Tracking Back the Root Cause of a Path Change in Interdomain Routing

Alessio Campisano
Luca Cittadini
Giuseppe Di Battista
Tiziana Refice
Claudio Sasso

Apr 10th, 2008
Tracking Back the Root Cause of a Path Change in Interdomain Routing
Tracking Back the Root Cause of a Path Change in Interdomain Routing
Tracking Back the Root Cause of a Path Change in Interdomain Routing

BGP is an incremental protocol. Path changes do have an origin.
Root causes - taxonomy

Impact on the network

Events that affect AS-level topology

BGP handles network dynamics for us, so ...

why should we even bother?

Events that affect routing behavior

- policy changes
- intra-domain events
Motivation

- *Understand Internet dynamics*
 - Assess/debug network configurations
- *Economy*
 - Improve reliability and performance
- *Forensic analysis*
 - Identify, locate, investigate network outages
Previous approaches, in a nutshell

- **BGP UPDs**
- **divide input into clusters**
- **cross-cluster analysis**
- **inferred events**

- **update correlation**
 - [Feldmann2004, Caesar2003]

- **Principal Components Analysis**
 - [Xu2005]

- **Learning-based**
 - [J.Zhang2005]

- **Wavelet Transform**
 - [K.Zhang2004]
Public BGP data sources

- Remote route collector
- Collector peer

Routing Information Service
Route Views Project

~600
Why is it so hard?

BGP issues
- undisclosed policies (economical & political relationships)
- huge network (26k ASes, 230k prefixes)
- complex dynamics

Data-set issues
- sheer size (3GB/month)
- unreliable collector peers
- partial coverage of the Internet
Our contribution

- Flow-based **model** of a path change
 - derived from network flow theory
 - see, e.g., [Ahuja-Magnanti-Orlin93]
- **Methodology** to identify the root cause of a path change
- Prototype **tool** to support the methodology
A model for routing changes (1)

RIB snapshot => flow

source

sink

sink
A model for routing changes (2)

RIB variation => flow
Local rank

- **Local rank of a cp** [Lad-Massey-Zhang2004]
 - # of prefixes on each edge
 - reflects the perspective of the cp
 - behaves like a flow system
 - depends on the specific cp
 - noise-sensitive

- How to account for multiple vantage points at the same time?
Global rank

Idea:
- combine different vantage points
 - merge different perspectives
- consider distinct prefixes

Global rank
- # of distinct prefixes on an edge

Pros and cons
- aggregates multiple cps
- less noise-sensitive
- no locality
 - can miss localized variations
Our approach - overview

- **Input:** a single BGP path change
- **Methodology:**
 1. check cp status
 2. identify macro-events by inspecting global/local rank over time
 3. identify smaller events by looking for unusual flow variations
- **Output:** a set of links (*candidate set*)
Step 1: collector peer check

- Ignore data from unreliable cps
 - long-term unreliability: inconsistencies
 - short-term unreliability: session resets
- Locate inconsistencies
 - RIB dumps do not match update streams
- Locate session resets
 - log file, if any
 - identify BGP table transfers
Step 2: macro-events detection

- macro-events are events affecting the AS-level topology
- macro-events map to rank evolution patterns
 - link fault
 - link restoration
- Inspect the evolution of Global and Local ranks over time
 - compare with avg values to identify patterns
Macro-events detection: an example
Step 3: fine-grained analysis

- **Compute flow variations**
 - restrict to links in the old (new) path
 - locate nodes with max inflow/outflow
 - output links in the subpath(s) containing them

- **Intuition**
 - nodes that move most flow are likely to be involved in the cause
 - distinct events probably do not affect the same portion of the network at the same time
Fine-grained analysis: an example
Simulation

Set-up: real Internet topology using C-BGP [Quoitin-Uhlig2005]
- 25k ASes (CAIDA)
- 52k links (CAIDA + policies)

Simulated events
- type of event
 - link fault/restoration
 - loc-pref + hard reset
 - loc-pref + soft reset
- location in the topology
 - Tier1-Tier1
 - Tier1-transit AS
 - transit AS-transit AS
 - transit AS-stub AS
Accuracy

updates whose root cause appears in the candidate set

- link fault/restoration: 100%
- loc-pref + hard reset: 99%
- loc-pref + soft reset: 93%
Impact of the event location

Simulation - results (2)

Loc-Pref + soft reset

- **Updates %**
 - T1-T1: 100.00%, 98.00%, 96.00%, 94.00%, 92.00%, 90.00%, 88.00%
 - T1-t: 98.00%, 96.00%, 94.00%, 92.00%, 90.00%, 88.00%
 - t-t: 100.00%, 98.00%, 96.00%, 94.00%, 92.00%, 90.00%, 88.00%
 - t-s: 98.00%, 96.00%, 94.00%, 92.00%, 90.00%, 88.00%

- **Location**
 - T1-T1
 - T1-t
 - t-t
 - t-s

- **Colors**
 - Missed
 - Identified
Simulation - results (3)

- **Precision**
- candidate set size
- (CDF)

![Graph showing Precision](image-url)
Conclusions & future work

Summary

- Flow-based model of a path change
- Methodology to identify the root cause of a path change
- Internet scale simulation
- Prototype tool to support the methodology

Future work

- Extend the model and the methodology with new patterns
- Fully automate the methodology in the tool
Thanks!

Questions?
Real world data

- No training dataset
- Taiwan earthquakes, Dec 2006
 - bug in RIS collectors
- Mediterranean cable cut, Jan 2008
 - FLAG peerings down
 - most of macro-events are located in surrounding areas