Active BGP Probing

Lorenzo Colitti

Roma Tre University – RIPE NCC
Agenda

• Our techniques
 – Primitives
 – Applications
 – Results

• Operational impact
 – Why it is safe
 – Why it is low-impact
 – Why it doesn't hamper debugging

• Tests over IPv4?
Our Techniques
The Problem

• Point of view: an ISP
 – We want to know how other ASes treat our prefixes
 – Why?
 • Predict the effect of network faults
 • Perform effective traffic engineering
 • Develop peering strategies
 • Evaluate quality of upstreams
 • ...
• Existing BGP discovery methods are good at discovering topology but bad at discovering policy
 – We can look at RIS or ORV...
 – ... but we can't find out how the world treats our prefixes
Can we do better?

• We would like to know:
 – Where our announcements go
 • Trivial: just look at RIS or ORV
 – Where our announcements could go: “feasibility”
 • What happens if a link fails and backups come up?
 • What are the margins for traffic engineering?
 – How other ASes treat our prefixes
 • Do other ASes have preferences about how to reach us?

• How can we obtain this information?
Just to get an idea

Standard RIS query

Using our techniques
Feasibility

• “Where can our announcements go?”

• An AS-path is **feasible** for a prefix p if “the policies of the ASes in the Internet allow it to be announced”
 – Active (“best”) paths, backup paths, alternate paths

• A BGP peering is feasible for p if it's part of a feasible AS-path
 – That is, if it is possible, in some state of the Internet, for the announcements for p to traverse it
Feasibility graph

• Directed graph: nodes = ASes, arcs = feasible peerings

• Shows us only [a subset of] the portion of the Internet where our announcements can go
Active BGP probing

• Basic idea: inject updates into the network and observe results
 – Use a test prefix \(p \) to avoid disrupting production traffic
 – Use RIS or ORV to see (and react to) results in real-time
 – Use looking glasses and route servers to see steady state results

• Two primitives:
 – Withdrawal Observation
 • Let BGP explore alternate paths
 – AS-set Stuffing
 • Force BGP to take alternate paths by “prohibiting” certain ASes
Withdrawal Observation

• BGP explores many alternate paths before realizing a route has been withdrawn
 – An AS sends a withdrawal only if all its alternate paths have been withdrawn
 – Else it sends out an update for one of the alternate paths
• We can use this to discover alternate paths
 – Withdraw the test prefix p
 – Record BGP paths seen during convergence process
 – Merge paths to get a feasibility graph
• BGP does a lot of the work for us
Withdrawal observation: BGPlay

http://www.ris.ripe.net/cgi-bin/bgplay.cgi?prefix=84.205.89.0/24&start=2005-03-01+00:00&end=2005-03-01+00:10
AS-set Stuffing

- Prepend an AS-set containing arbitrary ASes A_i
 - The AS-paths seen by the Internet end in $Z \{A_1, A_2, ..., A_i\}$
 where Z is our AS number

- We say the ASes A_i are “prohibited”
 - They will not receive or process the announcements
 - They disappear from the Internet as far as p is concerned

- What this allows:
 - Topology discovery
 - Path feasibility and policy discovery
 - Measurements in “altered network state”
Topology discovery

• Announcing an AS-set containing ASes in active paths causes alternate paths to appear
 – So we find new ASes and peerings

• Simple algorithm to find out out a larger topology: “Level-by-level” exploration:

• Proceed by increasing topological distance:
 – Prohibit all ASes at certain distance
 • Observe paths seen during convergence and after convergence
 • Add all ASes and peerings found to feasibility graph
 – If new ASes appear at this distance, turn them off too
 – When no new ASes appear, increase distance by one
Example: prohibit level 2

\{33,3320,10566\}

32 ASes
33 peerings

42 ASes
57 peerings
After 4 levels...

84 ASes (2.6x)
184 peerings (5.6x)
Level-by-level exploration: BGPlay

Path Feasibility determination

- Suppose the route collector C sees $ZFGC$
- Is the path $ZADC$ feasible?

- Announce $\{B, F, G\}$

- If C sees $ZADC$, $ZADC$ is feasible (obviously)
- If C does not see anything, $ZADC$ is not feasible
Path Preference discovery

- Suppose $ZADC$ and $ZBEC$ are feasible
- Which does C prefer?

- Announce \{F, G\}

- The path C prefers is the one it chooses as best
“Altered state” measurements

• Use AS-set stuffing to put network into altered state
 – e.g. “turn off” one of our upstreams' upstreams

• Then measure network performance
 – Look at looking glasses in other ASes
 – Or use RTT measurements
 • Forward path stays the same!
Testing and Results

• We tested on the IPv6 backbone:
 – Fewer legacy devices
 – Fewer mission-critical services
 – Much smaller size

• Announcements were for 2001:a30::/32 and originated in AS5397

• For results, see our technical report:

Operational Impact
This is safe

- Equipment tests
 - Juniper, old Cisco: reset session at 125 ASes
 - This is not specific to our techniques!
 - New Cisco: ignore path at 75 ASes
 - We never needed more than ~50

- IPv6 tests
 - 11/2004 – 2/2005 (reprise in April); no problems reported
 - AS-sets noticed only twice (first time after 3 months)

- Observation in the wild (IPv4)
 - Nobody complained of problems due to these events
This is low impact

• Dampening limits us to ~ 1 update per hour
 – A typical Tier-1 router might receive 15k updates per hour

• A 100-element AS-set should require about 200 bytes of memory
 – Core routers are already using tens of megabytes of memory for BGP
This doesn't hamper debugging

- People already prepend other people's AS numbers
- Our techniques are more transparent
 - Our AS is the first AS before the AS-set
 - Apart from the AS-set, the rest of the path is the path the announcement took
 - Such large AS-sets are obviously unlikely to result from route aggregation
- The routes can be tagged with communities
 - Thanks to Tim Griffin for suggesting this
- A whois on the prefix immediately reveals the origin
Ethical Issues

• We're using BGP for stuff it was not designed to do
 – This happens frequently!
 • e.g.: NAT, IP-in-IP tunneling, dupacks for congestion control, ...

• We're using people's AS numbers without their permission
 – People already do it, if not in such an obvious way
 – The announcements should not cause confusion
 • A whois query on the prefix immediately reveals the origin
 • The announcements are immediately recognizable
 – We believe the usefulness of our techniques for ISPs makes it worthwhile
Testing in the IPv4 backbone
Testing over IPv4

• We believe these techniques can be useful for ISPs
 – There are no good technical reasons not to do this

• We would like to discover how effective they are in the IPv4 Internet
 – We have tested in the lab
 – We have tested on the IPv6 backbone, with good results
 • See the technical report for details
 – We would like to test on the IPv4 backbone
 • Applying our techniques to the IPv4 Internet might also provide new insights on the structure of the network
Questions?