planar iff its underlying graph is planar. A completely con-



nected clustered graph is so that not only each cluster is connected but also its comple-
ment is connected.

In this paper we study the clustered graphs whose underlying graph is a cycle. This
is a simple family of clustered graphs that are “highly non connected”. We present the
following results.

— In Section 3 we stud@-cluster cyclesthat are clustered graphs such that the un-
derlying graph is a simple cycle and there are three clusters all at the same level.
We show that in this case testing the c-planarity can be done efficiently. We also
give an efficient drawing algorithm. Further, we show that in this specific case if
the c-planarity problem admits a solution then a saturator exists that is composed
only by simple paths.

— In Section 4 we characterize 3-cluster cycles in terms of formal grammars.

— Finally, in Section 5 we generalize the results on 3-cluster cycles considering clus-
tered graphs that on each level of the inclusion tree have a cycle structure. Even in
this case we show efficient c-planarity testing and drawing algorithms.

Section 2 contains preliminaries, while conclusions and open problems are in Sec-
tion 6.

2 Preéliminaries

We assume familiarity with connectivity and planarity of graphs [6,4]. We also assume
familiarity with formal grammars [10].

Given a c-planar non connected clustered grap&y, T'), a saturatorof C'is a set
of edges that can be added to the underlying gi@pbo thatC' becomes connected
without loosing its c-planarity. Finding a saturator of a clustered graph is important
since it allows to apply t@” the same drawing techniques that have been devised for
connected clustered graphs.

We call3-cluster cyclea clustered graph such that the underlying graph is a simple
cycle and there are exactly three clusters all at the same level (plus the root cluster). In
a 3-cluster cycle the inclusion tree consists of a root node with three children and each
vertex of the underlying cycle is a child of one of these three nodes. Given a 3-cluster
cycle, we associate a label {m, b, ¢} to each of the three clusters. Observe that there
exist 3-cluster cycles that are not c-planar. Fig. 2 provides an example of a non c-planar
3-cluster cycle.

Consider a 3-cluster cycle and arbitrarily select a starting vertex and a direction.
We can visit the cycle and denote it by the sequenad labels associated with the
clusters encountered during the visit. The same clustered cycle is also denoted by any
cyclic permutation ofr and by any reverse sequence of such permutations. We use
Greek letters to denote general sequences and Roman letters to identify single-character
sequences. Given a sequencave denote witl its reverse sequence.

It is easy to see that repeated consecutive labels can be collapsed into a single label
without affecting the c-planarity property of a 3-cluster cycle. Hence, in the following
we consider only 3-cluster cycles where consecutive vertices belong to distinct clusters.
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Fig. 2. A 3-cluster cycle that is not c-planar.

Also, since clusters can not be empty, in a 3-cluster cycle at least one occurrence of
each label can be found.

We assign a cyclic order to the clusters so that b, b < ¢, andc < a. A sequence
o is monotonic increasingdecreasiny if for each pairx, y of consecutive labels af
x <y (y < x). A sequence igyclically increasing (decreasing) monotorifll its
cyclic permutations are increasing (decreasing) monotonic.

Given a 3-cluster cycle, Balance(o) is a number defined as follows. Select a
starting vertex and a direction. Set countdo zero. Visito adding (subtracting) one
unit to ¢ when passing from to iy, wherez < y (y < x). Observe that, when the start-
ing vertex is reached againjs a multiple of3 that can be positive, negative, or zero. If
we selected a different starting vertex, while preserving the direction, we would obtain
the same value. On the contrarygifwvas visited in the opposite direction the opposite
value would be obtained far. Balance(o) = |c|. For example Balance(ababc) = 3
and Balance(cbacba) = 6.

Observe that, when representing a 3-cluster cycle with a sequence of labels, by
reading the sequence from left to right, we implicitly choose a direction for visiting the
cycle. For simplicity, we adopt the convention of representing a 3-cluster cycle with a
sequence such that, when the vertices of the cycle are visited according to the order
induced byr, a non negative value faris obtained.

3 Cycleswith Three Clusters

In this section we address the problem of testing the c-planarity of a 3-cluster cycle.
The following lemma introduces transformations that can be used to simplify 3-cluster
cycles without affecting their c-planarity properties.

Lemmal. Leto = oizayazayos be a 3-cluster cycle such that, o5, anda are
possibly empty anday is monotonic. The 3-cluster cyalé = oy zayos is c-planar if
and only ifo is c-planar.Balance(oc) = Balance(c’).

Proof sketch: An extended version of this proof can be found in the Appendix.

Suppose there exists a c-planar drawingraf The black line in Fig. 3 shows an
example of such a drawing for the portion concerning subsequencesuch a drawing
can be modified by replacing the edge betwgesnd the first vertex of 5 with the



Fig. 3. lllustration of the proof of Lemma 1. Circles represent clusters.

sequencezay. Such sequence can be drawn arbitrarily closedg preserving c-
planarity. Finally, the just added instanceypiay be connected to the first vertex of
o2. The result is shown in Fig. 3 where the added part is drawn gray.

Fig. 4. Zig-zag removal. (a) Starting configuration. (b) Rearrangement of the embedding.

Now, suppose that there exists a c-planar drawing. dfig. 4.a shows an example
of such a drawing for the part concerning subsequenggvzay. The inlet formed by
rayax may contain parts of that are denoted b§ in Fig. 4.a. The parts of that
are contained in the inlet formed hyvray are denoted byP. The embedding o
and @ may be rearranged preserving c-planarity as in Fig. 4.b. Rathy can now
be deleted and substituted by an edge connecting verteth the first vertex ofr 5.
Finally, observe that, since we have removed feotwo monotonic sub-sequences, one
increasing and one decreasing, with the same lergfifynce(c’) = Balance(o). O

For example, Lemma 1 allows to study the c-planarityaicab instead of the c-
planarity ofcabcacbabecab (by takingo, = ¢, x = a, o = be, y = a, andoy = b).
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Fig. 5. lllustration for the proof of Lemma 2.

Lemma2. Let o be a 3-cluster cycle. There exists a 3-cluster cyelesuch that:
Balance(o') = Balance(o), o’ is c-planar iff o is c-planar, and either’ is cycli-
cally monotonic ow’ = zay3, where

1. e andf are non empty,
2. zay is maximal monotonic increasing, and
3. yBx is maximal monotonic decreasing.

Proof sketch: If o is cyclically monotonic the statement is trivially true.dfis
monotonic but not cyclically monotonic note that the lengtlra$ at leastt. Suppose
o = x1xro01 2324, With a1 possibly empty, and suppose without loss of generality that
o is monotonic increasing (otherwigecan be considered). Since all the subsequences
of o are monotonic increasing and x; 2 x3 IS Not monotonic, it follows that 421
is monotonic decreasing. Thus, Lemma 1 can be applieds;to,z;z20q, Whereoy
anda are emptyx = 3 = x1, y = x4 = x2, andos = «y, obtaining the cycle
x3rary = x1x2001, Which is cyclically monotonic increasing and which is c-planar iff
o is c-planar.

Otherwise, suppose is not monotonico is composed byn > 2 maximal mono-
tonic sub-sequences. Namely, tet= x1a12205 . . . (i, Wherez; o,z 41 IS max-
imal monotonic andy; is possibly empty£,,+1 = z1). If m = 2, then, sincer is
not monotonic, botl; andas are non empty and the statement of the lemma holds. If
m > 2, by applying Lemma 1 we prove that there exists a sequence composed By
maximal monotonic subsequences that is c-planar iff c-planar. By repeatedly ap-
plying this argument we find a sequence composed by one or two maximal monotonic
subsequences for which one of the cases discussed above applies.

In order to reduce the number of maximal monotonic sub-sequences by applying
Lemma 1, assume tha; is one of the shortest of such sub-sequences (see Fig. 5) and
consider the sub-sequenege 1o, _1z;0;7;1104112:12. Observe that, it is possible to
findinz;_10;-1 anz and ina; 41242 @y, such thatt = x,41, y = x;, and Lemma 1
can be applied where is the sequence of labels encountered traveling froto x ;

(end vertices excluded) amd= «; (see Fig. 5). O



The following two lemmas (Lemma 3 and Lemma 4) study the c-planarity of the
simple families of 3-cluster cycles cited in Lemma 2.

Lemma 3. A 3-cluster cycles such thato is cyclically monotonic is c-planar if and
only if Balance(o) = 3.

Proof sketch: Sinces is monotonic we have thaBalance(o) # 0. Recall that
Balance(o) is a multiple of3. If Balance(c) = 3, then it can only be the case that
o = abcoro = bca Oro = cab and it is trivial to see that is c-planar.

Suppose thaBalance(o) > 6. We show thaw is not c-planar. Suppose by con-
tradiction that there exists a c-planar drawifig of . Consider the vertices,, vz, v3,
v4, v5 andwg Of o as drawn inl, (see Fig. 6.a). The two edges incidenvtoseparate
v1 from the rest of the vertices of its cluster. Thus, it is possible to add an(edge,)
preserving the planarity of the drawing. For similar reasons, it is possible to add the
edges(vq, v5) and(vs, vg). A contradiction arises from the fact that a subdivision of
a K3 3 can be found in the drawing. Consider, the verticesvs, vs, v4, vs andwvg.
Vertexwv; is connected tag with a path ino and it is directly connected to, andv,.
Verticesvs andvs are directly connected @, v4, anduvg. O

Fig. 6. lllustrations for the proofs of Lemma 3 (a) and of Lemma 4 (b).

Lemmad4. Leto = zayfB be a 3-cluster cycle, where and 5 are non emptyzay
is maximal monotonic increasing, apdx is maximal monotonic decreasing. We have
thato is c-planar iff Balance(o) is in {0, +3}.

Proof sketch: Let Balance(o) = 3k, with k non negative integer. Suppokds
equal to0 or 1. A c-planar drawing ofr can be constructed by placing the vertices on
three half-lines as in the examples shown in Fig. 7.a and 7.b, respectively. The vertices
of each half-line can be enclosed into a region representing their cluster.

Suppose thak > 1. We show that is not c-planar. Suppose for a contradiction
thato is c-planar and lef”(o) be a c-planar drawing of. Denote withv4, ..., v, the
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Fig. 7. The construction of a c-planar drawing for a cyelehen Balance(a) = 0 (a) and when
Balance(o) = 3 (b).

vertices ofo starting from the first vertex af and suppose, without loss of generality,
that the length ofv is greater or equal than the length@f

Consider the relative position of andv, in I"in their clusterX (see Fig. 6.b). We
have that the two edges incident opn separate); from the rest of the vertices of .
Thus, itis possible to joim; andv, with an edgdwv,, v4) that is entirely contained into
the clustertX and that preserves the planarity of the drawing. Analogously, it is possible
to join verticesv, andws in clusterY with the edggv., vs) and verticess andwvg in
clusterZ with the edggvs, vg).

A contradiction arises since a subgraph that is a subdivisidii:pf can be found
in the drawing. In fact, exploiting the edgesofind the edges introduced above, each
vertex in{v1,vs,vs} is connected to all vertices ifvq, v4, vs}. Vertexw; is directly
connected t@, and tovg with edges ofr, while it is connected to, with edge(v1, v4);
vertexwvs is directly connected to, and tov, with edges ob, while it is connected to
v, With edge(vs, vy, ); finally, vertexvs is directly connected to, with an edge o, it
is connected te,, with a path ino, and it is connected to, with edge(vs, vs). O

Because of Lemma 2, Lemma 3, and Lemma 4, the problem of testing whether a
3-cluster cycler is c-planar can be reduced to the problem of compuBagunce(o).
Since it is easy to computBalance(o) in linear time (see Section 2), the following
theorem holds.

Theorem 1. Given ann-vertex 3-cluster cycle, there exists an algorithm to test if it is
c-planarinO(n) time.

In what follows we introduce a simple algorithm which guarantees the computation
of a c-planar drawing of a 3-cluster cycle, if it admits one, in linear time. Consider a
3-cluster cycles with Balance(o) € {0,+3}. Set a counter to zero. Visit starting
from the first vertex and adding (subtracting) one unit to the counter when passing from
xtoy, wherex < y (y < x). Without loss of generality we will assume that the counter
never reaches a negative value. Otherwise, we can replagt an equivalent cyclic
permutation of it that has the above property and that can be obtained in linear time. Let
K be the maximum value assumed by the counter during the visit.



We say that a vertex af belongs to thé:-th leveliff the counter has valug when
reaching such a vertex. The first vertexcobelongs to level. Note that each level
contains vertices of the same cluster. Also, vertices belonging tokessed levelk + 3
belong to the same cluster. We denote with the sequence restricted to levek,
obtained fronu by deleting all the vertices not belonging to th¢h level.

We construct a saturator in the following way. For each lévet {0,...,K},
we connect with an edge each pair of consecutive vertices of For each levek €
{0,..., K — 3}, we insert an edge connecting the first vertex|of with the last vertex
of U|k+3.

Fig.8. The construction of a c-planar drawing of a 3-cluster cygelén the case in which
Balance(o) = 3.

Now we show that the graph composed by the cycle and the saturator is planar by
providing a planar drawing of it (see Fig. 8). First, we arrange all the verticesoof
a grid: the x-coordinate of a vertex is its positiorvirand the y-coordinate is its level.
Then, we draw each edge of the cycle (excluding the one connecting the first and the
last vertex ofo) with a straight segment without introducing intersections. Second, for
each levelk € {0,..., K}, we draw those edges of the saturator that connect pairs
of consecutive vertices of| ;, with straight segments without introducing intersections.
Note that, the sequence of the clusters at levels., K — 3 is the same sequence
as that of the clusters at leveds. .., K. Also, at this point of the construction, for
eachk € {0,..., K} the first and the last vertices of/;, are on the external face.
Hence, the drawing can be completed without intersections by adding, for each level
k € {0,..., K — 3}, the edge of the saturator connecting the first vertex|@fwith
the last vertex ofr|;43 as shown in the example of Fig. 8. Finally, since the first and



the last vertex of are on the same face, they can be connected with a curve contained
into such a face without introducing intersections. To explicitly represents clusters as
simple closed regions starting from the saturator we select a region of the plane at small
distance (strictly greater than zero) from each saturator edge and delete the saturator.
It is easy to implement the above algorithm to work in linear time by building the
lists of vertices for each level while visiting Notice thatK is bounded by the number
of the vertices of the cycle.
Hence, we can state the following result.

Theorem 2. Given ann-vertex c-planar 3-cluster cycle, there exists an algorithm
that computes a c-planar drawing &fin O(n) time.

From the above construction we also have the following.

Theorem 3. A c-planar 3-cluster cycle admits a saturator that is the collection of three
disjoint paths.

4 Clustersand Grammars

In this section we characterize the c-planar 3-cluster cycles in terms of formal gram-
mars. Namely, we show that the sequences representing such cycles are those generated
by a context-free grammar.

The set of all the strings on the alphaljet b, c} such that each string (i) contains
at least one instance of each label, (ii) does not contain repeated consecutive letters and
(iii) does not start and end with the same letter, is a regular set. This statement is easy
to prove by observing that the set of all the strings on the alpRahét c}, (i), (i), and
(iii) define regular sets and the difference between two regular sets is a regular set.

Theorem 4. The following context-free grammar generates all and only the c-planar
3-cluster cycles:

S — ZylZs

Zy — ABCB|ACBC|BCAC|BACA|CABA|CBAB
Z3 — ABC|BCA|CAB

A — ABA|ACA|a

B — BAB|BCBI|b

C — CAC|CBC|e

Proof sketch: The proof exploits the same considerations used to prove Theorem 1.
Note that symboF generates all 3-cluster cycleswith Balance(c) = 0 and symbol
Z5 generates all 3-cluster cycles wiBulance(o) = 3. O

Theorem 5. The language of the c-planar cycles is not a regular set.

Proof sketch: The proof exploits the equivalence classes of Myhill-Nerode theorem [10].
O



Fig. 9. A clustered graph where at each level of the inclusion tree the nodes form a cycle. (a) A c-
planar drawing. (b) The inclusion tree augmented with edges that put in evidence the adjacencies
between nodes at the same level.

5 Cyclesin Cyclesof Clusters

In this section we present a generalization of the results of Section 3. First, we general-
ize the results on 3-cluster cycles to the case of clusters that form a cycle whose length
is greater than three. Second, we tackle the general problem of testing the c-planarity
of a cycle that is clustered into a cycle of clusters that is in turn clustered into another
cycle of clusters, and so on. Fig. 9.a shows c-planar clustered graph whose underlying
graph is a cycle for which two levels of clusters are defined. Fig. 9.b puts in evidence the
inclusion relationship between clusters of a given level and clusters of the level directly
above it. The same figure shows also that the clusters of each level form a cycle.

We start by introducing preliminary assumptions and definitions. We consider clus-
tered graph€’(G, T') in which all the leaves of the inclusion trédehave the same dis-
tance from the root (we catlepththat distance). A clustered graph which has not this
property can be easily reduced to this case by inserting “dummy” nodEskhtence,
from now on we consider only inclusion trees whose leaves are all at the same depth.
We define a&! (V!, E') the graph whose vertices are the node¥ at distance from
its root, and an edgé, v) exists if and only if an edge df exists incident to bot
andv.

For exampleG® has only one vertex an@”, whereL is the depth of the tree,
is the underlying grapliz of C(G, T). We label each vertex of G'! with the cluster
(corresponding to a vertex @'~') which v belongs to. IfG' is a cycle, then it is
possible to identifyG' with the cyclic sequence of the labels of its vertices. If also
G'~!is a cycle, we consider the labels@f cyclically ordered according to the order
they appear ii'~1. At this point, Balance(G') can be defined as in Section 3 and can
assume values, k, 2k, 3k, . .. wherek is the length oG~ 1.



According to the above definitions a 3-cluster cycle is a clustered graph Wtese
depth 2,G? is a cycle and>! is a cycle of length 3. In fact, the results of Section 3 can
be extended to the case in whi€H is a cycle of an arbitrary length.

Theorem 6. Given amn-vertex clustered grapt'(G, T'), such thafl” has deptt2 and
G' andG? are cycles, there exists an algorithm to test'ifs c-planar inO(n) time. If
C'is c-planar, a c-planar drawing of' can be computed i®(n) time.

Proof sketch: The proof exploits the same considerations and constructions of The-
orems 1 and 2. If the length @f! is k thenC is c-planar iff Balance(G?) € {0, k}.
In order to find a c-planar drawing @f, if it exists, the same strategy described in
Section 3 can be applied, where, since in the construction depicted in Fig. 8 vertices
belonging to leve} and levelj + k belong to the same cluster, an edge of the saturator
is added between the first vertex of leyednd the last vertex of levgl+ & instead of
between the first vertex of levgland the last vertex of level+ 3. O

Let C(G,T) be a clustered graph amdbe an integer betweenand L, whereL is
the depth ofl". Clustered grapl’!(G, T') is obtained fromC' by replacingl” with a
treeT" obtained froni” by connecting all the nodes at depthith the root and deleting
all the nodes having depth greater than zero and less/tfiare c-planarity of”' ! can
be used to study the c-planarity@f—!, as is shown in the following lemma.

Lemmab. Let C(G,T) be a clustered graph andbe an integer betweehand L,
whereL is the depth off. LetC! be c-planar,G! be a cycle, and>'~! be a cycle of
lengthk. C'~1 is c-planar iff Balance(G!) € {0, k}.

Proof sketch: An more detailed version of this proof can be found in the Ap-
pendix. First, we prove that iBalance(G') € {0,k}, thenC!~! is c-planar. Since
Balance(G') € {0, k}, then it exists a planar drawing 6f augmented with the edges
of a saturator connecting vertices@f with the same label. Those edges can be added
to the internal or external face of cyal# according to the output of the algorithm de-
scribed in Section 3. Lef.: be a c-planar drawing of'‘. SinceG! is a cycle, there
exist in '« exactly two faces containing vertices belonging to all the clusters corre-
sponding to vertices of/'~!. Call such faceinternal andexternalface arbitrarily. A
c-planar drawind ~:-1 can be constructed by adding£%.: an edge for each edge of
the saturator ofs! in such a way to place on the internal (external) facE ef the edges
of the saturator that are added to the internal (external) fac¥ of

The second part of the proof shows thaBifilance(G') is not in {0, k} then then
C'~1is not c-planar. Assume for a contradiction ti#atlance(G") is notin{0, k} and
a c-planar drawing of 'c:-1 exists.

By using similar arguments as in the proofs of Lemmas 3 and 4, a subdivision of a
K3 3 can be found where the vertices of the subdivision are actually verticg$, dhat
is, clusters of”. O

Lemma®6. LetC = (G, T) be a clustered graph and let Ban integer betweeh and
L, whereL is the depth of. If C* is not c-planar, therC® = C is not c-planar.



Proof sketch: If C! is not c-planar, there is a subdivision ff; 3 or K in the
graph G augmented with the edges of the saturat6t'ofThe same obstruction can be
found in the graph; augmented with the edges of saturator’dt; henceC? can not
be c-planar. O

Theorem 7. Given amn-vertex clustered grapti(G, T'), such thafl” has depthl. and,
forl > 0, G'is a cycle, there exists an algorithm to testifs c-planar inO(Ln) time.

Proof sketch: The proof is based on iteratively applying, level by level, Lemma 5
to the clustered grapt@!’ forl = L, L — 1,...,2. Since each test can be performed in
O(n) time, the statement follows. O

Theorem 8. Given amn-vertex clustered grapti(G, T'), such thafl” has depthl. and,
forl > 0, G'is a cycle, ifC is c-planar there exists an algorithm to compute a c-planar
drawing ofC'in O(Ln) time.

Proof sketch: The proof of Lemma 5 is a constructive one. Thus, by applying, level
by level, Lemma 5 starting from levél to level 1, a c-planar drawing of’ can be
obtained. Since each step may be performed(in) the statement follows. O

6 Conclusionsand Open Problems

In this paper we studied a peculiar family of non-connected clustered graphs. Namely,
we studied clustered graphs whose underlying graph is a simple cycle.

Besides the general problem of stating the complexity of the c-planarity testing of
non-connected clustered graphs, several other problems remain open:

— Are there other families of non-connected clustered graphs whose c-planarity can
be efficiently assessed and whose underlying graph has a simple structure? For
example, what happens if the underlying graph is a tree? It is easy to show that a
two-level clustered graph whose underlying graphis a path and such that graph
G'is acycle, is c-planar. It is also easy to find an example of a two level clustered
graph whose underlying gragh? is a tree, such that! is a cycle and that is not
c-planar.

— Suppose that the underlying graph has a fixed embedding. Can this hypothesis sim-
plify the c-planarity testing?

— Can the techniques introduced in this paper be combined with techniques known in
the literature for devising tools able to handle the c-planarity testing and embedding
problem for more complex families of clustered graphs?
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Appendix: Detailed Version of Proofs

Proof of Lemma 1

Proof: We use subscripts to distinguish distinct occurrences of the same characters and
superscripts to distinguish distinct occurrences of the same substring. According to this
notationo = oy xz1aly1azrsayz0e ande’ = oy z1aty 0.

We denote byt then length of the sequences, @, anda?. We denote with(5)
thej-th vertex of sequencewherej in {1, ..., k}. Suppose that there exists a c-planar
drawingl,, (Fig. 10.a shows an example of such a drawing for the part related to the
subsequence; a'y;) of o/, we prove that, necessarily,is c-planar by constructing a
c-planar drawing’,, in the following way. All vertices and clusters boundaried ¢f
are drawn inl, in the same way as ih,. Edges ofl,, are drawn inl’, in the same
way as inl,, with the exception of the edge betwegnand the first vertex o, (or,
if o9 is empty, to the first vertex af’) which is replaced by the patiiz,a2ys with
@' connected ta/; andy, connected to the first vertex of,. This path is drawn in
the following way. Vertexz, is placed into clusteg in the face ofl’, that is on the
left when exiting fromz; going toward~!(1). Vertexys, is placed into clustey in the
face of I, that is on the left when entering inta from o (k). For each vertex:! (j)
the corresponding verteX(k — j + 1) is placed into the face that is on the left when
traversinga! from z; to y;. The pathy; @z, can now be connected without crossings
since edges af can be drawn arbitrarily close to' (see Fig. 10.b). Analogously, for
each vertex ofv’ the corresponding vertex ef? (k — j + 1) is placed into the face that
is on the right when traversingfrom y; to z,. The pathzoa®y, can now be connected
without crossings since edges®@t can be draw arbitrarily close @ (see Fig. 10.c).

oy ‘ O
X a1 \ad¥2) oK) \v;
Y2
02
Y1
Y2
02
Y1

Fig. 10. (@) The drawing oft1aty: in I,.. The gray zones are part of cluster regions. Note that
o’ may pass through each cluster many times. (b) After the insertion ofypath,. (c) After
insertion of pathrzazy2, the last edge is connected to the first vertexnf



Finally, vertexy» can be connected to the first vertexaf, crossings only the boundary
of clustery. If o5 is empty, we connegf, to the first vertex of”'.

ai1) ai2) a(k) Y, . o
P
_6(1) Je e
' Q
. ° 1 Y,
a@) \ o2 oK) '

RS

a'(1) al('ﬂl a'x) / %

(b)

Fig. 11. (a) The drawing ofc;a'yi1az20’ys2 in T,. The gray zones are part of cluster regions.
Note thats’ may pass through each cluster many times. (b) The drawity aiftery @z2a?y2
was deleted ané? was moved

Supposer is c-planar and’, is a c-planar drawing of it. We prove that this is
sufficient for stating the c-planarity of’ by showing how to build a c-planar drawing
I, starting from/l',.

Say A; the set of edges af 'y, A the set of edges af,az», and A, the set of
edges ofc,a?y,. In I, (see Fig. 11.a) the inlet delimited y@z, a2y, and by the part
of the border of clustey between the edges a(k) anda?(k)y2 may contain several
parts ofo. Say P the set of edges of such parts including those that cross the border of
y. The same holds for the inlet delimited bya!y;, @x» and by the part of the border of
clusterx between the edges o' (1) anda(1)x, may contain several parts of SayQ
the edges of the graph in that inlet including those that cross the boundary of eluster

To constructl,, we delete the sequence:sa’y,. Then, we move the graph in-
duced byP alonga! preserving the crossing order of the edge®RirSincea ' (as well
asa anda?) may cross one cluster several times, when movmghe crossing order
of the edges inP with each cluster should be preserved for each group of contiguous
crossings. This operation may be performed without introducing any violation of the
c-planarity by suitably shrinking the graph induced®yand placing it close ta 1. At
this point,y; and the first vertex of 5 (or, if o2 is empty, the first vertex af’) can be
connected crossing only the boundary of clugter



At the end of this process, for each portion of cluster boundary involved, the order of
the edges crossing the boundary is the following: possibly several ed@fesire edge
in Aq, possibly several edges @ (see Fig. 11.b). Finally, observe that, since we have
removed fromr two monotonic sub-sequences, one increasing and one decreasing, with
the same lengthBalance(c’) = Balance(o). O

Proof of Lemma5b

internal face

external face

() (d)

Fig. 12. (a) Drawing ofG' with edges of the saturator added to the external or internal face. (b)
Drawing I'~: in which two faces (called thmternal andexternalface) touching all the clusters
can be found. (c) saturator edges joining suitable verticd$.of (d) The corresponding drawing
Fclfl .

Proof: First, we prove that iBalance(G') € {0,k}, thenC'~1 is c-planar. Since
Balance(G') € {0, k}, then it exists a planar drawing 6f augmented with the edges
of a saturator connecting vertices@f with the same label (see Fig. 12.a). The edges of
the saturator can be added to the internal or to the external face of@yaecording
to the output of the algorithm described in Section 3 in a way that is consistent with
a c-planar drawing of:'. Let I'-: be a c-planar drawing af’’. SinceG! is a cycle,
there exist inl . exactly two faces containing vertices belonging to all the clusters that



correspond to vertices @f'~*. Call such facesternal andexternalface arbitrarily. A
c-planar drawing -1 can be constructed by adding £¢.. an edge for each edge of
the saturator ofy’. Consider an edge of the saturator joining vertigemndnu of G
Suppose that such edge is added on the external (internal) face of the drawirg of
Select a vertex of7 belonging to cluster. and incident to the external (internal) face
of I':, and a vertex o7 belonging to cluster and incident to the external (internal)
face of I'-:. Join the two selected vertices with an edge. From the drawing obtained
(see Fig. 12.c) a drawing.:-1 can be easily computed (see Fig. 12.d).

The second part of the proof shows thaBifilance(G!) is not in {0, k} then then
C'~1is not c-planar. Assume for a contradiction tiatlance(G') is notin {0, k} and
a c-planar drawing of 'c:-1 exists.

By using similar arguments as in the proofs of Lemmas 3 and 4, a subdivision of a
K3 3 can be found where the vertices of the subdivision are actually verticg$, dhat
is, clusters of”'. d



