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Abstract. In this paper we present a new approach for studying aggre-
gations in the context of database query languages. Starting from a broad
de�nition of aggregate function, we address our investigation from two
di�erent perspectives. We �rst propose a declarative notion of uniform
aggregate function that refers to a family of scalar functions uniformly
constructed over a vocabulary of basic operators by a bounded Turing
Machine. This notion yields an e�ective tool to study the e�ect of the
embedding of a class of built-in aggregate functions in a query language.
All the aggregate functions most used in practice are included in this
classi�cation. We then present an operational notion of aggregate func-
tion, by considering a high-order folding constructor, based on structural
recursion, devoted to compute numeric aggregations over complex val-
ues. We show that numeric folding over a given vocabulary is sometimes
not able to compute, by itself, the whole class of uniform aggregate func-
tion over the same vocabulary. It turns out however that this limitation
can be partially remedied by the restructuring capabilities of a query
language.

1 Introduction

Computing aggregations has been always considered an important feature of
practical database query languages. This ability is indeed fundamental in speci�c
application domains whose relevance has recently increased; among them, on-
line analytical processing (OLAP), decision support, statistical evaluation, and
management of geographical data. In spite of this fact, a systematic study of
aggregations in the context of query languages has evolved quite slowly. Apart
from the work by Klug [13], who formalized extensions of algebra and calculus
with aggregates, in the last decade there have been few papers dealing with this
subject [7, 14{16], even if speci�c aggregate functions of theoretical relevance,
like counters, have received special attention [2, 8, 11].

The general approach to the problem is to study basic properties of formal
languages equipped with a speci�c class of built-in aggregate functions (typi-
cally the ones provided by SQL, that is, min, max, sum, count and avg, plus
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further functions of theoretical interest, like even). Conversely, we would like
to attack the problem from a more general perspective, possibly independent of
the speci�c aggregate functions chosen. To do that, we �rst need to answer a
fundamental question: what is precisely an aggregate function? It is folk knowl-
edge that a database aggregate function takes a collection of objects (with or
without duplicates) as argument, and returns a new value that \summarizes"
a numeric property of the collection. This broad de�nition is clearly too vague
to provide clues for answering general questions about query languages with
aggregate capabilities.

Our �rst goal is then trying to re�ne this de�nition, in order to provide a
solid basis to the whole picture. Borrowing some ideas from the circuit model [12,
18], we start by noting that an aggregate function g over a collection s can be
e�ectively described by a family of scalar functions (that is, traditional k-ary
functions) G = fg0; g1; g2; : : :g such that, for each k � 0: (i) gk computes g when
s contains exactly k elements; (ii) the result of gk is invariant under any per-
mutation of its arguments (as g operates on collections rather than sequences);
and (iii) gk is constructed by using a �xed vocabulary of basic operations and
constants. To guarantee tractability of this representation in terms of families
of scalar functions, we need to set some constraint on the way in which the
various gk are built. We make this constraint precise by introducing a notion of
uniform construction, stating that a circuit description of each function gk in
G needs to be \easily" generated from k (speci�cally, from a Turing machine
having bounded complexity). In this way, the family G forms a good represen-
tative of the aggregate function g, since the computational power is captured by
the gk's themselves rather than by their construction. This approach leads to
the de�nition, in a very natural way, of di�erent and appealing abstract classes

of aggregate functions: a class is composed of all the aggregate functions that
can be represented by a uniform family of functions over a given vocabulary.
With the assumption that each scalar function in the vocabulary has constant
computational cost, uniform construction indeed guarantees tractability of the
aggregate functions so de�ned.

We are now ready to address the impact of incorporating aggregate func-
tions in a database query language. To this end, we consider a two-sorted al-
gebra for complex values [1], called CVA, over an uninterpreted domain and an
interpreted one. In this context, we �rst study extensions of CVA with built-in
aggregate functions, that is, with operators whose semantics is de�ned outside
the database. We then present a simple constructor, called folding, that allows
the user to de�ne and apply an aggregation within CVA. This operator is based
on structural recursion [5] and is de�ned in terms of a pre function p, an in-
crement function i over the variables acc and curr , and a post function q. The
application of a folding expression over a collection of complex values s returns
a new value by iterating over the elements of s in a natural way: starting from
acc = p(s), for each element curr of s (chosen in some arbitrary order) the func-
tion i is applied to acc and curr ; the result is obtained by applying q to the value
of acc at the end of the iteration. A constraint on i guarantees that the result



of folding over a collection s is indeed independent of the order in which the
elements of s are selected during the evaluation. We then restrict our attention
to a simpli�ed version of folding devoted to compute numeric aggregations: it
operates only on multisets of interpreted atomic values and returns a numeric
value, without involving complex data types in its evaluation.

We �nally relate the abstract notion of uniform aggregate function with this
procedural way of computing aggregations. We �rst show that, even if numeric
folding is less expressive than general folding, they have the same expressive
power when embedded in CVA; that is, the restructuring capabilities of the
algebra overcome the gap in expressiveness. We then show that numeric folding
over a given set of scalar functions computes only uniform aggregate functions
over the same set of scalar functions, but not all of them. We demonstrate that
this limitation can be partially overcome by the restructuring capabilities of
a query language. It turns out however that CVA, extended with the folding
operator and a vocabulary of scalar functions, is still not able to capture the
whole class of uniform aggregate functions over the given vocabulary.

The rest of the paper is devoted to a formalization of the issues discussed
in this section and is organized as follows. In Section 2, we introduce the basic
notions and present a number of examples of uniform aggregate functions. In
Section 3, we introduce the CVA query language and investigate extensions of
CVA with built-in aggregate functions. The folding operator is introduced in Sec-
tion 4, where we also characterize an important restriction of it. In Section 5, we
relate the expressive power of the various extensions of CVA with aggregations.
Finally, in Section 6, we state a number of interesting open problems.

2 Aggregate Functions

2.1 Basic De�nitions

Let us start with a very general de�nition of aggregate function. Let ffNgg de-
note the class of �nite multisets of values from a countably in�nite domain N .
(Multisets generalize sets, in that they allow an element to occur multiple times.)

De�nition 1. An aggregate function over N is a total function from ffNgg to

N , mapping each multiset of values to a value.

Examples of aggregate functions over numeric domains are sum (
P
), product

(
Q
), counting, average, maximum, and minimum. Maximum and minimum are

also examples of aggregate functions over collections of non-numeric domains
like strings. Note that we require aggregate functions to be total ; in some cases,
this requires some attention. For instance, the sum of a multiset of numbers
is always well-de�ned; conversely, in de�ning the maximum function max, an
arbitrary choice for its result over the empty multiset ffgg is required.

In the rest of the paper, we will only consider aggregate functions over the
domain Q of the rational numbers.

An important aspect of our approach is that we clearly separate the restruc-
turing capabilities of a query language from its ability to compute aggregations.



Speci�cally, we make a distinction between aggregate functions (that is, aggrega-
tions over numbers) and aggregate queries (that is, queries involving aggregate
functions). Under this interpretation, the counting of an arbitrary set (say, of
a set of strings) is an aggregate query, which can be computed by �rst map-
ping each element to some numeric constant (say, 1), and then applying an
aggregate function that counts the elements of the resulting numeric multiset.
Similarly, testing whether two sets are equinumerous can be viewed as an ag-
gregate query accomplished by computing the cardinalities of the sets with an
aggregate function, and then checking for their equality. Finally, we note that
the maximum function with SQL semantics is an aggregate query that returns
a singleton set over non-empty sets and an empty set over empty sets; again,
this can be implemented by using a maximum aggregate function together with
some restructuring operations.

2.2 Uniform Aggregate Functions

In order to provide a concrete basis for the investigation of aggregations in the
context of database queries, we now re�ne the de�nition of aggregate function.
We �rst introduce a number of preliminary notions, to develop the following
ideas, inspired from the circuit model [12, 18]: (i) an aggregate function can
be represented by a family of scalar functions; (ii) each scalar function can be
described by an arithmetic circuit over a collection of base functions;1 (iii) uni-
formity in the construction of a family of circuits guarantees tractability of the
represented aggregate function.

A scalar function (over Q) is a total function from Qk to Q, with k � 0.
(Examples of scalar functions are the nullary functions 0 and 1 and the binary
functions +, �, �, and =.) An enumeration of a multiset s = ffv1; : : : ; vngg is a
tuple ~s = [v1; : : : ; vn] containing the same elements as s with the same multiplic-
ities, in any of the possible orderings. A family of functions is a set G of scalar
functions such that, for each k � 0, there is one function gk : Qk ! Q in G,
called the k-th component of G.

We say that a family G of functions represents an aggregate function
h : ffQgg ! Q if, for each k � 0, each multiset s of cardinality k, and each
enumeration ~s of s, it is the case that gk(~s) = h(s), where gk is the k-th compo-
nent of G. Note that the above de�nition implies that only symmetric functions
can be used in the representation of aggregate functions. We recall that a k-ary
function f is symmetric if it remains invariant under any permutation of its ar-
guments, that is, f(x1; : : : ; xk) = f(x�(1); : : : ; x�(k)) for every permutation � on
f1; : : : ; kg.

Let a vocabulary be a set of scalar functions over Q. A circuit over a vocabu-
lary is a labeled directed acyclic graph whose nodes are either function nodes or
are input nodes. Each function node is labeled by a function in the vocabulary;
a node labeled by a m-ary function has precisely m ingoing arcs (the arcs are

1 Actually, there are other ways to describe scalar functions, such as straight line

programs and formulae, which are essentially equivalent to arithmetic circuits.



ordered). An input node is a node with no ingoing arcs labeled by xi, with i > 0.
There is one distinguished node with no outgoing arcs, called the output of the
circuit. A k-ary circuit is a circuit with at most k input nodes having di�er-
ent labels from x1; : : : ; xk. The semantics of a k-ary circuit is the k-ary scalar
function computed by the circuit in the natural way. A circuit describes a scalar
function f if its semantics coincides with f . An encoding of a circuit is a listing
of its nodes, with the respective labels. The size of the circuit is the number of
its nodes. A description of a function f , together with its size, is a circuit that
describes f . Examples of circuits are reported in Figure 1.

To guarantee the tractability of a family of functions, we introduce a notion
of uniformity. A family G of functions is uniform if a description of the n-
th component of G can be generated by a deterministic Turing machine using
O(log n) workspace on input 1n.

De�nition 2. A uniform aggregate function over a vocabulary 
 is an aggregate

function that can be represented by a uniform family of functions over 
.

As a particular but important case, we call uniform counting functions the uni-
form aggregate functions that can be represented by families of constant func-
tions. We note that, since a constant function does not depend on its arguments,
a uniform counting function can be described by a family of circuits without in-
put nodes.

It is worth noting that we use the term \uniform" to mean logspace uniform,
as it is customary in the context of the circuit model, where several di�erent
notions of uniformity are essentially equivalent to logspace uniformity. Note also
that, as a consequence of the requirement of logspace computability in the de�-
nition, the size of the description of the n-th component of any uniform family
is polynomial in n.

As a �rst example, Figure 1 shows the �rst three components of a family
describing the average aggregate function avg over the vocabulary 
Q, where

Q = f0; 1;+;�; �; =g.

: : :avg0

m0
avg1

m=

m+ m+

mx1 m0 m1 m0

��� @@I

��� AAK ��� AAK

avg2

m=

m+ m+

mx2 m+ m1 m+

mx1 m0 m1 m0

��� @@I

��� AAK ��� AAK

��� AAK ��� AAK

Fig. 1. A circuit representation of the aggregate function avg



We note that, for each k > 0, the left and right subtrees of the output of avgk
correspond to the k-th component of the aggregate functions sum and count,
respectively. Actually, these three aggregate functions can be de�ned inductively
as follows:

sum0 = 0 sumk = sumk�1 + xk for k > 0
count0 = 0 countk = countk�1 + 1 for k > 0

avg0 = 0 avgk = sumk=countk for k > 0

Intuitively, the fact that the k-th component of a family can be derived from the
previous component in a simple way guarantees uniformity of the family [12].

The vocabulary 
Q can be used to de�ne several other aggregate functions.
For example, the function even can be de�ned as even0 = 1 and evenk =
1� evenk�1, for each k > 0, in which 0 is interpreted as false and 1 as true. A
di�erent family for the same function is such that even02k = 1 and even02k+1 = 0,

for each k � 0. The aggregate function exp, such that expk = 2k, can be de�ned
as exp0 = 1 and expk = double(expk�1) for k > 0, where double(x) = x + x.
Note that the obvious description 1+1+ : : :+1 for expk (with 2k number of 1's
and 2k�1 number of +'s) cannot be generated by a logspace computation, since
it requires a number of operators which is exponential in k. Further uniform
aggregate functions over 
Q are the following: any �xed natural or rational
constant c; the function fib that generates Fibonacci's numbers; the function
fatt, such that fattk = k!; the function prod, such that prodk = x1�: : :�xk =Qk

i=1 xi.
Functions like count, even, and exp do not depend on the actual values of

the elements in the argument (multi)set, but rather on the number of elements
it contains. According to our de�nition, these are indeed uniform counting func-
tions.

Although many interesting functions can be de�ned in terms of 
Q, this
vocabulary does not allow the de�nition of the minimum and maximum functions
min and max. To this end, we need to use further scalar functions to take care
of order. For instance, using an ordering function �: Q�Q! f0; 1g and the
functions in 
Q, it is easy to de�ne also the functions =, 6=, and >. Then, it can
be shown that min and max are uniform aggregate functions over 
Q [ f�g.

2.3 A Hierarchy of Aggregate Functions

Let A(
) be the class of uniform aggregate functions over a vocabulary 
. Ac-
cording to our de�nition, an element of A(
) can be represented by a uniform
family of functions whose description of the n-th component can be generated
by a Turing machine using O(logn) workspace. Actually, a Turing machine us-
ing O(logn) workspace is essentially equivalent to a program that uses a �xed
number of counters, each ranging over f1; : : : ; ng; it is then apparent that the
expressiveness of such a machine increases with the number of available coun-
ters. To capture this fact, we now introduce a hierarchy of classes of uniform
aggregate functions, as follows.



De�nition 3. Ak(
) is the class of uniform aggregate functions such that the

description of the n-th component has size O(nk).

Clearly, A(
) =
S
k�0A

k(
) and Ak(
) � Ak+1(
) for each k � 0. Actually,
it turns out that there are vocabularies for which the above hierarchy is proper.

Lemma 1. There are a vocabulary 
 and a natural k such that Ak(
) �
Ak+1(
).

Sketch of proof. Let 
a = f0�;�;
g be an \abstract" vocabulary, where 0� is
a constant, � is a commutative binary function, and 
 is an arbitrary binary
function. Consider the uniform aggregate function � over 
a such that �n =Lj=1;:::;n

i=1;:::;n xi 
 xj , where
L

is de�ned in terms of � using 0� as \initial value".

Since the n-th component �n contains O(n2) operators, the function � is in
A2(
a) by de�nition. However, it turns out that � does not belong to A1(
a),
since it is not possible to represent its components using a linear number of
operators. ut

Remark 1. Let us now briey discuss the above result. Consider the following
\concrete" interpretation e
a for the abstract vocabulary
a: 0� is 0 (the rational
number zero),� is + (addition of rational numbers), and
 is � (multiplication of
rational numbers); multiplication is distributive over addition. According to this

interpretation e
a, the n-th component �n =
P

i;j xi � xj of � can be rewritten
as (
P

i xi) � (
P

j xj), which has O(n) operators, and therefore � belongs to

A1( e
a). Conversely, consider the function � such that �n =
Li6=j

i;j xi 
 xj . It

is easy to see that � belongs to A2(
a) � A1(
a). Furthermore, even with

respect to the interpretation e
a for the vocabulary 
a, the function � belongs
to A2( e
a)�A1( e
a). It would belong to A1( e
a) if e
a contained the di�erence
operator �; in this case, �n can be rewritten as (

P
i xi)� (

P
j xj)� (

P
k xk �xk).

Thus, in general, properties of the aggregate functions in the class A(
) depend
on properties of the scalar functions in the vocabulary 
. ut

3 A Query Language with Interpreted Functions

In this section we investigate the embedding of a class of aggregate functions
within a database query language. We �rst introduce an algebra for complex
values [1], and then extend it with interpreted scalar and aggregate functions.

3.1 The Data Model

We consider a two-sorted data model for complex values, over a countably in-
�nite, uninterpreted domain D and the interpreted domain Q of the rational
numbers. We �x two further countably in�nite disjoint sets: a set A of attribute
names and a set R of complex-values names. The types of the model are recur-
sively de�ned as follows: (i) D and Q are atomic types; (ii) if �1; : : : ; �k are types
and A1; : : : ; Ak are distinct attribute names from A, then [A1 : �1; : : : ; Ak : �k] is



a tuple type (k � 0); and (iii) if � is a type, then f�g is a set type. The domain
of complex values associated with a type is de�ned in the natural way.

A database scheme is a tuple of the form (s1 : �1; : : : ; sn : �n), where s1; : : : ; sn
are distinct complex-values names from R and each �i is a type. A database

instance is a function mapping each complex-values name si to a value of the
corresponding type �i, for 1 � i � n. Note that the si's are not required to be
sets of (complex) values.

3.2 The Complex-Values Algebra

Our reference language, denoted by CVA, is a variant of the complex-values al-
gebra of Abiteboul and Beeri [1] without powerset . The language is based on
operators, similar in spirit to relational algebra operators, and function con-

structors, which are high-order constructors used to apply functions to complex
values. We now briey recall the main features of the language, referring the
reader to [1] for further details.

The expressions of the language describe functions2 from a database scheme
to a certain type, which are built by combining operators and function construc-
tors starting from a basic set of functions. More speci�cally, the base functions

include constants and complex-values names from R (viewed as nullary func-
tions), attribute names from A, the identity function id , the set constructor fg,
the binary predicates =, 2, and �, the boolean connectives ^, _, and :. The
operators include the set operations [, \, and �, the cross product (which is a
variant of the k-ary Cartesian product), and the set-collapse (which transforms
a set of sets into the union of the sets it contains).

The function constructors allow the de�nition of further functions, as follows:

{ the binary composition constructor f �g, where f and g are functions, de�nes
a new function whose meaning is \apply g, then f";

{ the labeled tuple constructor [A1 = f1; : : : ; An = fn], where f1; : : : ; fn are
unary functions and A1; : : : ; An are distinct attribute names, de�nes a new
function over any type as follows:

[A1 = f1; : : : ; An = fn](s) = [A1 : f1(s); : : : ; An : fn(s)];

{ the replace constructor replacehfi, where f is a unary function, de�nes a
new function over a set type as: replacehfi(s) = ff(w) j w 2 sg;

{ the selection constructor selecthci, where c is a unary boolean function,
de�nes a new function over a set type as: selecthci(s) = fw j w 2
s and c(w) is trueg:

To increase readability, we will often use an intuitive, simpli�ed notation. For
example, if A and B are attributes and f is a function, we write A:B instead of

2 We mainly refer to a general notion of function rather than query because, in order
to include aggregations, it is convenient to relax the assumption that the result of a
CVA expression is a set.



B � A, A(f) instead of A � f , and A 2 B instead of 2�[A;B]. For the labeled
tuple constructor, we write [A] instead of [A = A], and [A:B] instead of [B =
A:B] (that is, an attribute takes its name from the name of the last navigated
attribute).

As an example, let s1 and s2 be complex-values names, having types f[A :
D; B : D]g and f[E : fDg; F : D]g, respectively. Then the following expression
computes the projection on A and F of the join of s1 with s2 based on the
condition B 2 E:

replaceh[X:A; Y:F ]i(selecthX:B 2 Y:Ei(cross [X;Y ](s1; s2))):

3.3 Adding Interpreted Functions

Interpreted functions (that is, functions whose semantics is de�ned outside the
database) can be included in CVA in a very natural way [1].

Let us �rst consider a set 
 of interpreted scalar functions over Q. These
functions can be embedded into CVA by simply extending the set of available base
functions with those in 
, and allowing their application through the function
constructors. For instance, if + is in 
, we can extend the tuples of a complex
value r of type f[A : Q; B : Q]g with a further attribute C holding the sum of
the values in A and B by means of the expression replaceh[A;B;C = A+B]i(r).

Let us now consider a set � of aggregate functions over Q. In this case we
cannot simply extend the base functions with those in � , since we could obtain
incorrect results. For example, if we need to sum the A components of the tuples
in the complex value r above, we cannot use the expression sum(replacehAi(r)),
since this would eliminate duplicates before the aggregation. Therefore, we in-
troduce an aggregate application constructor gfffgg, where g is an aggregate
function in � and f is any CVA function. For a set s, gfffgg(s) speci�es that
g has to be applied to the multiset fff(w) j w 2 sgg rather than to the set
ff(w) j w 2 sg. Thus, the above function can be computed by means of the
expression sumffAgg(r).

In the following, we will denote by CVA+
 +� the complex-values algebra
extended in this way with the scalar functions in 
 and the aggregate functions
in � .

3.4 Expressive Power and Complexity

It is well-known that the complex-values algebra CVA is equivalent to a lot of
other algebraic or calculus-based languages (without powerset) over complex
values and nested collections proposed in the literature [5, 6, 19, 20]. It turns
out that CVA expresses only functions (over uninterpreted databases) that have
ptime data complexity.

When considering the complexity of functions over numeric interpreted do-
mains, a cost model has to be speci�ed, since it can be de�ned in several di�erent
ways. For instance, it is possible to consider a number as a bit-sequence and de-
�ne the complexity of a function over a tuple of numbers with respect to the



length of the representations of the numbers. However, we prefer to treat num-
bers as atomic entities, and assume that basic scalar functions are computed in a
single step, independently of the magnitude or complexity of the involved num-
bers [4, 10]. Speci�cally, we assume that the computational cost of any scalar
function that we consider is unitary; this is indeed a reasonable choice when
arithmetic operations and comparisons over the natural or rational numbers are
considered. Under this assumption, the data complexity of CVA+
 is in ptime.
Furthermore, if we consider a class � of aggregate functions having polynomial
time complexity in the size of their input then, by a result in [5], CVA+
 + �
remains in ptime.

By noting that, for a collection 
 of scalar functions, the complexity of
evaluating aggregate functions in A(
) is polynomial in the size of their input,
the following result easily follows.

Theorem 1. Let 
 be a collection of scalar functions. Then CVA+
 +A(
)
has ptime data complexity.

4 An Operator for De�ning Aggregate Functions

In this section we investigate the introduction, in the query language CVA, of
a high-order constructor, called folding, that allows us to de�ne and apply an
aggregation. This operator is essentially based on structural recursion [5, 17].

4.1 Folding Expressions

A folding signature is a triple (�i; �a; �o) of types, with the restriction that the
type �a does not involve the set type constructor. As we will clarify later, this
type restriction ensures tractability of folding.

De�nition 4. A folding constructor of signature (�i; �a; �o) is an expression of

the form foldhp; i; qi, where:

{ p is a CVA function of type ff�igg ! �a, called pre-function;
{ i is a left-commutative3 CVA function �i � �a ! �a over the symbols curr

and acc, called increment function; and
{ q is a CVA function of type �a ! �o, called post-function.

A folding fold hp; i; qi of signature (�i; �a; �o) de�nes a function of type ff�igg ! �o;
the result of applying this function over a collection s is computed iteratively as
follows:

acc := p(s);
for each curr in s do acc := i(curr ; acc);
return q(acc);

3 A binary function f is left-commutative if it satis�es the condition f(x1; f(x2; y)) =
f(x2; f(x1; y)). Commutativity implies left-commutativity, but not vice versa.



Initially, the result of applying the pre-function p to s is assigned to the \accumu-
lator" variable acc. Then, for each element curr of s (chosen in some arbitrary
order), the result of applying i to curr and acc is (re)assigned to acc (curr
stands for current element). Finally, the result of the whole expression is given
by the application of the post-function q to the value of acc at the end of the
iteration. It is important to note that, since the function i is left-commutative,
the semantics of folding is well-de�ned, that is, the result is independent of the
order in which the elements of s have been selected.

For example, let r be a complex value of type f[A : D; B : Q]g. The count of
the tuples in r can be computed by the expression: fold h0; acc + 1; idiffidgg(r).
(Note that we often use the folding constructor together with the aggregate
application constructor.) Similarly, the sum of the B components of the tu-
ples in r is given by fold h0; acc + B(curr); id iffidgg(r) or, equivalently, by
fold h0; acc + curr ; idiffBgg(r). The average of the B components can be com-
puted by evaluating the sum and the count in parallel, and then taking their
ratio:

fold h[S = 0; C = 0]; [S = acc:S + curr :B; C = acc:C + 1];S=Ciffidgg(r):

Folding also allows the computation of aggregations over nested sets. For in-
stance, let s be an expression of type f[A : D; B : fQg]g, and assume that we
want to extend each tuple by a new component holding the sum of the set of
numbers occurring in the B component. This can be obtained by:

replaceh[A;B;C = fold h0; acc + curr ; id iffidgg(B)]i(s):

This expression suggests that an SQL query with the group-by clause can be
speci�ed in this algebra by applying fold after a nesting.

The restriction on the type �a imposed in the de�nition of folding signature
has been introduced to guarantee tractability of the folding constructor. In fact,
the unrestricted folding constructor, foldunr, in which the accumulator can be
of any complex type, can express very complex data manipulations, including
replace , set-collapse, and powerset :

powerset(s) = foldunrhffgg; acc [ replacehid [ fcurrgi(acc); id iffidgg(s):

4.2 Numeric Folding

We now consider a further constraint on the de�nition of folding, which essen-
tially allows only the computation of numeric aggregations. This is coherent with
our approach that tends to make a clear distinction between the restructuring
capabilities of a query language and its ability to compute aggregations.

De�nition 5. Let 
 be a vocabulary. A numeric folding over 
 is a folding

constructor � that satis�es the following conditions:

{ the signature of � has the form (Q; �a;Q), where �a is either Q or [A1 :
Q; : : : ; Ak : Q], with k > 0;



{ the pre-function, the increment function, and the post-function of � can use

only the following functions and constructors: the identity function, binary

composition, the labeled tuple constructor, the scalar functions in 
, the

numeric folding constructor, and possibly the attribute names A1; : : : ; Ak.

De�nition 6. A counting folding over a vocabulary 
 is a numeric folding over


 in which the increment function does not use the symbol curr.

Lemma 2. Let 
 be a vocabulary. Then:

{ every numeric folding over 
 computes a uniform aggregate function over 
;

{ every counting folding over 
 computes a uniform counting function over 
.

For instance, fold h0; acc+curr ; idi is a numeric folding that computes the aggre-
gate function sum, whereas fold h0; acc+1; idi is a counting folding that computes
the counting function count.

4.3 Expressive Power of Query Languages with Folding

In this section we relate the language CVA + 
 + fold , in which aggregations
are computed using the folding constructor, with CVA+
+ fold , in which only
numeric foldings are allowed. We consider also the weaker languages CVA +

 + fold c and CVA + 
 + fold

c
, in which the former disallows the use of the

symbol curr (and thus increment functions cannot refer to the current element
while iterating over a collection) and the latter has only the counting folding
constructor.

For example, the following is a CVA+
 + fold expression, over the complex
value s of type ffDgg (a set of sets) that computes the sum of the cardinalities
of the sets in s:

fold h0; acc + fold h0; acc + 1; idiffidgg(curr); id iffidgg(s):

In the foregoing expression, the outer folding is not numeric (since it applies to
a set of sets). There is however an equivalent CVA+
 + fold expression:

fold h0; acc + curr ; idifffold h0; acc + 1; idiff0gggg(s):

This example suggests that expressions involving generic foldings can be rewrit-
ten into expressions involving only numeric foldings, by exploiting the restruc-
turing capabilities of CVA. This is con�rmed by the following result.

Theorem 2. Let 
 be a vocabulary. Then:

{ CVA+
 + fold and CVA+
 + fold have the same expressive power;

{ CVA+
 + foldc and CVA+
 + fold
c
have the same expressive power.



5 Querying with Aggregate Functions

In this section we study the relationship between the class of aggregate func-
tions that can be expressed by the numeric folding and the class of the uniform
aggregate functions, as well as the e�ect of their inclusion in CVA.

We �rst show that numeric folding, considered as a stand-alone operator, is
weaker than uniform aggregation. Speci�cally, the following result states that
any aggregate function expressed by a numeric folding can be described by a
uniform aggregate function whose description has size linear in the number of
its arguments.

Let F(
) be the class of the aggregate functions computed by numeric fold-
ings over a vocabulary 
, and Fc(
) be the class of counting functions de�ned
by counting foldings over 
. Moreover, let C(
) be the class of uniform counting
functions over 
.

Theorem 3. Let 
 be a vocabulary. Then F(
) � A1(
) and Fc(
) � C1(
).

Actually, we conjecture that F(
) = A1(
) and Fc(
) = C1(
), but we do not
have a proof at the moment.

Thus, in general, we have that F(
) � A(
) and Fc(
) � C(
) but, ac-
cording to Lemma 1, there are vocabularies for which the containment is proper,
that is, F(
) � A(
) and Fc(
) � C(
). These containments suggest that nu-
meric folding presents a limitation in computing aggregate functions, as it is not
able to capture an entire class A(
). On the other hand, it is possible to show
that this de�ciency can be partially remedied by the restructuring capabilities
of a query language. For instance, consider again the uniform aggregate function
� introduced in the proof of Lemma 1, with �n =

L
i;j xi
xj , which belongs to

A2(
a)�A1(
a) and, as such, it cannot be expressed as an aggregate function
by a numeric folding. However, it can be expressed as an aggregate query in
CVA+
a + fold , as follows:

fold h0�; acc � curr ; idiffA1 
A2gg(cross [A1;A2](id ; id )):

Lemma 3. Let 
 be a vocabulary. Then, for each k > 0:

{ there are functions in Ak(
)�Ak�1(
) that can be expressed in CVA+
+
fold;

{ there are functions in Ck(
)�Ck�1(
) that can be expressed in CVA+
+
fold

c
.

Actually, there are uniform aggregate functions that cannot be expressed using
aggregate queries with folding, showing that, in general, it can be better to have
at disposal a language for expressing aggregate functions (such as the uniform
ones) outside the database query language.

Theorem 4. There is a vocabulary 
 such that:

{ CVA+
 +A(
) is more expressive than CVA+
 + fold;



{ CVA+
 + C(
) is more expressive than CVA+
 + fold
c
.

Sketch of proof. Consider again the abstract vocabulary 
a introduced in the
proof of Lemma 1, and assume that the binary function 
 is commutative.
Then, the family  of functions such that n =

Li<j
i;j xi
xj represents a uniform

aggregate function, which belongs toA2(
a)�A1(
a). It turns out that  cannot
be expressed using CVA+
a + fold . ut

6 Conclusions and Future Work

We believe that the framework proposed in this paper can be fruitfully used as a
formal foundation for further studies on the relationship between aggregate func-
tions and aggregate queries. In particular, the relationship between the classes
CVA+
 + fold and CVA+
 +A(
) deserves a deeper investigation.

On one hand, we plan to investigate the implications on considering mutual
properties of functions in a vocabulary, such as commutativity, associativity, and
distributivity. For instance, the function  introduced in the proof of Theorem 4
is an aggregate function only if 
 is commutative. What are the vocabularies for
which CVA+
 + fold and CVA+
 +A(
) have the same expressive power?

On the other hand, there are simple logspace computations that cannot be
easily captured by folding. The de�nition of the functions � (Remark 1) and 
(proof of Theorem 4) shows that uniform construction can compare indexes of

the arguments (as i < j in
Li<j

i;j xi 
 xj and i 6= j in
Li6=j

i;j xi 
 xj). Such a
capability can be partially captured by referring to total ordered domains (both
D and Q) and a total order predicate � (both as a base function in CVA and in
the vocabulary 
). This extension is another topic that we plan to investigate,
�rst of all by tackling the following claim:

Conjecture 1. Let 
 be a vocabulary. Then CVA+
+ fold and CVA+
+A(
)
have the same expressive power over totally ordered domains.
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