
IsaLog : A declarative language

for complex objects with hierarchies �

P. Atzeni, L. Cabibbo, G. Mecca

Dipartimento di Informatica e Sistemistica

Universit�a di Roma \La Sapienza"

Via Salaria 113 | 00198 Roma, Italy

Abstract

The IsaLog model and language are presented.
The model has complex objects with classes, relations,
and isa hierarchies. The language is strongly typed and
declarative. The main issue is the de�nition of the se-
mantics of the language, given in three di�erent ways,
shown to be equivalent: a model-theoretic semantics,
a reduction to logic programming with function sym-
bols, and a �xpoint semantics. Each of the semantics
presents new aspects with respect to existing propos-
als, because of the interaction of oid-invention with
general isa hierarchies. The solutions are based on a
new technique, explicit Skolem functors, which provide
a powerful tool for manipulating object-identi�ers.

1 Introduction

There has been a great deal of attention towards
object-oriented databases in the last years. The main
directions of research are concerned with the develop-
ment of data models that extend the well known re-
lational model allowing classes of objects, that is, sets
of real world objects with the same conceptual and
structural properties, and is-a relationships, used to
organize classes in hierarchies (that is, disjoint tax-
onomies). Objects identi�ers (oid's) are associated
with objects, to permit duplicates and to allow for
object sharing and inheritance.

At the same time, in order to achieve better exibil-
ity and expressiveness, the integration of declarative
languages in this framework has been pursued, since
they seem to provide a nice way to express data re-
trieval, updates, and integrity constraints. The main

�This work was partially supported by MURST, within the

Project \Metodi formali e strumenti per basi di dati evolute",

and by Consiglio Nazionale delle Ricerche, within \Progetto

Finalizzato Sistemi Informatici e Calcolo Parallelo, Obiettivo

LOGIDATA+". The �rst author is now with Terza Universit�a

di Roma. The second author is partially supported by Systems

& Management S.p.A.

semantic matter connected with the declarative ma-
nipulation of objects is the need for oid-invention [1].
Oid-invention clauses have a slightly di�erent behavior
from ordinary Horn clauses, since universal quanti�-
cation of the variables is not satisfactory.

In this paper we present IsaLog, a model with ob-
jects and isa hierarchies along with a strongly typed
language that has a declarative semantics for oid-
invention. The language makes use of explicit Skolem
functors in order to control the generation of du-
plicates and the well de�nedness of object values
throughout hierarchies.

The main contribution of this paper is the de�nition
of the semantics of the IsaLog language. Speci�cally,
we propose three di�erent semantics and show their
equivalence. The �rst semantics is purely declarative
and is based on the notion of a model. To the best of
our knowledge, this is the �rst extension of the model-
theoretic semantics of Datalog to a framework with
classes and hierarchies. The second semantics is based
on a reduction to logic programming, following and in-
tegrating two independent approaches: ILOG [9] (in
the management of functors) and Logres [6] (in deal-
ing with hierarchies). The main step in this approach
is the introduction of auxiliary clauses that enforce
the containment constraints associated with isa rela-
tionships. It can be shown that this technique does
not catch the complete meaning of isa. In particu-
lar, when negation is allowed, programs with a rea-
sonable model seem to be not strati�ed in the tradi-
tional sense. Finally, we provide a �xpoint semantics,
based on a trasformation that computes the closure
of a set of facts with respect to isa. In a forthcoming
paper [3] we will suggest a new notion of strati�cation
that provides a solution to the problem outlined.

This work originates from the papers about ILOG
[9] and the so called alphabet logics [11, 13]. Many of
the issues are inherited from the LOGIDATA+ model
and language [4] and are therefore similar in spirit to

those of the IQL and Logres languages [1, 6].
The paper is organized as follows. In Section 2 we

informally introduce the data model and the language,
and briey discuss some examples. Section 3 is con-
cerned with the formal de�nition of the data model.
The syntax of the language is presented in Section
4. Section 5 introduces the declarative semantics of
IsaLog programs, and gives the de�nition of model
of a program over an instance. Finally, in Section 6
several possible reductions to logic programming are
discussed and in Section 7 the �xpoint semantics is
proposed. Then, the equivalence of the various se-
mantics is shown. For the sake of space, proofs of
results are omitted.

2 Overview and motivation

The data model is based on a clear distinction be-
tween scheme and instance. Data is organized by
means of three constructs:

� Classes: collections of objects; each object is iden-
ti�ed by an object identi�er (oid) and has an asso-
ciated tuple value.

� Relations: collections of tuples.

� Functors, mainly used to make oid-invention fully
declarative. Each functor has an associated func-
tion from tuples to oid's that is stored in the in-
stance. This has been done in order to keep oid's
in the instance, while making functors transparent.
In this way we can keep track of the generation of
each oid through the associated functor term.

Tuples in relations, in object values, and in arguments
of functions may contain domain values and oid's, used
as references to objects.

Isa hierarchies are allowed among classes, with mul-
tiple inheritance and without any requirement of com-
pleteness or disjointness. Moreover, we do not require,
as in other works [1], the presence of a most speci�c
class for each object of the database, since this usu-
ally leads to an unreasonable increase in the number
of classes of the database. For example, given the class
containing all the persons, and two subclasses contain-
ing the married-persons and the students, respectively,
with a non empty intersection, the most speci�c class
requirement would impose a class married-students,
even when it is not really signi�cant in the applica-
tion.

The IsaLog language is declarative, a suitable
extension of Datalog [8] capable of handling oid-
invention and hierarchies. A program is a set of clauses

that speci�es a transformation from an instance of the
input scheme to an instance of the output scheme. Co-
herently with the presence of isa, we do not require dis-
jointness between input and output schemes (in con-
trast with other approaches, from Datalog [8, 15] to
IQL [1]).

A fundamental feature of the IsaLogmodel and
language is the original use of explicit Skolem func-
tors. The motivation for this technique arises from a
marked di�erence between value-based and oid-based
data models. Let us give an example (where D is
a domain of atomic constants, including strings and
integers): given a relation fatherhood, with type (fa-
ther:D, child:D), and a relationmotherhood, with type
(mother:D, child:D), assume we want to build the class
couple, with type (father:D, mother:D), that contains
all the couples of parents. Intuitively, we could use
the following clause:

couple(oid:x, father:f, mother:m)
fatherhood(father:f, child:c),
motherhood(mother:m,child:c)

The clause generates an object for each couple, with
the associated oid, which has to be di�erent from those
already used in the database. Clearly, every variable
occurring in the body is supposed to be universally
quanti�ed, whereas the variable x, representing the
oid to be created, should rather be existentially quan-
ti�ed. The real problem arises when trying to establish
the correct order among quanti�ers: the reasonable se-
mantics of the clause suggests the following order:

(8f (8m (9x (8c (fatherhood(father:f, child:c) ^
motherhood(mother:m, child:c)

! couple(oid:x, father:f, mother:m))))))

Unfortunately, there is no way to enforce such a se-
mantics without explicit syntactic tools, so that the
only feasible solution is to interpret the clause as if
the existential quanti�er were at the end of the list
(this happens, for example, in IQL [1] and in Logres
[6]). In this case, the clause would create a dupli-
cate of the same couple for each of their children. To
avoid such an undesirable behaviour, in [9] an auto-
matic form of Skolemization was proposed, that is, a
sort of pre-processing of clauses in order to substitute
each variable representing an oid to be created with
an implicit Skolem term, containing exactly the same
arguments as the value associated with the oid. In the
example, the Skolemized version of the clause would
be:

couple (oid:F(father:f, mother:m),

father:f, mother:m)
fatherhood(father:f, child:c),
motherhood(mother:m,child:c)

In this way the correct semantics is achieved. Any-
way, this approach has important shortcomings as
well. The main problem is that implicit functors never
allow for duplicates, that is, di�erent objects with the
same values. This is a strong drawback in an object-
oriented framework, since object identity has been in-
troduced to avoid the value based identi�cation mech-
anism used in traditional models: since each object
can be univocally identi�ed by means of its oid, dif-
ferent objects may have the same values. As a tool
for the solution of this problem, we propose explicit
functors, typed structures declared in the scheme that
generalize implicit functors: an explicit functor term
for an oid of a class C has at least the same attributes
as the objects of C. This is necessary in order to avoid
ill-de�nedness of object values (that is, the generation
of objects with the same oid and di�erent values). In
addition, a functor for a class may contain other at-
tributes, and a class may have di�erent functors. In
this way a controlled generation of duplicates is al-
lowed.

Let us give an example: suppose we have two elec-
trical networks, made of resistors and capacitors. Each
circuit is described by a relation containing the co-
ordinates of each component along with its type (ei-
ther resistor or capacitor), its value and a conven-
tional name that identi�es the component. We are
interested in deriving an \abstract" representation of
the complete network, obtained by merging the par-
tial ones. By \abstract" representation we mean the
topological representation of the components regard-
less of node coordinates. We use a quite informal and
self-explanatory syntax in the description of types.

relation circuit1 : (Xfrom:D, Yfrom:D, Xto:D, Yto:D,
name:D, type:D, value:D);

relation circuit2 : (Xfrom:D, Yfrom:D, Xto:D, Yto:D,
name:D, type:D, value:D);

class node : ();
functor Fnode : (node, (X:D, Y:D));
class component : (from:node, to:node);
class resistor ISA component: (resistance:D);
functor FR1 : (resistor, (name:D));
functor FR2 : (resistor, (name:D));
class capacitor ISA component : (capacitance:D);
functor FC1 : (capacitor, (name:D));
functor FC2 : (capacitor, (name:D));

Note how each functor has a class associated with
it. Moreover, a single class may have di�erent func-

tors, intuitively used to generate objects of di�erent
origin. The class of the nodes of the �rst network can
be generated in the following way:

node(oid:Fnode(X:x1, Y:y1))
circuit1(Xfrom:x1, Yfrom:y1, Xto:x2, Yto:y2,

name:n, type:t, value:r)

node(oid:Fnode(X:x2, Y:y2))
circuit1(Xfrom:x1, Yfrom:y1, Xto:x2, Yto:y2,

name:n, type:t, value:r)

The same has to be done with respect to the second
circuit; note how we make use of only one functor,
since in both circuits nodes can be identi�ed by means
of their coordinates.

At this point we have obtained an object for each
of the nodes of the networks. The generation of the
components it is not di�cult. For the sake of space,
we will consider only the generation of components in
the resistor class. Since each resistor is not univocally
identi�ed by its name in the global circuit, we have
to resort to a couple of functors associated with the
resistor class, one for each partial circuit.

resistor(oid:FR1(: : :, name:n),
from:Fnode(X:x1, Y:y1),
to:Fnode(X:x2, Y:y2), resistance:r)

circuit1(Xfrom:x1, Yfrom:y1, Xto:x2, Yto:y2,
name:n, type:'resistor', value:r),

node(Fnode(X:x1,Y:y1)), node(Fnode(X:x2, Y:y2))

resistor(oid:FR2(: : :, name:n),
from:Fnode(X:x1, Y:y1),
to:Fnode(X:x2, Y:y2), resistance:r)

circuit2(Xfrom:x1, Yfrom:y1, Xto:x2, Yto:y2,
name:n, type:'resistor', value:r),

node(Fnode(X:x1,Y:y1)), node(Fnode(X:x2, Y:y2))

We believe that explicit functors are a very power-
ful tool when manipulating objects. In fact, not only
do they provide a neat way for handling oid inven-
tions, but they also carry information about oid cre-
ation. This permits to distinguish oid's in the same
class on the basis of their origin (the class itself or a
subclass, for example), and to access the values that
\witnessed" the invention of the oid, even if they are
transparent with respect to the class.

3 The Data Model

We �x a countable set L of labels or identi�ers, a
countable set D of constants, called the domain, and
a countable set O of object identi�ers (oid's), which
are pairwise disjoint.

An IsaLog scheme is a �ve-tuple S =
(C;R;F;typ; isa), where

� C (the class names), R (the relation names), F (the
functors) are �nite, pairwise disjoint sets;

� typ is a total function on C[R[F that associates
{ a at tuple type (A1 : �1; A2 : �2; : : : ; Ak : �k) with
each class in C and each relation in R; the Ai's
are called the attributes, and each �i (the type of
Ai) is either a class name in C or the domain D;

{ a pair C; � with each functor F 2 F, where: (i)
C is a class name in C (the class associated with
F) and (ii) � is a tuple type whose attributes are
disjoint from those of C;

� isa is a partial order over C, such that if (C0; C00) 2
isa (usually written in in�x notation, C0isaC00 and
read C0 is a subclass of C00), then typ(C0) is a sub-
type of typ(C00), where a type � 0 is a subtype [7] of a
type � 00 (in symbols � 0 � � 00) if one of the following
conditions holds:
1. � 0 = � 00 = D;
2. � 0; � 00 2 C and � 0isa� 00;

3. � 0 and � 00 are both tuple types, � 0 = (A01 : �
0
1; A

0
2 :

� 02; : : : ; A
0

k : � 0k) �
00 = (A001 : � 001 ; A

00

2 : � 002 ; : : : ; A
00

h :
� 00h) and for each j 2 f1; 2; : : : ; hg there is an i 2
f1; 2; : : : ; kg such that A0i = A00j and � 0i � � 00j .

Moreover, if C0 and C00 have a common ancestor
(that is, there is a class C0 such that C0isaC0 and
C00isaC0) and a common attribute A, then there
is a common ancestor C of C0 and C 00 (that may
coincide with C0) such that A is an attribute of C.

It is convenient to de�ne the types of a scheme S,
where each type is a simple type (that is, either the
domain D or a class name) or a tuple type (whose
attributes have simple types associated). If we add
two special types �> (the top type) and �? (the bottom
type), such that for every type � it is the case that
� � �> and �? � � , then the notion of subtyping
induces a lattice over the types of S.

As in every other data model, the scheme gives the
structure of the possible instances of the database. As
a �rst step in the de�nition of instance, let us de�ne for
each type � , the associated value-set val(�), that is,
the set of its possible values: (i) if � = D, then val(�)
is the domain D; (ii) if � is a class name C 2 C, then
its value-set is the set of the oid's O; (iii) if � is a tu-
ple type, then val(�) is the set of all possible tuples
over � , where a tuple (as in other formal frameworks)
is a function from the set of attributes to the union
of value-sets of the component types, with the restric-
tion that each value belongs to the value-set of the
corresponding type.

Now we introduce the notion of re�nement, de�ned
over values, which is the natural counterpart of sub-
typing, de�ned over types. With respect to values of
simple types, re�nement coincides with equality, so the
de�nition is really signi�cant with respect to tuples: a
tuple t1 is a re�nement of a tuple t2, if the type of t1
is a subtype of the type of t2 and the restriction of
t1 to the attributes of t2 (the projection, in relational
database terminology) equals t2.

With respect to classes, it is important to note that
their value-sets contain only oid's. In the de�nition of
instance below, we will show how actual values are
associated with oid's. In this way, it is possible to im-
plement indirect references to objects and other fea-
tures such as object sharing. Also, for each class, the
value-set is the set of all possible oid's: essentially, we
can say that oid's are not typed, and so they allow
the identi�cation of an object regardless of its type
(this is an oft-cited requirement for object oriented
systems [10, 14]).

Following ILOG [9], we de�ne instances as equiva-
lence classes of pre-instances, where pre-instances de-
pend on actual oid's, whereas instances make oid's
transparent.

A pre-instance s of an IsaLog scheme S =
(C;R;F;typ; isa) is a four-tuple s = (c; r; f ;o),
where:

� c is a function that associates with each class name
C 2 C a �nite set of oid's: c(C) � O, with the
following conditions: (i) if C0isaC00, then c(C0) �
c(C00); (ii) if c(C0)\c(C00) 6= ;, then C0 andC00 have
a common ancestor. These conditions have two con-
sequences. First, if isa is the identity relation (and
so there are no non-trivial subset constraints) than
the extensions of the classes are pairwise disjoint,
as it is usually assumed in other frameworks that
do not consider hierarchies [1, 9]. Second, multi-
ple inheritance is allowed only beneath a common
ancestor: if there are classes C;C0; C00 2 C such
that CisaC0 and CisaC00, then C0 and C00 have a
common ancestor.

� r is a function that associates with each relation
name R 2 R a �nite set of tuples over typ(R);

� o is a function that associates tuples with oid's in
classes, as follows. For each o 2 O, let us consider
the set of classes that contain o: classes(o) = fC j
C 2 C; o 2 c(C)g. Then for each o, if classes(o)
is empty, then o(o) is unde�ned, otherwise it is a
value from the value set of the tuple type that is
the greatest lower bound (according to the lattice
induced by subtyping) of the types of the classes in
classes(o).

� f is a function that associates with each F 2 F

a function f (F) as follows. Let typ(F) = (C; �),
typ(C) = (A1 : �1; : : : ; Ak : �k) and � = (A01 :
� 01; : : : ; A

0

h : � 0h). Then f (F) is a (partial) injec-
tive function from the value set of the tuple type
(A1 : �1; : : : ; Ak : �k; A01 : �

0
1; : : : ; A

0

h : � 0h) to a sub-
set of c(C). The functions corresponding to the
various functors are required to satisfy the follow-
ing conditions: (i) the ranges are pairwise disjoint,
(ii) a partial order � is de�ned among the oid's in
such a way that if the oid o1 is the result of the ap-
plication of a function to a tuple that involves the
oid o2, then o1 < o2 (that is, o1 � o2 and o1 6= o2);

� if a tuple type has an attribute A whose type is a
class C 2 C, then the value of the tuple over A

is an oid in c(C) (this condition avoids \dangling
references").

Two pre-instances s1 and s2 over a scheme S are
oid-equivalent if there is a permutation � of the oid's
in O such that (extending � to objects, tuples, and
pre-instances in the natural way) it is the case that
s1 = �(s2). An instance is an equivalence class of
pre-instances under oid-equivalence. When needed,
[s] will denote the instance whose representative is the
pre-instance s.

4 Syntax of the Language

Let a scheme S = (C;R;F;typ; isa) be �xed.
Also, let VD and VC be disjoint countable sets of vari-
ables, used to denote constants from the domainD and
object identi�ers, respectively. The elements of VD are
called value-variables and those in V

C
, oid-variables.

The terms of the language are

1. value-terms, which are of two forms: (i) the con-
stants in D and (ii) the variables in VD;

2. oid-terms: (i) the oid's in O, (ii) the variables in
VC, and (iii) functor terms F (A1 : t1; : : : ; Ak :
tk; A

0

1 : t
0

1; : : : ; A
0

h : t
0

h), where F 2 F and typ(F) =
(C; �), typ(C) = (A1 : �1; : : : ; Ak : �k) and � =
(A01 : �

0
1; : : : ; A

0

h : �
0

h), and each ti (t
0

j) is a constant
or an oid-term depending on whether �i (�

0

j) is the
domain D or a class C0 2 C.

The atoms of the language may have two forms:

1. class-atoms: C(oid : t0; A1 : t1; : : : ; Ak : tk) where
C is a class name in C, with typ(C) = (A1 :
�1; : : : ; Ak : �k), t0 is an oid-term, and for each
i 2 f1; 2; : : :; kg, ti is a value term (if �i = D) or an
oid-term (if �i = C0, with C0 2 C).

2. relation-atoms: R(A1 : t1; : : : ; Ak : tk), where R is
a relation name in R, with type typ(R) = (A1 :
�1; : : : ; Ak : �k), and for each i 2 f1; 2; : : : ; kg, ti is
a value term (if �i = D) or an oid-term (if �i = C0,
with C0 2 C).

The class name or relation name in an atom is called
the predicate symbol of the atom.

Given an atom L, we say that an oid-term t ranges
over a class C in L if one of the following conditions
holds:

� L is a relation-atom R(: : : ; A : t; : : :) and the type
of the attribute A in R is the class C;

� L is a class-atom C0(oid : t0; A1 : t1; : : : ; Ak : tk)
and
{ t0 = t and C0 = C, or
{ t0 = F (: : : ; A : t; : : :) and the type of A in F is
the class C, or

{ ti = t and the type of Ai in C0 is the class C for
some i 2 f1; : : : ; kg.

A rule has the form: r : L0 L1; L2; : : : ; Lp,
where r is the name of the rule (often omitted),
L0; L1; : : : ; Lp (with p > 0) are atoms. A fact is a
ground atom (that is, without variables). A clause is
a rule or a fact. Given a clause , it is convenient
to de�ne its head and body, denoted with head()
and body(), respectively. If is a rule L0
L1; L2; : : : ; Lp, then head() = L0 and body() =
fL1; : : : ; Lpg. If is a fact L0, then head() = L0
and body() is the empty set. Let us introduce three
relevant forms of clauses. A clause is

� a relation-clause if head() is a relation-atom;

� an oid-invention-clause if head() is a class-atom
C(oid : t0; : : :), where t0 is a functor term F (: : :)
not occurring in body() and C is the class associ-
ated with F .

� a specialization-clause if head() is a class-atom
C(oid : t; : : :), where t is an oid-term and body()
contains (at least) a class-atom C0(oid : t; : : :) such
that C and C0 have a common ancestor.

Moreover, we say that a clause is:

� well-typed if whenever an oid-term t ranges in
head() over a class C it is the case that
{ is a specialization-clause or an oid-invention
clause and head() = C(oid : t; : : :) or

{ there is an atom in body() in which t ranges
over a class C0 such that C0isaC;

� safe if each variable in head() occurs in body()
as well;

� visible if it does not contain oid's.

An IsaLog program P over a scheme S is a
set of oid-invention-clauses, specialization-clauses, and
relation-clauses that are well-typed, safe and visible.

5 Declarative Semantics

Let P be a program over an IsaLog scheme S.
A substitution � is a total function from variables to
terms that maps variables in VC to oid-terms and vari-
ables in VD to constants. A substitution � is simple if
�(x) is an oid or a constant for every variable x. Given
a simple substitution �, a preinstance s over S, and a
term t, the instantiation inst�;s induced by � is a par-
tial function from terms to ground terms that applies
� and the functions corresponding to functors, thus
recursively replacing functor terms with oid's, de�ned
as follows:

� if t is a constant or an oid, then inst�;s(t) = t;

� if t is a variable x, then inst�;s(x) = �(x);

� if t is a functor term F (B1 : t1; : : : ; Bp : tp), then
consider the tuple

t0 = (B1 : inst�;s(t1); : : : ; Bp : inst�;s(tp))

obtained by recursively applying inst�;s to the
terms t1; : : : ; tp, and the function f (F). If f (F) is
de�ned over t0, then inst�;s(t) equals the value of
f (F) over t0, otherwise it is not de�ned.

The notion of instantiation is extended in the natural
way to atoms and sets of atoms (and so to bodies of
rules).

Given a simple substitution � and an atom L,
we say that a pre-instance s = (c; r; f ;o) satis�es
inst�;s(L) if

� L is a relation-atom R(A1 : t1; : : : ; Ak : tk) and
(A1 : inst�;s(t1); : : : ; Ak : inst�;s(tk)) is a tuple in
the relation r(R);

� L is a class-atom C(oid : t0; A1 : t1; : : : ; Ak : tk),
inst�;s(t0) is an oid o in c(C), and o(o) is a re�ne-
ment of (A1 : inst�;s(t1); : : : ; Ak : inst�;s(tk)).

This de�nition di�ers from the usual notion of sat-
isfaction in two aspects (the �rst due to classes and
functors and the second to hierarchies): (i) the use
of instantiation instead of substitution; and (ii) the
weaker requirement on values of objects, re�nement
rather than equality.

A pre-instance s satis�es a clause if, for
each simple substitution � such that s satis�es

inst�;s(body()), it is the case that s also satis�es
inst�;s(head()).

Given a program P over a scheme S and a pre-
instance s0 = (c0; r0; f0;o0) of S, we say that a pre-
instance s = (c; r; f ;o) of S is a pre-model for P over
s0 if

1. s is an extension of s0, de�ned as follows: (i) for
each relation name R 2 R, the relation r(R) is a
superset of the relation r0(R); (ii) for each class
name C 2 C, the set of oid's c(C) is a superset
of c0(C), and, for each oid o 2 c0(C), o(o) is a
re�nement of o0(o); (iii) for each functor F 2 F,
if f0(F) is de�ned over a tuple t, then f (F) is also
de�ned over t and has the same value.

2. s satis�es each clause in P.

We have two results.

Lemma 1 Let P be a program over a scheme S. If
the pre-instance s is a pre-model for P over the pre-
instance s0, then (i) for each pre-instance s

0

0 oid-
equivalent to s0, there is a pre-model s0 for P over s00,
such that s0 is oid-equivalent to s; and (ii) for each pre-
instance s0 oid-equivalent to s, there is a pre-instance
s
0

0 oid-equivalent to s0 such that s0 is pre-model for P
over s00.

Because of Lemma 1 we can give a de�nition of
model with reference to instances based on the de�-
nition of pre-model. An instance [s] is a model for a
program P over an instance [s0] if s is a pre-model for
P over s0.

Lemma 2 Let S be a scheme. If a pre-instance s is an
extension of a pre-instance s0, then (i) for each pre-
instance s00 oid-equivalent to s0, there is a pre-instance
s
0 oid-equivalent to s such that s0 is an extension of
s
0
0; and (ii) for each pre-instance s0 oid-equivalent to
s, there is a pre-instance s00 oid-equivalent to s0 such
that s0 is an extension of s00.

As a consequence, the notion of extension, origi-
nally de�ned for pre-instances, becomes meaningful
also for instances. That is, given two pre-instances s
and s0, if s is an extension of s0, then we can say that
the instance [s] is an extension of the instance [s0].

A model [s] for P over [s0] is minimal if there is
no other model [s0] for P over [s0] such that [s] is an
extension of [s0]. If there is only one minimal model,
then we call it the minimum model.

Theorem 1 Let P be a program over a scheme S, and
let [s] be an instance of S. Then either there is no
model for P over [s] or there exists a minimum model.

Let P be a program over a scheme S. The declara-
tive semantics of P is a partial function d-sem

P
from

instances of S to instances of S: d-semP([s]) equals
the minimum model of P over [s] if it exists, and is
unde�ned otherwise.

There can be various reasons for which there is no
model for a programP over an instance [s] (and there-
fore the declarative semantics is not de�ned). They
correspond to various extensions of the model and lan-
guage with respect to the traditional Datalog frame-
work, where minimum models always exist.

� Recursion through oid invention can lead to the
generation of in�nite sets of facts. For example,
given a class C, whose tuple type is (Cref : C),
and the rule : C(oid : F (Cref : x); Cref : x)
C(oid : x;Cref : y), the program made of this rule
has clearly no model unless the class C is empty in
the input instance.

� The presence of isa hierarchies and specialization-
clauses allows for multiple and inconsistent spe-
cializations of an oid from a superclass to a sub-
class: this may lead to non functional relationships
from oid's to object values. Consider the following
scheme:

class person : (name:D);
class husband ISA person : (wife:person);
relation marriage : (husband:person, wife:person).

Suppose we know all the persons and want to �ll the
class of the husbands, on the basis of the relation
marriage, using the following rule:

husband(oid:x, name:h, spouse:y)
marriage(husband:x, wife:y),
person(oid:x, name:h), person(oid:y, name:w)

The problem of inconsistent multiple specializations
for the same object arises if persons with more than
one wife are allowed in the input instance. In this
case, the rule has clearly no model.

6 Reduction to logic programming

We give an alternative semantics based on a reduc-
tion to logic programming with function symbols [12].

As a preliminary, we briey explain how an Isa-

Log instance can be represented by means of a set
of facts. Let S = (C;R;F;typ; isa) be an IsaLog

scheme. The Herbrand universe US for S is the set
of all ground terms of S. The Herbrand base H

S
for

S is the set of all facts of the language. A Herbrand
interpretation IS is a �nite subset of HS.

Given a scheme S = (C;R;F;typ; isa), we de�ne
a function � that associates a Herbrand interpretation
with each pre-instance s = (c; r; f ;o) of S. We proceed
in two steps:

1. Let �0(s) be the set of facts that contains: (i)
a fact R(A1 : v1; : : : ; Ak : vk), for each R 2 R

and each tuple (A1 : v1; : : : ; Ak : vk) in the rela-
tion r(R); (ii) a fact C(oid : o;A1 : v1; : : : ; Ak :
vk), for each o 2 O and for each class C 2
classes(o), where A1; : : : ; Ak are the attributes of
C and (A1 : v1; : : : ; Ak : vk) is the restriction of o(o)
to A1; : : : ; Ak. In plain words, �0(s) contains one
fact for each tuple in each relation and as many facts
for an object o as the number of di�erent classes in
classes(o), that is, the classes the object belongs
to. Each of these facts involves only the attributes
that are relevant for the corresponding class.

2. �(s) is obtained from �0(s) by recursively replac-
ing each oid o such that o equals f (F) applied
to (A1 : v1; : : : ; Ak : vk), with the term F (A1 :
v1; : : : ; Ak : vk). Note that this replacement is uni-
vocally de�ned (since the functions are injective and
have disjoint ranges) and terminates (because of the
partial order among oid's).

The function � is de�ned for every pre-instance but
it can be shown that is not surjective: there are Her-
brand interpretations that are not in the image of �.
This happens if one of the following conditions is vi-
olated (for the sake of brevity we de�ne them rather
informally):

wt (well-typedness): for each fact, all terms have the
appropriate type.

con (containment): for each fact C1(oid : t0; : : :),
there is a fact C2(oid : t0; : : :) for each class C2 such
that C1isaC2. This condition requires the satisfac-
tion of the containment constraints corresponding
to isa hierarchies.

dis (disjointness): if two facts C1(oid : t0; : : :) and
C2(oid : t0; : : :) appear, then classes C1 and C2

have a common ancestor in S.

coh (oid-coherence): if an oid-term t0 occurs as a
value for an attribute whose type is a class C, then
there is a fact C(oid : t0; : : :). This condition rules
out dangling references.

fun (functionality): there cannot be two di�erent
facts for the same oid-term with di�erent values for
some common attributes.

Conditions fun, con, and dis guarantee that ob-
ject values are well de�ned throughout hierarchies.

Lemma 3 If a Herbrand interpretation satis�es con-
ditions wt, con, dis, coh, and fun with respect to a
scheme S, then it belongs to the image of � over the
pre-instances of S.

Another property of the function � is that if �(s1) =
�(s2), then s1 and s2 are oid-equivalent pre-instances.
Moreover, the notion of oid-equivalence can be easily
extended to interpretations: F1 is oid-equivalent to F2
if there is a permutation of O that transforms F1 into
F2. Then, we have that � preserves oid-equivalence,
that is, �(s1) and �(s2) are oid-equivalent if and only
if s1 and s2 are oid-equivalent.

Therefore, we can de�ne a function � that maps
instances to equivalence classes of interpretations: � :
[s] 7! [�(s)]. Since �(s1) is equivalent to �(s2) only if
s1 is equivalent to s2, we have that � is injective. So,
� is a bijection from the set of instances to the set of
equivalence classes of interpretations that satisfy the
�ve conditions above. The inverse of � is therefore
de�ned over equivalence classes of interpretations that
satisfy conditions wt, con, dis, coh, and fun.

Given a program P over a scheme S and a pre-
instance s it is therefore possible to build the IsaLog
set of clauses P[�(s) that is essentially a set of clauses
of ordinary logic programming with function symbols.
In the next subsection we show that, if the scheme
does not contain isa relationships, this set of clauses
provides an equivalent way of de�ning the semantics of
programs. Then, we extend this result to the general
case, considering also isa.

6.1 Reduction to Logic Programming if
there are no isa

Let us consider an IsaLog scheme S =
(C;R;F;typ; isa) where isa is the identity relation
and therefore the classes are disjoint in every pre-
instance s of S. Also, consider a program P over
S. Since there are no signi�cant isa, there can be
no specialization-clauses, so P contains only relation-
clauses and oid-invention-clauses.

Given a pre-instance s, let us consider the IsaLog
set of clauses P[�(s). By known results [12], this set
has a unique minimal modelM

P[�(s)
, which can be

either �nite or in�nite. It can be shown thatMP[�(s)

satis�es conditions wt, dis, coh, fun, and, trivially,
con. Furthermore, if it is �nite, then there exists
an instance [s] = ��1([MP[�(s)]). We can de�ne the

LP-semantics of an IsaLog program P over a scheme
S as a partial function lp-semP that maps instances
to instances corresponding to minimummodels (when

they are �nite): lp-semP([s]) equals �
�1([MP[�(s)])

ifMP[�(s) is �nite, and unde�ned otherwise.

Theorem 2 For every IsaLog program P over a
scheme S = (C;R;F;typ; isa) where isa is the iden-
tity relation the declarative semantics and the LP-
semantics coincide.

It should be noted that Theorem 2 guarantees the
equivalence of various semantics, since it is known
that three equivalent semantics exist for ordinary logic
programming (model-theoretic, �xpoint, and proof-
theoretic).

A comment is useful here. The declarative seman-
tics and the LP-semantics coincide also when unde-
�ned: in fact, recursion through oid invention, which,
as we saw above, can give rise to model unde�nedness
(in declarative semantics) corresponds to an in�nite
interpretation and unbounded structures for functor
terms (in LP-semantics).

6.2 Reduction to Logic Programming
with nontrivial isa

In contrast with what we saw in the previous sub-
section, there is no direct reduction to traditional logic
programming in the general case: isa relationships re-
quire generation of facts for the satisfaction of contain-
ment constraints | intuitively, facts that correspond
to the propagation of oid's through the class hierarchy.

A possible reduction to logic programming can be
obtained by adding, to each program, clauses that
enforce the isa relationships de�ned over the corre-
sponding scheme (as it is done in the Logres lan-
guage [6]). More precisely, given a scheme S =
(C;R;F;typ; isa), we de�ne the isa-clauses �S for
S as follows:

fC2(oid : x0; A1 : x1; : : : ; Ak : xk)
C1(oid : x0; A1 : x1; : : : ; Ak+h : xk+h) j

C1isaC2;typ(C2) = (A1 : �1; : : : ; Ak : �k)
and typ(C1) = (A1 : �1; : : : ; Ak+h : �k+h)g

Note that these are neither specialization nor oid-
invention clauses. However, this is not contradictory
with our approach, as here we refer to logic programs,
where clauses of this form are allowed and can be han-
dled in a standard fashion.

Given a program P over a scheme S and a pre-
instance s, it is therefore possible to build the IsaLog
set of clauses P[�

S
[�(s), which is essentially a set of

clauses of ordinary logic programming with function
symbols. Again, this set has a unique minimal model

MP[�
S
[�(s) that can be either �nite or in�nite. In

general, MP[�
S
[�(s) satis�es conditions wt, con,

dis, and coh, whereas it need not satisfy condition
fun, as shown in section 5. Therefore the existence
of an instance [s0] = ��1([M

P[�
S
[�(s)]) cannot be

guaranteed. We de�ne the LP-semantics of an Isa-

Log program P over a scheme S as a partial func-
tion lp-semP that maps instances to instances corre-
sponding to minimum models (when they are �nite
and satisfy the required conditions): lp-semP([s])
equals ��1([MP[�(s)]) ifMP[�(s) is �nite and sat-

is�es condition fun, unde�ned otherwise.

Theorem 3 For every IsaLog program P the declar-
ative semantics and the LP-semantics coincide.

This approach is apparently interesting, but not
completely satisfactory, because of two reasons. First,
it uses clauses with a di�erent \philosophy" than the
clauses allowed in IsaLog programs, which have a
natural counterpart in the actual operations speci�ed.
Second, and more important, it turns out that, when
extending the language by introducing negation, it
presents undesirable limitations with respect to strat-
i�cation: there are programs that, if extended with
isa-clauses in this way, are not strati�ed in the ordi-
nary sense, but have a reasonable model. [3]

7 Fixpoint semantics

In this section we present the �xpoint semantics for
IsaLog programs.

Let a program P over a scheme S be �xed. We say
that an interpretation IS satis�es a ground atom L if
L 2 IS. Similarly for a set of ground atoms. Given a
clause and an interpretation IS, IS satis�es if for
each substitution � ground over such that IS satis�es
�(body()) it is the case that I

S
satis�es �(head()).

An interpretation IS is a model for a program P if it
satis�es all the clauses in P.

The main step in the de�nition of a �xpoint seman-
tics is the introduction of a continuous transformation
associated with a program. For the sake of space, we
omit the technical de�nition of continuous transforma-
tion [12]. The presence of isa requires a modi�cation of
the traditional approach, as follows. Given a scheme
S = (C;R;F;typ; isa) we de�ne the closure Tisa with

respect to isa as a mapping from the powerset 2
H
S of

HS to itself, de�ned as follows:

Tisa(IS) = fC2(oid : t0; A1 : t1; : : : ; Ak : tk) j
C1(oid : t0; A1 : t1; : : : ; Ak+h : tk+h) 2 IS; C1isaC2;

and typ(C2) = (A1 : �1; : : : ; Ak : �k)g [IS

The closure with respect to isa enforces the satisfac-
tion of containment constraints associated with hier-
archies, as required by Condition con de�ned in the
previous section.

Then, given a set of clauses � over a scheme S we
de�ne the trasformation T�;0 associated with � as a

mapping from the powerset 2
H
S to itself, as follows:

T�;0(IS) = f�(head()) j 2 �;
IS satis�es �(body()) for a subtitution �g

Finally, we introduce the immediate consequence
operator T� associated with � as a mapping from
Herbrand interpretations to Herbrand interpretations.
Given a set of clauses � over a scheme S, and an in-
terpretation IS, we de�ne

T�(IS) = Tisa(T�;0(IS))

We now de�ne powers of a monotonic operator T ,
putting T "0(I) = I, T "(n + 1)(I) = T (T "n(I)) (for
every n � 0), and T"!(I) = [1n=0T"n(I).

Lemma 4 For every scheme S and for every set of
clauses � over S, the transformation T� is both �nitary
and monotonic, and thus continuous.

As a consequence, by Knaster-Tarski theorem [12],
we have that, for every scheme S and for every set of
clauses � over S, (i) the transformation T� has at least
one �xed point, (ii) the set of the �xed points of T� is
a complete lattice, (iii) the least �xed point of T� can
be computed as T�"!(;).

Given an IsaLog program P over a scheme S,
we can therefore de�ne the �xpoint semantics of P
as a partial function fp-sem

P
that maps instances

to instances, as follows. Given an instance s, we
can consider the corresponding interpretation �(s),
that along with P forms a set of clauses P [�(s)
on which we compute a �xpoint: fp-semP([s]) equals
��1([TP[�(s)"!(;)]) if TP[�(s)"!(;) is �nite and sat-

is�es condition fun, unde�ned otherwise.

It turns out that the three semantics proposed for
the IsaLog language coincide. This is stated in the
next theorem. Therefore, we have a robust concept,
thus con�rming the validity of the approach.

Theorem 4 For every IsaLog program P, the
declarative semantics d-semP, the logic programming
semantics lp-semP, and the �xed point semantics
fp-semP coincide.

8 Conclusions

This paper has presented the IsaLog model and
language. The main novel feature is the use of explicit
Skolem functors for the generation and manipulation
of object identi�ers within classes and through hier-
archies. The major result is the equivalence of the
di�erent semantics introduced. Several issues need to
be further investigated, as follows.

� The characterization of (or at least su�cient con-
ditions for) the de�nedness of the semantics of pro-
grams over instances.

� The extension of the language, speci�cally with the
introduction of negation. A strati�ed semantics co-
herent with respect to isa seems possible.

� The management of integrity constraints, especially
with regard to their preservation in derived data.

References

[1] S. Abiteboul and P. Kanellakis. Object identity
as a query language primitive. In ACM SIGMOD
International Conf. on Management of Data, pages
159{173, 1989.

[2] H. A��t-Kaci and R. Nasr. LOGIN a logic program-
ming language with built-in inheritance. Journal
of Logic Programming, 3:185{215, 1986.

[3] P. Atzeni, L. Cabibbo, and G. Mecca. IsaLog a
declarative language with hierarchies and negation.
Submitted for publication.

[4] P. Atzeni and L. Tanca. The LOGIDATA+ model
and language. In Next Generation Information
Systems Technology, Lecture Notes in Computer
Science 504. Springer-Verlag, 1991.

[5] C. Beeri. A formal approach to object-oriented
databases. Data and Knowledge Engineering,
5:353{382, 1990.

[6] F. Cacace, S. Ceri, S. Crespi-Reghizzi, L. Tanca,
and R. Zicari. Integrating object oriented
data modelling with a rule-based programming
paradigm. In ACM SIGMOD International Conf.
on Management of Data, pages 225{236, 1990.

[7] L. Cardelli. A semantics of multiple inheri-
tance. Information and Computation, 76(2):138{
164, 1988.

[8] S. Ceri, G. Gottlob, and L. Tanca. Logic Program-
ming and Data Bases. Springer-Verlag, 1989.

[9] R. Hull and M. Yoshikawa. ILOG: Declarative cre-
ation and manipulation of object identi�ers. In
Sixteenth International Conference on Very Large
Data Bases, Brisbane, pages 455{468, 1990.

[10] S. Khosha�an and G. Copeland. Object identity.
In ACM Symp. on Object Oriented Programming
Systems, Languages and Applications, 1986.

[11] M. Kifer and J. Wu. A logic for object-oriented
logic programming (Maier's O-logic revisited). In
Eigth ACM SIGACT SIGMOD SIGART Symp.
on Principles of Database Systems, pages 379{393,
1989.

[12] J.W. Lloyd. Foundations of Logic Programming.
Springer-Verlag, second edition, 1987.

[13] D. Maier. A logic for objects. In Workshop on
Foundations of Deductive Database and Logic Pro-
gramming (Washington, D.C. 1986), pages 6{26,
1986.

[14] D. Maier. Why isn't there an object-oriented
data model. Technical Report CS/E-89-002, Ore-
gon Graduate Center, 1989. A condensed version
was an invited paper at the IFIP 11th World Com-
puter Congress, San Francisco, August-September
1989.

[15] J.D. Ullman. Principles of Database and Knowl-
edge Base Systems, volume 1. Computer Science
Press, Potomac, Maryland, 1988.

