
Applying an update method to a set of receivers

(extended abstract)

Marc Andries, Leiden University�

Luca Cabibbo, University of Romey

Jan Paredaens, University of Antwerpz

Jan Van den Bussche, INRIAx

Abstract

In the context of object databases, we study the application

of an update method to a collection of receivers rather

than to a single one. The obvious strategy of applying the

update to the receivers one after the other, in some arbitrary

order, brings up the problem of order independence. On

a very general level, we investigate how update behavior

can be analyzed in terms of certain schema annotations

called colorings. We are able to characterize those colorings

which always describe order-independent updates. We

also consider a more speci�c model of update methods

implemented in the relational algebra. Order independence

of such algebraic methods is undecidable in general, but

decidable if the expressions used are positive. Finally,

we consider an alternative parallel strategy for set-oriented

application of algebraic methods and compare and relate it

to the sequential strategy.

1 Introduction

In object systems, update procedures are provided by
methods, which are applied to a receiver consisting of
a receiving object and some argument objects. Since
methods may call other methods, an update method
applied to a certain receiver may not only update the

�Department of Mathematics and Computer Science, Leiden
University, Niels Bohrweg 1, 2333 CA Leiden, the Netherlands.
E-mail: andries@wi.leidenuniv.nl

yDipartimento di Informatica e Sistemistica, Universit�a di
Roma \La Sapienza", Via Salaria 113, I-00198 Roma, Italy. E-
mail: cabibbo@dis.uniroma1.it. Partially supported by MURST
and CNR.

zDept. Math. & Computer Sci., University of Antwerp (UIA),
Universiteitsplein 1, B-2610 Antwerpen, Belgium. E-mail:
pareda@uia.ac.be

xINRIA (Projet VERSO), Domaine de Voluceau, Rocquen-
court, B.P. 105, F-78153 Le Chesnay Cedex, France. E-mail:
vdbuss@uia.ac.be. On leave from the University of Antwerp.
Research Assistant of the Belgian National Fund for Scienti�c
Research.

properties of the receiving object, but may also have side
e�ects. Hence, at the most general level, we can de�ne
an update method as a computable function mapping a
given object base instance and a receiver to some new
object base instance.

Database systems deal with whole collections of data
at a time. Hence, in the context of object databases,
it is important to be able to apply an update method
to a collection of receivers rather than to a single one.
For example, given a method to change the salary of an
employee, we sometimes want to change the salaries of
a whole group of employees. The purpose of the present
paper is to initiate a study of various strategies for set-
oriented application of update methods.

One obvious such strategy is to apply the update to
the receivers one after the other, in some arbitrary or-
der. This sequential application immediately brings up
the problem of order independence: is the outcome of
the sequential application independent of the order cho-
sen? We consider three notions of order independence:
absolute order independence on all possible sets of re-
ceivers; key-order independence on sets of receivers not
containing a same receiving object twice with di�erent
arguments; and query-order independence on sets of re-
ceivers produced by some given query. The assumptions
made by key-order independence and query-order inde-
pendence are often true in practice.

On a very general level, we investigate how update
behavior can be analyzed with respect to order inde-
pendence in terms of certain schema annotations, which
\color" each class and property name by indicating
whether the update creates, deletes, or uses information
of this type. While it is not di�cult to formalize what it
means for an update to create or delete information of a
certain type, it is much less obvious how the semantics of
\using information" can be axiomatized. We have stud-
ied two possible such axiomatizations, and were able to
show in both cases that the colorings which describe
order-independent updates are precisely those that are
\simple," in a sense to be made precise. This captures
the intuition that the update does not perform poten-
tially conicting actions. Curiously, it will turn out that

the two \axiomatizations of use" we propose are each
other's dual, in the sense that the �rst favors ination-
ary updates while the second favors deationary ones.

On a more speci�c level, we consider update meth-
ods implemented in the relational algebra, using a
framework inspired by the algebraic model for accessing
object-oriented databases proposed by Hull and Su [10].
Methods in this framework can only update properties
of the receiving objects. We observe that order inde-
pendence of algebraic methods is undecidable in general,
but it becomes decidable if only positive expressions are
used. Speci�cally, we establish mutual reductions be-
tween the problem of testing for order independence of
an algebraic method and the problem of testing equiv-
alence of relational algebra expressions under certain
dependencies implied by the relational representation
of object databases. The latter problem is shown decid-
able for positive expressions by combining classical tech-
niques from relational database theory. We also present
a su�cient condition for key-order independence which
explains the update command of SQL.

Apart from the sequential strategy for set-oriented
application, we also consider a natural alternative in
the algebraic framework. This strategy is parallel in
that it instantiates the parameter in the method body,
which normally stands for a single receiver, by the
whole set of receivers at once. In this approach, there
is no problem of order independence; every parallel
set-oriented application is well-de�ned. Hence, it is
interesting to ask whether every order-independent
algebraic method can be \parallelized," i.e., whether for
each such method M there exists another method M 0

such that each sequential application of M yields the
same result as the corresponding parallel application
of M 0. By observing that sequential application can
express transitive closure and parity, we answer this
question negatively. Nevertheless, in the important
special case of key order-independence, parallelization
is always possible; we actually show that for key order-
independent methods the sequential and the parallel
semantics coincide.

Our work relates to a lot of other work reported in
the literature on database query and update languages.
Recently, Laasch and Scholl [14] studied order indepen-
dence of updates expressed as sequences of generic oper-
ations such as insert, delete and modify, in the context of
object-oriented databases. They argued that the prob-
lem directly links to issues in concurrency control, and
proposed to disallow the use of potentially conicting
operations within an update sequence so as to guaran-
tee order independence.

But also less recently researchers have pointed at
the intricacies involved in set-oriented application of
updates. Most notably, Aho and Ullman [3] considered
sequential and parallel execution strategies for looping

constructs of the form for each t in R do in database
manipulation languages which are closely analogous to
the sequential and parallel strategies we consider in the
present paper. They questioned the appropriateness
of the sequential strategy, however, since sequential
application is (of course) not always guaranteed to be
order independent. More subtly, Chandra [8] proposed
the study of when and how for-each loops can be
given a deterministic semantics, in the context of a
programming language based on relational algebra and
relational assignment, as an interesting research issue.
We like to think of our work as �rst steps in this
direction.
It should be noted that for-each loops have also been

used as a potentially non-deterministic construct, e.g.,
in the work of Qian [17] or in the language SETL
[19]. In this respect it is also interesting to note
that the parallel strategy as a means to provide an
alternative deterministic semantics to such constructs
is very similar in spirit to the \relationally computable"
semantics of a rule in a non-deterministic rule triggering
system introduced by Simon and de Maindreville [20].
To conclude, we must point out that di�erent,

\coarser grained" parallel interpretations of for-each
loops than the one we have considered up to now also
have received considerable attention in the literature.
Abiteboul and Vianu [1] de�ned a parallel semantics for
applying an update to a set of receivers which �rst com-
putes the di�erent e�ects of the update applied to each
receiver separately, and then combines the obtained re-
sults by taking the union. This combination approach is
comparable to that of structural recursion [5, 4] where
the di�erent results of a function parameterized by the
elements of a set are collected using a commutative
and associative accumulation operator. Abiteboul and
Vianu gave evidence that as combination operator, a
simple union is in principle su�cient. Nevertheless,
the study of combination operators more sophisticated
than union and their relationship to the other seman-
tics is, in our opinion, an interesting issue for further
research. One which seems to be well-behaved is the
operator combining the output databases D1; : : : ; Dn

for the di�erent receivers on some input database D asT
iDi [

S
i(Di �D).

The remainder of this text contains a technical
exposition of the issues discussed above, in the order
as they were treated. We will refer to the Appendix for
sketches of proofs.

2 Update methods

In this section, we present a few preliminary de�nitions.
It is customary in object-based models to depict a

database schema as a graph. Thereto, we assume the
existence of disjoint sets of class names and property
names, and de�ne an object-base schema as a �nite,

edge-labeled, directed graph. The nodes of the graph
are class names, and the edges are triples (B; e; C),
where B and C are nodes and the edge label e is a
property name. Di�erent edges must have di�erent
labels. If (B; e; C) is an edge in the schema, we call
e a property of B of type C.
An object-base instance can now be de�ned as a

graph consisting of objects and property-links, whose
structure is constrained by some object-base schema.
So, we assume that for each class name C there is a
universe of objects of type C, such that di�erent class
names have disjoint universes. For an arbitrary schema
S, we then de�ne an instance of S as a �nite, labeled,
directed graph. The nodes of the graph are objects.
Each node o is labeled by its type �(o), which must be
a class name of S. The edges are triples (o; e; p), where o
and p are nodes and the edge label e is a property name
of S such that (�(o); e; �(p)) is an edge of S. The set
of all objects in an instance labeled by the same class
name C will be called the class C.
We now turn to update methods. An update method

has a signature, specifying the types (class names) of
the receiving object and the argument objects, and a
behavior, which for the time being we de�ne simply as
some computable update of the object base instance.
Formally, we have the three following de�nitions:
A method signature � over S is a non-empty tuple of

class names in S. The �rst element of the signature is
called the receiving class of �; the remaining positions
in � comprise the argument classes.
Given a method signature � = [C0; : : : ; Ck] over S

and an instance I of S, a receiver over I of type �

is a tuple of the form [o0; : : : ; ok], where o0; : : : ; ok are
objects in I of types C0; : : : ; Ck, respectively. The �rst
object o0 is called the receiving object ; the remaining
tuple o1; : : : ; ok comprises the arguments of the receiver.
Finally, given a method signature � over S, an update

method M of type � is a computable function which,
when given an instance I of S and a receiver t over I of
type �, yields an instance M (I; t) of S.

3 Sequential application

In this section, we introduce the sequential application
of an update method to a set of receivers as well as three
di�erent notions of order independence of a method. In
what follows, we �x a schema S, a signature � over S,
and a method M of type �.
We can apply an update method to a sequence, not a

set, of receivers in the obvious way. So, if I is an instance
and s = t1; : : : ; tn is a sequence of distinct receivers,
M (I; s) equals M (: : :M (I; t1); : : : ; tn), provided the
value of this expression is well-de�ned (this may fail
if, e.g., t2 is not a receiver over M (I; t1)).
Sequential application to a set of receivers may now

be de�ned formally as follows:

De�nition 3.1 Given an instance I and a set T of
receivers, we say that M is order independent on (I; T)
if for any two sequential enumerations s and s0 of T ,
we have M (I; s) = M (I; s0). In this case we de�ne
the sequential application Mseq(I; T) of M on (I; T) as
M (I; s) for an arbitrary sequential enumeration s.

The above de�nition leads to three global notions of
order independence:

� IfM is order independent on any pair (I; T) then M
is called order independent.

� Call a set of receivers T a key set if, viewing T as
a relation, the �rst column (holding the receiving
objects) is a key for T . If M is order independent
on any pair (I; T) where in T is a key set then M is
called key-order independent.

� Finally, let Q be a function which maps each
instance I to a set Q(I) of receivers. If M is order
independent on (I;Q(I)) for any I then M is called
Q-order independent.

Example 3.2 We will use Ullman's classical example
schema containing class names Drinker, Bar, and Beer,
with Drinker having properties `frequents' and `likes'
of types Bar and Beer respectively, and Bar having
property `serves' of type Beer. Consider the following
two methods of type [Drinker;Bar]: add bar , which
adds the argument bar to those frequented by the
receiving drinker, and favorite bar , which removes all
edges from the receiving drinker to bars currently
frequented, and adds a single new one to the argument
bar. The method add bar is order independent, but
favorite bar is not. However, favorite bar is key-order
independent, and hence also Q-order independent for
any query Q producing a list of drinkers and bars
with a unique favorite bar for each drinker. Such a
query might, for example, retrieve for each drinker the
bar serving all beers that drinker likes, if unique and
existing.

If we de�ne methods as general computable functions,
as we did, all of the notions of order independence
de�ned above are undecidable, by Rice's theorem.
We will later show however that order independence
is decidable for more restricted kinds of methods.
Thereto, we will rely on the following lemma, which is
quite standard once we recall that any permutation can
be written as a composition of transpositions of adjacent
elements.

Lemma 3.3 Method M is order independent if and
only if M is order independent on any pair (I; T) where
T consists of two elements.

Lemma 3.3 also holds for key-order independence: we
then have to consider sets T consisting of two elements

with di�erent receiving objects. However, the lemma
fails in the case of query-order independence; we will
come back to this issue in Section 5.

4 Schema colorings

In this section, we present the beginnings of a theory of
schema colorings. Such colorings describe the behavior
of an update by annotating each type of information
in the schema with a subset of the letters c, d, or u,
thereby indicating whether the update creates, deletes,
or uses information of this type. The main di�culty
which we encounter here is to formalize what it means
for an update to \use" information of a certain type.
We investigate two possible de�nitions, and in both
cases characterize those colorings which describe order-
independent updates.
Before we move on with the technical exposition, let

us make clear that we do not intend to claim that
colorings based on three letters are rich enough as
a tool to analyze the behavior of updates. Indeed,
although our results are perhaps satisfying from a purely
mathematical point of view, their practical usefulness
is rather limited. A study of colorings which can
distinguish between more kinds of update behavior is
an interesting issue for further research.
In what follows, we �x a schema S and a method

signature over S. An item of a graph is either a node
or an edge of that graph. Since schemas and instances
are graphs, this terminology applies to both of them; it
will be used a lot in the sequel.
It is not di�cult to formalize what it means for an

update to create or delete information of a certain type.
Let X be a schema item. An update method M is
said to create information of type X if there exists an
instance I and a receiver t over I such that M (I; t)
contains an item labeled X that is not in I. The dual
notion of when M deletes information of type X is
de�ned analogously.
In order to de�ne what it means for an update to

use information of a certain type, we introduce the
auxiliary notion of partial instance. A partial instance
is a structure that can be obtained from an instance by
removing some items. So, a partial instance di�ers from
an instance in that it may contain \dangling edges,"
since a node may be removed without removing all its
incident edges. The instance obtained from a partial
instance J by removing all dangling edges is denoted
by I(J). Note that, by viewing a partial instance as a
set consisting of nodes and edges, we can apply set-
theoretic operations such as union and di�erence to
partial instances.
If X is a set of schema items and I is an instance of S,

the restriction of I to X is the partial instance obtained
by removing from I all items whose label is not in X ,
and is denoted by IjX .

We now introduce our �rst proposed axiomatization
of use. Informally, it expresses the intuition that when
we want to update an instance, we can as well update
only the part of the instance used by the update, and
add the part not used afterwards. Formally:

De�nition 4.1 Let X be a set of schema items. A
method M is said to use only information of type X if
for any instance I and receiver t over I,

M (I; t) = I(M (IjX ; t) [(I � IjX)):

We still have to introduce the notion of schema
coloring formally: a function � assigning to each schema
item a subset of fu; c;dg. For some schema item X, if
�(X) contains u then we say that X is colored u by �

(and similarly for the other colors). Note that we can
extend the subset ordering to colorings in the canonical
way.
By the following theorem, we can associate to each

update method a unique coloring which describes its
behavior. The proof is sketched in the Appendix.

Theorem 4.2 For each methodM there exists a unique
minimal coloring such that the following conditions are
satis�ed:

1. If M creates information of type X then X is colored
c;

2. If M deletes information of type X then X is colored
d;

3. If U is the set of items in S colored u, then M uses
only information of type U ;

4. Each class name in the method signature is colored
u;

5. If an edge in S is colored u, then so are its incident
nodes.

The last item guarantees that for any instance I, IjU is
an instance so that item 3 makes sense (the condition
in De�nition 4.1 makes sense only if IjX is an instance).
The unique coloring associated to a method M by

Theorem 4.2 will be referred to simply as the minimal
coloring of M . It is undecidable whether a given
coloring is the minimal coloring of a given method.
A coloring is called simple if each item has at most one

color. Simple colorings exhibit the following property.

Proposition 4.3 Let M be an update method. If the
minimal coloring of M is simple then M is inationary,
i.e., I �M (I; t) for each instance I and receiver t over
I.

The proof of Proposition 4.3, which is sketched in
the Appendix, is based on a soundness criterion for
colorings. A coloring is called sound if it is the minimal

coloring of some method. Some colorings are not
sound; actually, it is possible to characterize the sound
colorings syntactically. The interested reader is referred
to Proposition A.2 in the Appendix.
We are now in a position to return to our original

motivation: the notion of order independence. The
colorings describing order-independent updates can be
characterized as follows. The proof is sketched in the
Appendix.

Theorem 4.4 Let � be a sound coloring. All methods
having � as their minimal coloring are order indepen-
dent, if and only if � is simple.

Example 4.5 Recall the schema of Example 3.2. Con-
sider the method of type [Drinker] which adds to the
bars frequented by the receiving drinker all those serv-
ing a beer he likes. The minimal coloring of this method
assigns fug to the nodes Drinker, Bar, and Beer and the
edges labeled `likes' and `serves,' and assigns fcg to the
edge labeled `frequents'. This coloring is simple, and
the method is indeed inationary and order indepen-
dent.

As announced earlier, we have also investigated an
alternative axiomatization of use, which we present
next. Informally, it expresses the intuition that items
of information that are needed by the update cannot
be removed without changing the result of the update.
Formally:

De�nition 4.6 Let X be a set of items in S. A method
M is said to use only information of type X if for
any instance I, any receiver t over I, and any item
x in I whose label is not in X , M (I(I � fxg); t) =
I(M (I; t)� fxg).

Notice how conceptually di�erent the above de�nition
is from our �rst De�nition 4.1. In a sense, the �rst
de�nition is more global while the second is more
local. The two de�nitions are also formally di�erent.
For example, consider the method which deletes all
objects of a certain class X. If this method uses only
information of type X according to De�nition 4.1, X
must be in X , but this is not true under De�nition 4.6.
On the other hand, consider the method which always
adds some �xed object of type X. Now it is according to
De�nition 4.6 that X must be in X , but no longer under
De�nition 4.1. In a sense, the two de�nitions are each
other's dual in the way they treat deletion and creation
of information.
It turns out that we can repeat the entire development

under the new De�nition 4.6. We can reprove the
verbatim analogs of Theorems 4.2 and 4.4. Curiously,
an additional illustration of the duality alluded upon
above is that as analog of Proposition 4.3, we can
show that simple colorings under the new de�nition

describe deationary rather than inationary updates
(i.e., M (I; t) � I for all (I; t)). Space limitations
prevent us to give the proofs. The new arguments are
similar in spirit to the old ones, but often technically
di�erent and actually somewhat easier.

5 Algebraic update methods

In this section, we consider a more speci�c framework of
update methods implemented in the relational algebra,
inspired by the algebraic model of object-oriented
database access introduced by Hull and Su [10].
It is well-known (e.g., [15, 10, 11]) that object-

base schemas and instances can be naturally viewed as
relational database schemas and instances. Formally,
assume that all class names and property names are
attribute names. Following the standard convention,
we will omit the set braces from relation schemes,
writing fA;B;Cg simply as ABC. Now consider a given
object-base schema S. The relational database schema
corresponding to S contains for each class name C in
S the unary relation scheme C. The domain �C of C
is the universe of all objects of type C. Furthermore,
for each edge (C; a;B) in S, there is a binary relation
scheme Ca. The domain �a of a is �B. As integrity
constraints, the schema contains inclusion dependencies
Ca[C] � C[C] and Ca[a] � B[B] for each edge (C; a;B)
in S.
It is clear that the object-base instances of S cor-

respond precisely to the relational database instances
of the relational database schema corresponding to S.
Henceforth, we will blur the distinction between an
object-base schema or instance and its relational rep-
resentation. We �x a schema S in what follows.
We are now ready to de�ne our algebraic model

of update methods. We consider methods which can
only update the properties of the receiving object.
These updates are performed via a simple assignment
statement, the right-hand side of this statement being
a relational algebra expression parameterized by the
receiver of the method.
Formally, let � = [C0; : : : ; Ck] be a method signature,

and let a be a property of the receiving class C0.
An algebraic update statement on a of type � is an
expression of the form a := E, where E is a relational
algebra expression over the relation schemes in S and
the special unary relation schemes self and argi for
1 � i � k. The result scheme of E must be unary.
An algebraic update method of type � is a set of

algebraic update statements of type � containing at
most one update on each property of the receiving class.
The result of applying an algebraic update method M

to an instance I and a receiver t = (o0; : : : ; ok) over
I is de�ned in the obvious way. For each statement
a := E, the expression E is evaluated on I, where
the special relation self is interpreted as the singleton

fo0g containing the receiving object, and where argi is
interpreted as the ith argument foig, for 1 � i � k.
Call the result of this evaluation E(I; t). The updated
instance M (I; t) is then obtained from I by replacing
all edges labeled a leaving the receiving object by edges
to all elements of E(I; t).

Example 5.1 In writing algebraic methods, we will
abbreviate class and property names by their �rst letter
(Bar and Beer are abbreviated as Ba and Be). The
method favorite bar of Example 3.2 can be implemented
simply as f := arg1, and the method add bar as f :=
�f (self 1

self=D
Df) [�arg

1
!f (arg1). The method of

Example 4.5 can be implemented as

f := �f (self 1
self=D

Df)

[�Ba!f�Ba(self 1
self=D

Dl 1
l=s

Bas):

In practice, syntactic sugar such as dot notations and
path expressions can be used to write algebraic update
methods more easily.

In order for M (I; t) to be a well-de�ned instance
of S, each statement a := E in M must respect
the integrity constraints of S. More precisely, if a

is of type B, then for any instance I and receiver
t, E(I; t) � B(I). We say in this case that E is
typed. Typedness is undecidable,1 but it is possible to
de�ne a syntactic \strongly typed" subclass of the typed
expressions and show that on object-base instances, any
typed expression is equivalent to some strongly typed
one [6]. Hence, well-de�nedness does not pose a problem
in practice.
Let us now turn to the issue of order independence

of algebraic methods. Our main result of this section is
the following. The proof is sketched in the Appendix.

Theorem 5.2 The problem of deciding equivalence be-
tween relational algebra expressions is reducible to the
problem of deciding order independence of algebraic
methods. Conversely, method order independence is re-
ducible to expression equivalence under functional de-
pendencies.

The functional dependencies appear because the special
relations self and argi occurring in the expressions in
a method body are singletons; this is captured using
functional dependencies.
We can also prove a version of Theorem 5.2 for

key-order independence (omitted). Consequently, both
order independence, key-order independence, as well
as query-order independence (with a relational algebra
query part of the input) of algebraic methods are all

1By reduction from the satis�ability problem and observing
that arbitrary relational algebra expressions can be simulated
using expressions over object-base instances.

undecidable. In the remainder of this section we will
present a su�cient condition for key-order independence
in the general case, followed by a decidability result in
the special case of \positive" methods.

Proposition 5.3 Let M be an algebraic method such
that each expression in its body does not access the
relations corresponding to the properties updated by M .
Then M is key-order independent.

The above proposition, trivial as it may be, explains
why the update : : : set : : : where : : : command of
SQL has a well-de�ned semantics. The where clause
selects from the table a subset of \receiving" tuples to be
updated. The expressions in the set clause (which can
be subqueries) are evaluated over the current instance,
e�ectively yielding a key set of receivers providing for
each receiving tuple the arguments for the update,
which can then be performed by a simple run through
the set without accessing any more information.

Example 5.4 The method favorite bar satis�es the
condition of Proposition 5.3 (see Example 5.1) and is
indeed key-order independent. Observe that add bar
does not satisfy the condition but is still order indepen-
dent; this shows that the condition is only su�cient.

An important special kind of algebraic method is the
positive method, which uses only positive expressions,
i.e., expressions not containing the di�erence operator.
Selection for non-equality (�6=) is still allowed, however.
Note that positive methods can still delete information:

Example 5.5 The method delete bar of type [D;Ba]
which deletes the argument bar from those frequented
by the receiving drinker is positive, as it can be
implemented as

f := �f (self 1
self=D

Df 1
f 6=arg

arg):

Our main positive result of this section is the
following:

Theorem 5.6 Well-de�nedness, order independence,
and key-order independence of positive algebraic meth-
ods are decidable.

The proof (sketched in the Appendix) is based on the
decidability of containment of positive relational alge-
bra expressions over object-base instances under func-
tional dependencies by combining classical techniques
from relational database theory.2 Decidability of well-
de�nedness then immediately follows; for order indepen-
dence, we must additionally observe that in the proof
of Theorem 5.2 the reduction of method order inde-
pendence to expression equivalence preserves positivity.
By the same techniques, it is decidable whether a posi-
tive query Q always returns a key set of receiver tuples,
which can be useful to test for Q-order independence in
case we already know that M is key-order indenpedent.

It remains open whether the following problem is
decidable: given a positive query Q and a positive
method M , is M Q-order independent? The reason
why our techniques fail to solve this problem is that
they crucially rely on Lemma 3.3, which fails for query-
order independence. The interested reader is referred to
Example A.3 in the Appendix for counterexamples.

6 Parallel application

In this section, remaining in the algebraic framework,
we study an alternative, \parallel" way of applying an
update method to a set of receivers.

Let E be an expression occurring as the right-hand
side of an assignment statement in the algebraic update
method M . The expression E can access the di�erent
components of the receiver using the special unary
singleton relations self and argi. However, suppose we
prefer to store the entire receiver in one single relation
rec over the scheme self arg1 : : :argk. This is equivalent;
it su�ces to substitute in E `self ' by `�self (rec)' and
`argi' by `�argi(rec).'

Using this relation rec suggests a natural semantics
for applying the method to a set of receivers: we
instantiate rec not by a single receiver but by the whole
set at once. However, in order to do so in a sensible
way, we must take care that arguments belonging to
di�erent receiving objects are not mixed up. Thereto,
we keep a copy of the receiving object self throughout
the evaluation of the expression. So, the simple
substitutions described in the previous paragraph will
not do; instead we modify E as follows:

� Each relation name R is replaced by �self (rec) �R;

2A similar result, supporting only a weak form of union but
allowing a weak form of negation, was presented by Chan [7].
We believe that our approach based on classical database theory
techniques sheds new light on Chan's results, which were proven
using ad-hoc techniques.

� self is replaced by �self (rec), and each argi is
replaced by �self ;argi(rec);

� each projection �A1;:::;Ap
is replaced by �self ;A1;:::;Ap

;

� each Cartesian product or join is modi�ed so as to
join (also) on the new common attribute self .

Denote the resulting expression by eE. Note that the
result scheme of eE is that of E to which the attribute
self is added.
The result of applying M in parallel to an instance

I and a set T of receivers over I is now de�ned in
the obvious way. For each statement a := E, the
expression eE is evaluated on I, where the special
relation rec is interpreted by T . Call the result of this
evaluation eE(I; t). The updated instance Mpar(I; T) is
then obtained from I by replacing for each receiving
object o0 occurring in T all edges labeled a leaving o0
by edges to all objects linked to o0 in eE(I; T). Note
that if T is a singleton ftg then Mpar(I; ftg) = M (I; t).

Example 6.1 Consider the scheme consisting of one
class name C and two edges labeled e and tc. Let M be
the method of type [C;C] having the single statement

tc := �e(self 1
self=C

Ce) [�e(self 1
self=C

Ctc 1
tc=C

Ce):

This method is order independent. Let I be an
instance containing only e-edges, and let T be the set
of receivers C � C. Then the sequential application
Mseq(I; T) computes the transitive closure of I in the tc-
edges, while the parallel application Mpar(I; T) simply

duplicates each e-edge with a tc-edge. Indeed, eE (E
being the expression assigned to tc) equals

�self ;e(�self (rec) 1
self=self
self=C

(�self (rec) �Ce))

[�self ;e(�self (rec) 1
self=self
self=C

(�self (rec) �Ctc)

1
self=self

tc=C

(�self (rec)� Ce));

which on an instance without tc-edges is equivalent to
�self ;e(�self (rec) 1

self=C
Ce).

The above example shows that parallel application
is less powerful than sequential application, since
sequential application can express transitive closure
while parallel application, by de�nition, does not have
more power than the relational algebra. (One can also
express parity using sequential application.)
When we restrict attention to key sets of receivers,

however, parallel and sequential application are equiv-
alent. The proof of this last result is sketched in the
Appendix.

Proposition 6.2 If M is key-order independent, then
Mseq(I; T) =Mpar(I; T) for any instance I and key set
of receivers T .

References

[1] S. Abiteboul and V. Vianu. Procedural languages
for database queries and updates. Journal of
Computer and System Sciences, 41(2):181{229,
1990.

[2] A.V. Aho, Y. Sagiv, and J.D. Ullman. Equivalences
among relational expressions. SIAM Journal on
Computing, 8(2):218{246, 1979.

[3] A.V. Aho and J.D. Ullman. Universality of
data retrieval languages. In Proceedings of the
ACM Symposium on Principles of Programming
Languages, pages 110{120, 1979.

[4] V. Breazu-Tannen, P. Buneman, and S. Naqvi.
Structural recursion as a query language. In
P. Kanellakis and J.W. Schmidt, editors, Database
Programming Languages: Bulk Types and Persis-
tent Data, pages 9{19. Morgan Kaufmann, 1992.

[5] V. Breazu-Tannen and R. Subrahmanyam. Logical
and computational aspects of programming with
sets/bags/lists. In Automata, Languages, and
Programming, Lecture Notes in Computer Science
510, pages 60{75, 1991.

[6] L. Cabibbo and J. Van den Bussche. Relative
expressiveness of typed and untyped relational
algebra. Unpublished manuscript.

[7] E.P.F. Chan. Containment and minimization
of positive conjunctive queries in OODB's. In
Proceedings 11th ACM Symposium on Principles
of Database Systems, pages 202{211, 1992.

[8] A. Chandra. Programming primitives for database
languages. In Proceedings 8th ACM Symposium on
Principles of Programming Languages, pages 50{
62, 1981.

[9] A. Chandra and P. Merlin. Optimal implementa-
tion of conjunctive queries in relational data bases.
In Proceedings 9th ACM Symposium on Theory of
Computing, pages 77{90. ACM, 1977.

[10] R. Hull and J. Su. On accessing object-oriented
databases: Expressive power, complexity, and re-
strictions. In J. Cli�ord, B. Lindsay, and D. Maier,
editors, Proceedings of the 1989 ACM SIGMOD
International Conference on the Management of
Data, volume 18:2 of SIGMOD Record, pages 147{
158. ACM Press, 1989.

[11] R. Hull and M. Yoshikawa. ILOG: Declarative
creation and manipulation of object identi�ers. In
D. McLeod, R. Sacks-Davis, and H. Schek, editors,
Proceedings of the 16th International Conference
on Very Large Data Bases, pages 455{468. Morgan
Kaufmann, 1990.

[12] D.S. Johnson and A. Klug. Testing containment of
conjunctive queries under functional and inclusion
dependencies. Journal of Computer and System
Sciences, 28:167{189, 1984.

[13] A. Klug. On conjunctive queries containing in-
equalities. Journal of the ACM, 35(1):146{160,
1988.

[14] C. Laasch and M.H. Scholl. Deterministic seman-
tics of set-oriented update sequences. In Pro-
ceedings, Ninth International Conference on Data
Engineering, pages 4{13. IEEE Computer Society
Press, 1993.

[15] P. Lyngbaek and V. Vianu. Mapping a semantic
database model to the relational model. In
U. Dayal and I. Traiger, editors, Proceedings of the
ACM SIGMOD 1987 Annual Conference, volume
16:3 of SIGMOD Record, pages 132{142. ACM
Press, 1987.

[16] D. Maier, A.O. Mendelzon, and Y. Sagiv. Testing
implications of data dependencies. ACM Transac-
tions on Database Systems, 4:455{469, 1979.

[17] X. Qian. The expressive power of the bounded-
iteration construct. Acta Informatica, 28:631{656,
1991.

[18] Y. Sagiv and M. Yannakakis. Equivalence among
relational expressions with the union and di�erence
operators. Journal of the ACM, 27(4):633{655,
1980.

[19] J.T. Schwartz et al. Programming with sets: an
introduction to SETL. Springer-Verlag, 1986.

[20] E. Simon and C. de Maindreville. Deciding whether
a production rule is relational computable. In
M. Gyssens, J. Paredaens, and D. Van Gucht,
editors, ICDT'88, volume 326 of Lecture Notes in
Computer Science, pages 205{222. Springer-Verlag,
1988.

A Appendix

Proof of Theorem 4.2. (Sketch) Note that the full
coloring, which assigns all colors to all labels, satis�es
the conditions of the theorem. Note also that the lattice
of subsets of the colors fu; c;dg can be canonically
extended to a lattice of colorings. Hence, it su�ces
to show that if �1 and �2 are colorings satisfying the
conditions in Theorem 4.2, then so is �1 \ �2.

Thereto, put � = �1 \ �2. For i = 1; 2, let Ui be the
set of items in S colored u by �i, and let U be the set
of items colored u by �. Note that for any instance I,

(IjU1)jU2 = IU . Since �1 and �2 satisfy condition 3 of
Theorem 4.2, we have

M (I; t) = I(M (IjU1 ; t) [(I � IjU1)) (1)

= I(M (IjU2 ; t) [(I � IjU2)): (2)

We must prove that � satis�es the conditions in
Theorem 4.2; in this sketch, we will concentrate on the
proof of condition 3:

M (I; t) = I(M (IjU ; t) [(I � IjU)):

By applying equations (1) and (2) in succession, we
obtain

M (I; t) = I(M (IjU1 ; t) [(I � IjU1))

= I(I(M ((IjU1)jU2 ; t) [(IjU1 � (IjU1)jU2))

[(I � IjU1))

= I(I(M (IjU ; t)[(IjU1 � IjU))

[(I � IjU1)):

To prove that the graph denoted by the last expression
above equals I(M (IjU ; t) [(I � IjU)), we will consider
the nodes and edges separately. For the nodes, the
equality follows readily once we observe that the nodes
in (IjU1 � IjU)[(I� IjU1) are precisely those of I � IjU .
For the edges, a straightforward calculation shows that
the crux of the proof is to establish the following
equivalence: an edge e together with its incident nodes
n andm belongs to I(M (IjU ; t)[(IjU1�IjU))[(I�IjU1)
if and only if e, n and m belong simply to M (IjU ; t) [
(IjU1 � IjU) [(I � IjU1).
The only-if direction of this equivalence is trivial. To

show the if-direction, note that we can concentrate on
the case e 2 (IjU1 � IjU), the other cases being trivial
(M (IjU ; t) is already an instance, so the operator I has
no e�ect on it, and (I � IjU1) is outside the scope of
the application of I altogether). In particular, then,
e 2 IjU1 and hence n;m 2 IjU1 since �1 satis�es
condition 5 of Theorem 4.2. As a consequence, n and
m are not in (I � IjU1) and hence must belong to
M (IjU ; t)[(IU1 � IjU). We can therefore conclude that
e, n and m belong to I(M (IjU ; t)[(IU1 � IjU)), as had
to be shown.

Proof of Proposition 4.3. (Sketch) Let � be the
minimal coloring of method M . We will prove the
following technical lemma:

Lemma A.1 If a node in the schema is colored d by
�, then it is also colored u. If an edge is colored d by
�, then either it is also colored u or one of its incident
nodes is colored d.

The above lemma implies the proposition to be proven:
if � is simple, it cannot not color anything d and

hence M will never delete any information, i.e., M is
inationary.
Let U be the set of items in S colored u. The proof

of the �rst statement is straightforward: if X is a node
in the schema colored d, then there exists an instance
I and a receiver t such that I contains an object n

of type X that is not in M (I; t). If X would not
be colored u, then n would be in I � IjU and hence
in I(M (IjU ; t) [(I � IjU)), which equals M (I; t) by
condition 3 of Theorem 4.2; a contradiction.
To prove the second statement, assume there is an

edge in S, labeled e, which is colored d but not u. Then
there exists an instance I and a receiver t such that I
contains an edge x = (n; e;m) not in M (I; t). Since
e is assumed not in U , x is in I � IjU and hence in
M (IjU ; t) [(I � IjU). We must show that at least one
of the labels �(n) and �(m) of n and m is colored d.
Assume the contrary. We consider two possibilities for
object n:

1. If �(n) is colored u, n is in IjU . Since �(n) is
assumed not colored d, n is in M (IjU ; t) and hence
in M (IjU ; t)[(I � IjU).

2. If �(n) is not colored u, then n is in I � IjU and
hence in M (IjU ; t) [(I � IjU).

The same case analysis applies to the object m.
Consequently, both of the nodes incident to edge x are
in M (IjU ; t) [(I � IjU) and thus x is in I(M (IjU ; t) [
(I � IjU)), which equals M (I; t); a contradiction.

Proposition A.2 A coloring is sound if and only if it
has the following properties:

1. The property expressed by Lemma A.1;

2. If an edge is colored c, then its incident nodes are
colored u or c;

3. At least one node is colored u;

4. If an edge is colored u, then so are its incident nodes.

Proof. (Sketch) We concentrate on the if-direction. Let
� be a sound coloring. We can construct an update
method having � as its minimal coloring as follows.
The signature of the method may be arbitrarily �xed
as long as all its elements are colored u. Regardless of
the particular receiver to which it is applied, the update
performed by the method is the following:

1. For each node X in the schema with �(X) = fcg,
some �xed object of type X is added;

2. For each edge X in the schema with �(X) = fcg or
fc;dg, some �xed edge e with label X is added. If
one of the incident nodes of X in the schema is not
colored c, then e is added only if the corresponding
incident node of e is already present;

3. For each schema item X with �(X) = fug, the
update is unde�ned on instances that do not contain
some �xed item with label X;

4. For each schema item X with �(X) = fu;dg, some
�xed item with label X is deleted;

5. For each node X in the schema with �(X) = fu; cg,
a �xed object of type X is added on condition that
it is not already present; otherwise, some other �xed
object is added;

6. For each edge X in the schema with �(X) = fu; cg,
the behavior is similar to that described in item 2,
with the exception that the �xed edge is added only
if it is not already present; otherwise, some other
�xed edge is added;

7. Finally, for each schema item X with �(X) =
fu; c;dg, the behavior combines those described for
�(X) = fu;dg and �(X) = fu; cg.

Proof of Theorem 4.4. (Sketch) If: By Proposi-
tion 4.3, any method having � as minimal coloring is in-
ationary. Furthermore, for any such methodM and for
any instance I and receiver t, we have IjU = M (I; t)jU .
Indeed, since M is inationary, IjU � M (I; t)jU , and
this inclusion cannot be strict since any information in
M (I; t) not in I is colored c and thus not u because
� is simple. Using these two observations, it can be
veri�ed that M (M (I; t1); t2) = M (I; t1) [M (I; t2) =
M (M (I; t2); t1) for any pair ft1; t2g of receivers. Hence,
by Lemma 3.3, M is sequential-deterministic.

Only if: Assume � is not simple; then the soundness
of � can be used to deduce that at least there is a node
R colored (1) fu;dg, (2) fu; c;dg, or (3) fu; cg, or an
edge (R; a;A) colored (4) fu;dg, (5) fu; c;dg, or (6)
fu; cg. For each of these cases we will give a method of
type [R;A] which is not sequential-deterministic, having
� as its minimal coloring. Since � is sound, we can start
with the method associated to � according to the proof
of Proposition A.2. We then adapt this method to one
of the six possible cases as follows:

1. If there are exactly two objects of type R, delete the
receiving object.

2. As in the previous case, but if the test fails add two
new objects to class R.

3. If there are not exactly two objects of type R, do
nothing. Otherwise, if the receiving object is equal
to some �xed object, add two new objects to class
R; otherwise, add only one.

4. If there is an edge with label a between receiving
and argument object, delete all other a-edges.

5. As in the previous case, but if the test fails add an
a-edge between receiving and argument object and
delete all other a-edges.

6. If there are no a-edges, add one between receiving
and argument object.

Proof of Theorem 5.2. (Sketch) We �rst reduce
expression equivalence to method order independence.
Let S be an object-base schema, and let E1 and E2 be
two expressions over S (E1 and E2 are assumed to have
the empty result scheme, w.l.o.g.) Augment S with a
class name C having two properties a and b of type
C. The following update method of type [C] is order
independent if and only if E1 and E2 are equivalent:

a := ;;
b := if Ca = C � �C!a(C) then if E1 then self else ;

else if E2 then self else ;.

It is well-known how if-then-else constructs can be
simulated in the relational algebra.
We next reduce method order independence to ex-

pression equivalence. Let M be an update method
with receiving class C, containing update assignments
a := Ea, for each a 2 A where A is some set of prop-
erties of C. If I is an instance and the unary singleton
relations self , arg1, : : : , argk together hold a receiver
t, then the relation Ca in the instance M (I; t) can be
expressed as

�C;a(Ca 1
C 6=self

self) [�self!C(self)�Ea:

Denote this expression by Ea[t]. Now denote by E0a
the expression obtained from Ea[t] by replacing each
occurrence of Cb, where b 2 A, by Eb[t], and let
self 0, arg01, : : : , arg0k together hold a second receiver
t0. Then the relation Ca in the instance M (I; tt0) can
be expressed as

�C;a(Ea[t] 1
C 6=self 0

self 0) [�self 0!C(self
0)�E0a:

Call this expression Ea[tt0]. By reversing the process,
we obtain an expression Ea[t0t]. By Lemma 3.3, M is
order independent i� for each a 2 A, the expressions
Ea[tt

0] and Ea[t
0t] are equivalent. However, in testing

the equivalence, care must be taken so as to consider
only interpretations of the relations self , self 0, arg1, : : : ,
arg0k which assign them (i) at most one element; (ii) at
least one element; and (iii) di�erent receivers t and t0.
Requirement (i) is dealt with by imposing functional
dependencies of the form ; ! self ; requirements (ii)
and (iii) are dealt with by modifying the expressions so
as to yield the empty result if they are not satis�ed.

Proof of Theorem 5.6. (Sketch) Recall the reduction
of method order independence to expression equivalence

shown in the proof of Theorem 5.2. In this reduction,
if the method to be checked for order independence is
positive, then so are the expressions to be checked for
equivalence. Our positive expressions can be viewed
as conjunctive queries extended with union and non-
equality. Testing for containment (whence equivalence)
of conjunctive queries is well-known to be decidable [9,
2], and extensions incorporating union [18] or selection
for inequalities [13] are equally well-known. These two
generalizations can be combined, and it can be veri�ed
that the techniques for dealing with inequalities (�)
carry over to non-equalities (6=). Finally, we must
keep in mind that our expressions have to be checked
for equivalence only on object-base instances. Such
instances satisfy the inclusion dependencies speci�ed
by the schema, as well as exclusion dependencies
implied by the disjointness of classes. Furthermore,
we must take into account the functional dependencies
mentioned in Theorem 5.2. The functional and inclusion
dependencies can be dealt with by a standard chase
process [16, 2, 12] (the inclusion dependencies are unary
and full and hence do not pose a problem in this
respect). The exclusion dependencies are dealt with by
employing a typed chase. It can be veri�ed that this
process works together with the extensions to deal with
union and non-equality.

Example A.3 We will give counterexamples disprov-
ing the following statement: let Q be a positive algebra
query andM a positive algebraic method. ThenM is Q-
order independent if and only ifM is order independent
on any pair (I; T) where T is a two-element subset of
Q(I). Consider a scheme with a class name C having
two properties a and b of type C.
For the if-direction, M (of type [C;C]) is the method

deleting the argument object from the a-properties
of the receiving object on condition that relation Ca

contains at least two tuples; query Q equals if #Ca > 2
then Cb else ;.
For the only-if direction,M (of type [C;C;C]) assigns

to a all b-properties of the receiving object, and adds the
�rst argument object to the b-properties (the second
argument object is not used). Query Q returns the
three-fold Cartesian product of C with itself.

Proof of Proposition 6.2. (Sketch) Let E be an
expression occurring as the right-hand side of some
statement in M . Using the fact that T is a key set,
one can show by induction on the structure of E that

eE(I; T) = [
t2T

t(self)� E(I; t):

Moreover, if T = ft1; : : : ; tng, one can show that
E(M (I; t1 : : : ti); ti+1) = E(I; ti+1). The intuitive
reason is that since M is key-order independent, the
outcome of the sequential application must be the same

regardless of whether or not one starts with ti+1 as the
�rst receiver. The formal proof is notationally rather
intricate and tedious. These two properties immediately
imply Mpar(I; T) =Mseq(I; T).

