
Objects Meet Relations: On the Transparent
Management of Persistent Objects

Luca Cabibbo

Dipartimento di Informatica e Automazione
Università degli studi Roma Tre

cabibbo@dia.uniroma3.it

Abstract. Many information systems store their objects in a relational
database. If the object schema or the relational schema of an application
can change often or in an independent way, it is useful to let a persis-
tent framework manage the connection between objects and relations.
M2ORM2 is a model for describing meet-in-the-middle mappings be-
tween objects and relations, to support the transparent management of
object persistence by means of relational databases. This paper presents
M2ORM2 and describes how operations on objects and links can be im-
plemented as operations on the underlying relations. It also proposes
necessary conditions for the correctness of M2ORM2 mappings.

1 Introduction

Many information systems are developed using relational and object-oriented
technologies. Relational database management systems provide an effective and
efficient management of persistent, shared and transactional data [6]. Object-
oriented tools and methods include programming languages, modeling languages
such as UML [3], development processes such as UP [8] and XP [2], as well as
analysis and design methods [12]. In practice, it is common to develop object
applications with a layered architecture, containing at least an application logic
layer and a persistence layer. Persistent classes are classes in the application logic
layer whose objects hold persistent data; they are made persistent by means of
code that connect them, in a suitable way, to the persistence layer. In this paper,
we assume that persistence of objects is implemented by a relational database.

Code in the persistence layer should change if either the structure of classes in
the application logic layer or the relational database schema changes. If software
is developed using an iterative process, such as UP or XP, those changes arise
frequently. In this case, it is valuable to use a framework for the transparent
management of object persistence [13, 14], rather than writing and maintaining
such code directly. This way, the programmer manages persistent objects by
means of standard API’s, such as the ODMG ones [5], that is, the same way
he would use objects in an object database. Persistence is transparent to the
programmer, since he does not know actual implementation details.

Transparent persistence of objects is achieved mainly in two ways. In the
R/O mapping approach (Relation to Object mapping, also called reverse engi-
neering, implemented by, e.g., Torque [14]), persistent classes are automatically

generated from a relational database. The programmer populates the database
by means of creations and modifications of objects from persistent classes. Then,
persistent classes propagate such creations and modifications to the underlying
database. In the O/R mapping approach (Object to Relation mapping, also called
forward engineering, implemented by, e.g., OJB [13]), a database is automati-
cally generated from the classes that should be made persistent, together with
the code needed to propagate object persistence to the database. These two ap-
proaches can be unsatisfactory, however, since they do not allow the persistent
classes and the relational database to be created or change in an independent
way. The O/R mapping does not allow using a database shared among several
applications, whereas the R/O mapping prevents the developer from applying
object-oriented skills in implementing the application logic layer, such as using
design patterns.

The meet-in-the-middle approach is a further way for the transparent man-
agement of object persistence. This approach allows developers to manage the
cases in which the application logic and the database have been developed and
evolve in an independent way, since it assumes that the persistent classes and the
database are designed and implemented separately. In this case, the correspon-
dences between persistent classes and the relational database should be given,
possibly described in a declarative way. These correspondences describes a “meet
in the middle” between the object schema and the relational schema, and are
used by the persistence manager to let objects persist by means of the relational
database. The meet-in-the-middle approach is very versatile, since modifications
in persistent classes and/or in the relational database can be managed by sim-
ply redefining the correspondences. Unfortunately, existing systems support the
meet-in-the-middle approach only in a limited way. Indeed, several object persis-
tence managers are based on the O/R and R/O approaches. Furthermore, they
manage only correspondences between similar structures (e.g., objects of a sin-
gle class with tuples of a single relation). Some of them permit a meet between
the object and database schemas, but only as a local tuning activity, after the
schema translation from one model to the other.

This paper presents M2ORM2, a model to describe mappings (correspon-
dences) between object schemas and relational schemas, to support the transpar-
ent management of object persistence based on the meet-in-the-middle approach.
The goal of M2ORM2 is to generalize and extend the kinds of correspondences
managed by currently available systems, thus allowing for more possibilities to
meet schemas. Specifically, rather than considering only correspondences be-
tween single classes and single relations, as most systems do, in M2ORM2 it is
possible to express complex correspondences between clusters of related classes
(intuitively, each representing a single concept) and clusters of related relations.
Furthermore, correspondences describing relationships between clusters can be
expressed. With respect to other proposals, M2ORM2 takes into consideration
specific details of the object and relational data models, together with the way
in which objects and links are manipulated, to identify as many ways to meet
schemas as possible.

M2ORM2 has been already introduced, in an informal way, in a previous
paper by the same author [4]. There: (i) M2ORM2 has been presented in an
informal way; (ii) the semantics of M2ORM2 has just been outlined only by
means of a few examples; and (iii) the problem of identifying conditions for the
correctness of M2ORM2 mappings has been just stated. The main contributions
of this paper are: (i) the formalization of M2ORM2; (ii) a description of how
operations on objects and links are realized as operations on the underlying
relations; and (iii) the presentation of a number of necessary conditions for the
correctness of M2ORM2 mappings.

For a comparison of M2ORM2 with the literature and a number of available
systems for the transparent management of object persistence (e.g. [9–11, 13,
14]), we refer the reader to [4]. There, we have shown that M2ORM2 generalizes
and extends the kinds of correspondences managed by various proposals and
systems.

The paper is organized as follows. Section 2 proposes terminology and no-
tation used to describe objects and relations. Section 3 presents M2ORM2,
to describe mappings between schemas, together with an example. Section 4
presents the semantics of M2ORM2 mappings, by describing how operations on
objects and links can be implemented as operations on an underlying relational
database. Section 5 identifies a number of necessary conditions for the correct-
ness of M2ORM2 mappings. Finally, in Sect. 6 we draw some conclusions.

2 Object schemas and relational schemas

This section presents briefly the data models (an object model and the relational
model) and the terminology used in this paper.

The object model we consider is a non-nested semantic data model (with
structural features, but without behavioral ones). We have in mind a Java-like
object model, formalized as a simplified version of the ODMG model [5] and of
UML [3].

At the schema level, a class describes a set of objects having the same struc-
tural properties. Each class has a set of attributes associated with it. In this
paper we make the simplifying hypothesis that all class attributes are of a same
simple type, e.g., strings. An association describes a binary relation between
a pair of classes. An object schema is a set of classes and associations among
such classes. Figure 1 shows a sample object schema. (For simplicity, in this pa-
per we do not consider generalization/specialization relationships among classes,
although M2ORM2 is able to manage them.)

At the instance level, a class is a set of objects. Each object has an associated
oid, an unique identifier for referencing the object. The state of an object is given
by the set of values that its attributes hold in a certain moment. An association
is a set of links; each link describes a relationship between a pair of objects.

This paper takes into consideration the following integrity constraints. Class
attributes can have null value; an attribute whose value cannot be null is said
to be non null. A class with key is a class in which an object can be identified

-id {KEY}
-name
-salary {null}

Employee

-name {KEY}
-state

City {RO}

-name
-division

Department

lives

1

*

Residence

emps

*

dept

1

Membership
-name
-budget

Project *

projs

* WorksOn

Fig. 1. An object schema

on the basis of the value of some of its attributes, called the key attributes of
the class. Key attributes should be non null. A read-only class is a class from
which it is not permitted to create new persistent objects and to modify or
delete already existing objects. In an application, read-only classes are useful
to access information generated by other applications. In Fig. 1, key attributes
are denoted by constraint {KEY} and attributes that can be null by constraint
{null}; constraint {RO} denotes read-only classes. For associations we consider
multiplicity and navigability constraints. A role is an end of an association,
that is, an occurrence of a class involved in the association. Roles have name,
navigability, and multiplicity.

In the relational model [6], at the schema level a relation describes a set
of tuples. A relation schema is a set of attributes. We assume that all relation
attributes are of a simple type, e.g., strings. A relational schema is a set of
relations. At the instance level, a relation is a set of tuples over the attributes
of the relation.

We consider the following integrity constraints. Attributes can be or not be
non null. Each relation has a key. A key attribute is an attribute that belongs
to a key; key attributes should be non null. Sometimes relations are identified
by means of artificial keys (or surrogates), rather than by means of natural keys
(that is, keys based on attributes having a natural semantics). In a relation with
artificial key, the insertion of a new tuple involves the generation of a new ar-
tificial key; the DBMS is usually responsible of this generation. For referential
constraint (or foreign key) we mean a non-empty set of attributes of a relation
used to reference tuples of another relation. Figure 2 shows a sample relational
schema. Attribute forming natural keys are denoted by constraint {NK} and
those forming artificial keys by constraint {AK}. Referential constraints are de-
noted by arrows and implemented by means of attributes marked with constraint
{FK}. Constraint {null} denotes attributes that can be null.

We assume that programmers manage object schemas only in a program-
matic way. In practice, objects and links are manipulated by means of CRUD
operations (Create, Read, Update, Delete), which allow the programmer to create
persistent objects, read persistent objects (that is, performing a unique search
of an object based on its key), as well as to modify and delete objects per-

employee

empId {NK}
empName
salary {null}
city
state
deptId {FK: department}

department

deptId {AK}
deptName
divId {FK:division}

project

projId {AK}
projName
budget
startDate {null}

works_on

empId {NK}{FK: employee}
projID {NK}{FK: project}

division

divId {AK}
divName
city {null}

Fig. 2. A relational schema

sistently. Navigation, formation, breaking, and modification of persistent links
between objects are also possible. Reading is meaningful only for classes with
key. Creation, modification, and deletion is not meaningful for read-only classes.
In correspondence to such programmatic manipulations of an object schema,
a meet-in-the-middle-based object persistence manager should translate CRUD
operations on objects and links into operations over an underlying relational
database. This translation should happen in an automatic way, on the basis of
a suitable mapping between the object schema and the relational schema, as
described in the next sections.

3 A model for object/relational schema mappings

In this section we formally present M2ORM2, a model for describing mappings
among object schemas and relational schemas. M2ORM2 is an acronym for Meet-
in-the-Middle Object/Relational Mapping Model. The goal of M2ORM2 is to
support the transparent management of relationally persistent objects based on
the meet-in-the-middle approach.

Let Sr and So be a relational schema and an object schema, respectively.
We assume that such schemas have been independently developed. In particular,
both of them can be partially denormalized: the relational schema for efficiency
reasons and the object schema to contain “coarse grain” objects.

A mapping MSr ,So
between Sr and So is a multi-graph (N ,A), where N

is a set of nodes and A is a set of arcs between them. Each node describes a
correspondence between a group of classes and a group of relations. Each arc
describes a relationship between the elements represented by a pair of nodes. In-
tuitively, using the Entity-Relationship terminology [1], each node represents an
entity (which can be denormalized in one of the schemas) and each arc represents
a binary relationship between two entities.1

1 In M2ORM2, an arc can also represent a generalization/specialization relationship
between two entities. However, we ignore this aspect in this paper.

Each node N ∈ N is a triple (C,R, α), where:

– C is a class cluster (or c-cluster), that is, a non-empty tuple 〈C1, . . . , Cn〉
of classes and a set of associations among such classes;2

– R is a relation cluster (or r-cluster), that is, a non-empty tuple 〈R1, . . . , Rm〉
of relations, together with referential constraints among them;

– α is a set of attribute correspondences (defined next) between C and R.

In a c-cluster C, one of the classes should be selected as the primary class of the c-
cluster. The other classes of the c-cluster are secondary classes. The associations
of the node should be, directly or indirectly, of type one-to-one or many-to-one
from the primary class to secondary classes. Intuitively, such associations should
relate, by means of navigable roles, each object of the primary class with at most
an object from each of the secondary classes.

Similarly, in an r-cluster R, one of the relations should be selected as the
primary relation of the r-cluster. The other relations of the r-cluster, called sec-
ondary, should be referenced, directly or indirectly, from the primary relation of
the r-cluster. Intuitively, each tuple of the primary relation should be associated
with at most a tuple in each of the secondary relations through the referential
constraints of the r-cluster.

In a node N = (C,R, α), the correspondence among elements in C and
elements in R is also specified by the set α of attribute correspondences. An
attribute correspondence is a pair (Ci.a, Rj .b), where Ci is a class in C, a is an
attribute of Ci, Rj is a relation in R, and b is an attribute of Rj .

In M2ORM2, there are three kinds of nodes, to let a class correspond with
a relation, a class with many relations, and many classes with a relation. Cur-
rently, the model does not permit that multiple classes correspond with multiple
relations; however, correspondences of this kind can be usually represented by
means of arcs.

Figure 3 shows, in a graphical way, a M2ORM2 mapping between the schemas
of Fig. 1 and 2. It is based on three nodes: a node NP, describing the corre-
spondence between class Project and relation project ; a node NE, describing the
correspondence between classes Employee and City and relation employee; and a
node ND, describing the correspondence between class Department and relations
department and division.

More specifically, node NP = (CP ,RP , αP) describes the correspondence be-
tween a class (Project) and a relation (project). The c-cluster CP includes just
the class Project, and the r-cluster RP includes just the relation project. It is
clear that both the class and the relation are primary in the node. The correspon-
dence between them is based on the attribute correspondences (Project.name,
project.projName) and (Project.budget, project.budget); these are depicted as
dotted lines in Fig. 3. Node NP describes a total correspondence between a

2 More precisely, each element of a c-cluster is associated with a class in the object
schema, i.e., it is an occurrence of a class. Therefore, it is possible that a class takes
part to more c-clusters, or that it takes part more than once in a same c-cluster. A
similar consideration applies to r-clusters, that will be introduced shortly.

-id {KEY}
-name
-salary {null}

Employee

-name {KEY}
-state

City {RO}

-name
-division

Department

lives 1

*Residence

emps

*

dept1

Membership

-name
-budget

Project

*

projs*

 WorksOn

employee

empId {NK}
empName
salary {null}
city
state
deptId {FK: department}

department

deptId {AK}
deptName
divId {FK:division}

project

projId {AK}
projName
budget
startDate {null}

works_on

empId {NK}{FK: employee}
projId {NK}{FK: project}

division

divId {AK}
divName
city {null}

NP

ND

N
E

A
ED

AEP

Fig. 3. A M2ORM2 mapping between the schemas of Fig. 1 and 2

class and a relation: each object of the class is represented by means of a tuple
of the relation.

As a more complex case, node NE = (CE ,RE , αE) describes the correspon-
dence between two classes (Employee and City) and a relation (employee). The
primary class of the node is Employee. It is linked to the secondary class City
through the navigable role lives of the association Residence. In this case, the
c-cluster CE includes both the classes and the association. Intuitively, each ob-
ject of the primary class Employee can be associated (by means of the asso-
ciation Residence) with an object of the secondary class City. Each tuple of
the relation employee represents an Employee object together with the City
object related to it, and also the link of type Residence between these two ob-
jects. In this node, the attribute correspondences include the correspondence
between the key attributes of the primary class and of the primary relation (Em-
ployee.id, employee.empId) as well as (Employee.name, employee.empName),
(Employee.salary, employee.salary), (City.name, employee.city), and (City.state,
employee.state).

Furthermore, node ND describes the correspondence between a class (De-
partment) and two relations (department and division). The primary relation is

department. Intuitively, each Department object is represented by a tuple of de-
partment and a tuple of division, related by means of a referential constraint. The
correspondence is based on the attribute correspondences (Department.name,
department.deptName) and (Department.division, division.divName). The latter
correspondence is meaningful with respect to the referential constraint between
the primary relation department and the secondary relation division of the r-
cluster. Indeed, this node represents in the mapping the two relations together
with the referential constraint between them.

A M2ORM2 mapping can also contain arcs. Intuitively, arcs represent cor-
respondences and elements which cannot be represented by means of nodes;
specifically, further associations, referential constraints, and some further rela-
tions. Each arc describes a relationship between two nodes, and can be of type
one-to-one, one-to-many, or many-to-many.

Each arc A ∈ A is a tuple (N1, N2, γ, ρ), where:

– N1 and N2 are the nodes connected by the arc;
– γ is a class correspondence (defined next), which describes the correspon-

dence between the primary classes of the nodes N1 and N2 connected by the
arc;

– ρ is a relation correspondence (defined next), which describes the correspon-
dence between the primary relations of the nodes N1 and N2 connected by
the arc.

A class correspondence is based on the navigable roles of an association be-
tween the classes. In practice, at the programming level, roles are implemented
by means of reference variables (for to-one navigability) and/or variables of col-
lection types (for to-many navigability). If an association is unidirectional, then
a single role is involved; otherwise, if it is bidirectional, there are two roles in-
volved. A relation correspondence is based on the attributes that implement
the relationship between the two relations by means of referential constraints;
further relations can be involved. An arc groups a class correspondence and a
relation correspondence, representing a one-to-one, one-to-many, or a many-to-
many binary relationship between the instances represented by a pair of nodes.

For example, the mapping shown in Fig. 3 contains two arcs: an arc AED

for the one-to-many association between Employee and Department and an arc
AEP for the many-to-many association between Employee and Project.

Arc AED = (NE, ND, γED, ρED) is of type one-to-many, and connects the
nodes NE and ND to describe a one-to-many relationship between employees
and departments. The class correspondence γED is the pair [Employee.dept,
Department.emps] between the classes Employee and Department, whereas the
relation correspondence ρED is the attribute [employee.deptId], implementing a
referential constraint between the relations employee and department. Intuitively,
this arc lets the association Membership between Employee and Department
correspond with the referential constraint between employee and department.

Arc AEP between nodes NE and NP describes a many-to-many relation-
ship between employees and projects. This arc is based on the (unidirectional)
class correspondence [Employee.projs] between Employee and Project together

with the relation correspondence [works on.empId, works on.projId] between
employee and projects. In practice, this arc lets the association WorksOn be-
tween Employee and Project correspond with the referential constraints between
employee and project stored in the tuples of the relation works on.

4 Management of operations

In the previous section, M2ORM2 has been used as a syntactical tool to repre-
sent mappings. This section provides the semantics of M2ORM2 mappings, by
explaining how CRUD operations on an object schema can be implemented as
operations on a relational schema, with respect to a M2ORM2 mapping between
the two schemas.

We consider sequences of CRUD operations on objects and links that, glob-
ally, transforms a valid instance of the object schema into another valid instance,
that is, in which all the integrity constraints imposed by the object schema are
satisfied. It is important to note that not every mapping is correct, that is,
it is possible that some operation cannot be translated in a correct way. This
happens, for example, if an integrity constraint over the relational schema is
violated. Correctness of mappings will be discussed in Sect. 5.

We describe the management of operations with respect to the various kinds
of nodes and arcs we can have in a M2ORM2 mapping.

4.1 Operations on nodes

Node mapping a class to a relation We first consider the simplest case,
that is, a node N mapping a single class (say, C1) to a single relation (say, R1)
by means of a set α of attribute correspondences. An example is node NP. In
this case, each object of the primary class C1 is represented by a tuple of the
primary relation R1.

The creation of a new object o1 of the class C1 is implemented by the insertion
of a new tuple t1 in R1, computed as follows:

– the attributes of t1 involved in the attribute correspondences α take their
value from the corresponding attributes of o1, that is, t1.b = o1.a if
(C1.a, R1.b) ∈ α;

– if R1 has an artificial key, then a new key for t1 is generated by the system;
– the other attributes of t1 defaults to null.

If the class C1 has a key, then the reading of an object from C1 by means of
a value k for its key is implemented by a query searching for a single tuple t1
in R1. The selection condition of the query equates the attributes of the key of
R1 with the corresponding values in k. If there is already an object in memory
representing this tuple, then such object is returned. Otherwise, a new object
o1 of the class C1 is created in memory; the value for the attributes of o1 are
computed as follows:

– the attributes of o1 involved in the set α of attribute correspondences take
their value from the corresponding attributes of t1, that is, o1.a = t1.b if
(C1.a, R1.b) ∈ α;

– the other attributes of o1 defaults to null.

The update of a non-key attribute a of an object o1 of the class C1 is imple-
mented as follows, with respect to the tuple t1 that represents o1 in R1:

– if the attribute a is transient, that is, if a is not involved in the attribute
correspondences, then t1 is not changed;

– otherwise, if the attribute a is involved in the attribute correspondences, the
attributes that correspond to a are modified in the tuple t1.

The deletion of an object o1 of the class C1 is implemented as the deletion
of the tuple t1 that represents o1 in R1.

Node mapping many classes to a relation We now consider the case of a
node mapping two or more classes (say, 〈C1, . . . , Cn〉), together with a number
of associations among them, to a single relation (say, R1), on the basis of a set
α of attribute correspondences. We assume that C1 is the primary class of the
node. In such a node, each object o1 of the primary class C1 identifies, by means
of the associations in the node, at most an object in each secondary class of the
node; let us call o2, . . . , on these objects, where each object oi belongs to class
Ci. In this case, the tuple of objects 〈o1, . . . , on〉 is represented by a single tuple
t1 of the relation R1. An example is node NE; each tuple of the relation employee
represents an object oe of Employee and, possibly, an object oc of City and a
link of type Residence from oe to oc.

More specifically, the associations in the node should have, directly or indi-
rectly, multiplicity 1 (one, mandatory) or 0..1 (one, optional) from the primary
class to secondary classes. We denote by mandatory(C,N) the set of classes that
can be reached, directly or indirectly, from a class C by means of the naviga-
ble roles of the associations in the node N that have multiplicity 1 (not 0..1).
Furthermore, given an object o, we denote by reachable(o,N) the set of ob-
jects that can be effectively reached, directly or indirectly, from the object o by
means of the navigable roles of the associations in the node N; we assume that
o ∈ reachable(o,N) as well.

The creation of a new object o1 in the primary class C1, linked to the already
existing objects reachable(o1, N), is implemented by the insertion of a new tuple
t1 in R1, computed as follows:

– the attributes of t1 involved in the set α of attribute correspondences take
their value from the corresponding attributes of reachable(o1, N), that is, if
(Ci.a, R1.b) ∈ α and there is an object oi of the class Ci in reachable(o1, N),
then t1.b = oi.a;

– if R1 has an artificial key, then a new key for t1 is generated by the system;
– the other attributes of t1 defaults to null.

The creation of new objects in secondary classes of the node does not require
the modification of the relation R1. Indeed, these new objects are considered
transient, at least until they will not be connected to an object of the primary
class of the node. This possibility will be considered later, in the context of
operations on links.

If the primary class C1 has a key, then the reading of an object from C1 by
means of a value k for its key is implemented by a query searching for a single
tuple t1 in R1, as in the case for a node mapping a class to a relation. The
selection condition of the query equates the attributes of the key of R1 with the
corresponding values from k. If we retrieve a tuple t1, then it represents an object
o1 of class C1 together with the set reachable(o1, N) of objects reachable from
o1. Then, if they do not already exists in memory, we should create such objects
in memory, together with the links implied among them. Objects for the classes
in mandatory(C1, N) are always created. Objects in other classes participating
to the node are created only if the corresponding attributes in t1 are not null.

More specifically, if there are no objects in memory representing the various
parts of the tuple t1, then the following new objects are created in memory,
together with the value for their attributes:

– a new object oi in a class Ci in mandatory(C1, N); the attributes of oi

involved in the attribute correspondences α take their value from the corre-
sponding attributes of t1, that is, oi.a = t1.b if (Ci.a, R1.b) ∈ α; the other
attributes of oi defaults to null ;

– a new object oj in a class Cj that does not belong to mandatory(C1, N), if all
the non null attributes of Cj in the attribute correspondences α have a non
null value in the corresponding attributes of t1; in this case, such attributes
take their value from the corresponding attributes of t1, that is, oj .a = t1.b

if (Cj .a, R1.b) ∈ α; the other attributes of oj defaults to null.

Furthermore, links for the associations in the node are formed in memory among
the objects involved in this operation.

Let o1, . . . , on be a tuple of objects represented by a tuple t1 in R1, as de-
scribed by this node. Then, the update of a non-key attribute a of an object oi

of a class Ci that can be reached from an object o1 is managed by modifying, if
it is the case, the attributes corresponding to a of the tuple t1 that represents
the object o1 and the associated objects o2, . . . , on, as follows:

– if the attribute a is transient (that is, is not involved in the attribute corre-
spondences), then the tuple t1 is not modified;

– otherwise, if the attribute a is involved in the attribute correspondences, the
attributes that correspond to a are modified in the tuple t1.

Let o1, . . . , on be a tuple of objects represented by a tuple t1 in R1, as de-
scribed by this node. The deletion of the object o1 of the primary class C1 is
implemented as the deletion of the tuple t1 that represents o1 in R1. Note that
some of the objects o2, . . . , on may become transient.

The modification of links of associations involved in the node should be con-
sidered as well. For example, the formation of a new link outgoing from an object

oi of a class Ci involved in the node, whose type is an association involved in the
node, may increase the number of objects reachable from oi and, transitively,
those reachable from an object o1 of the primary class C1 of the node. In this case,
the tuple t1 representing o1 should be modified accordingly (by modifying null
attributes to the new values owned by the new reachable objects). Conversely, if
a link outgoing from oi is broken, the number of objects reachable for o1 may de-
crease. In this case, the tuple t1 representing o1 should be modified accordingly
(by modifying to null attributes representing objects that are no more reach-
able). In practice, the tuple t1 representing o1 should be modified as the object
o1 would have been created after the link formation/modification/breaking.

Node mapping a class to many relations We now consider the case of a node
mapping a class (say, C1) to two or more relations (say, 〈R1, . . . , Rm〉), together
with referential constraints among them, on the basis of a set α of attribute
correspondences. We assume that R1 is the primary relation of the node. In
such a node, each tuple t1 of the primary relation R1 identifies, by means of the
referential constraints in the node, at most a tuple in each secondary relation of
the node; let us call t2, . . . , tM these tuples, where each tuple ti belongs to the
relation Ri. In this case, the tuple of tuples 〈t1, . . . , tm〉 represents an object o1

of the class C1. An example is node ND; each object of the class Department is
represented by a tuple tdept of the relation department and, possibly, a tuple tdiv

of the relation division, where the tuple tdept references the tuple tdiv.
More specifically, the node contains referential constraints that, directly or

indirectly, reference the secondary relations from the primary relations. A refer-
ential constraint is mandatory if the attribute implementing it cannot be null,
but is optional if such attribute can be null. We denote by mandatory(R,N)
the set of relations that can be reached, directly or indirectly, from a relation R

by means of the mandatory referential constraints in the node N. Furthermore,
given a tuple t, we denote by reachable(t,N) the set of tuples that can be ef-
fectively reached, directly or indirectly, from the tuple t by means of referential
constraints in the node N; we assume that t ∈ reachable(t,N) as well.

The creation of a new object o1 in the class C1 is implemented by the insertion
of the tuples t1, . . . , tm in the relations R1, . . . , Rm, as follows:

– a tuple ti in a relation Ri in mandatory(R1, N); the attributes of ti involved
in the attribute correspondences α take their value from the corresponding
attributes of o1, that is, ti.b = o1.a if (C1.a, Ri.b) ∈ α; if Ri has an artificial
key, then a new key for ti is generated by the system;

– a tuple tj in a relation Rj that does not belong to mandatory(R1, N), if all
the non null attributes of Rj in the attribute correspondences α of the node
have a non null value in the corresponding attributes of o1; in this case, such
attributes take their value from the corresponding attributes of o1, that is,
tj .b = o1.a if (C1.a, Rj .b) ∈ α; if Rj has an artificial key, then a new key for
tj is generated by the system;

– if a tuple ti should reference a tuple th of a secondary relation Rh by means
of an attribute b, then ti.b equals the key of the tuple th;

– the other attributes of the tuples defaults to null.

If the primary class C1 has a key, then the reading of an object from C1 by
means of a value k for its key is implemented by a query searching for a single
tuple t1 in the primary relation R1, as in the case for a node mapping a class
to a relation. The selection condition of the query equates the attributes of the
key of R1 with the corresponding values from k. Then, the retrieval of a tuple t1
in R1 is followed by the lookup of the tuples in the secondary relations that are
reachable from t1, so that all the tuples reachable(t1, N) representing an object
of the class C1 are retrieved. If there is no object in memory representing these
tuples, then a new objects o1 of the class C1 is created in memory; the value for
the attributes of o1 are computed as follows:

– the attributes of o1 involved in the attribute correspondences α take their
value from the corresponding attributes of the tuples in reachable(t1, N),
that is, o1.a = ti.b if (C1.a, Ri.b) ∈ α;

– the other attributes of o1 defaults to null.

Let o1 be an object of the class C1 represented by the tuples t1, . . . , tm, as
described by this node. Then, the update of a non-key attribute a of the object
o1 is managed as follows:

– if the attribute a is not involved in the attribute correspondences (i.e, it is
transient), then no tuple is not modified;

– if the attribute a is involved in the attribute correspondences and is related
to attributes of the primary relation R1, then the attributes that correspond
to a are modified in the tuple t1;

– otherwise, if the attribute a is involved in the attribute correspondences and
is related to attributes of a secondary relation Ri, then a new set of tuples
is computed, as for the creation of a new object, to represent the object o1,
and, if it is the case, such tuples are added to the secondary relations of the
node and the tuple t1 is modified accordingly.

Let o1 be an object of the class C1 represented by the tuples t1, . . . , tm, as
described by this node. The deletion of the object o1 is implemented as the
deletion of the tuple t1 that represents o1 in the primary relation R1. Note that
the other tuples t2, . . . , tm may become useless; in such a case, they can be
deleted as well.

4.2 Operations on arcs

Arcs are used to represent binary relationships between nodes. In the object
schema, each arc represents one or both the roles of an association between the
primary classes of the two nodes. In the relation schema, each arc represents one
or two referential constraints between the primary relations of the two nodes.
The referential constraints may be either embedded in the relations that are
already involved in the nodes or they may involve a different relation.

Suppose that Axy is an arc from a node Nx to a node Ny, representing the
roles ry and rx of an association axy from the primary class Cx of Nx to the
primary class Cy of Ny (rx references an object of the class Cy and ry references
an object of the class Cx).

Arc embedded in already involved relations If arc Axy is embedded in
already involved relations, then the two roles rx and ry of the association corre-
spond to two attributes (say, bx and by) of the primary relations Rx of Nx and
Ry of Ny, each of which references the primary relation of the other node.

The creation of a new link of the association axy from an object ox of the
class Cx to an object oy of the class Cy is managed as follows:

– if the multiplicity of rx is 0..1, then the attribute by of the tuple ty of the
relation Ry that represents oy takes its value from the key of the tuple tx of
the relation Rx that represents ox;

– if the multiplicity of ry is 0..1, then the attribute bx of the tuple tx of the
relation Rx that represents ox takes its value from the key of the tuple ty of
the relation Ry that represents oy.

The breaking of a link of the association axy from an object ox of the class
Cx to an object oy of the class Cy is managed as follows:

– if the multiplicity of rx is 0..1, then the attribute by of the tuple ty of the
relation Ry that represents oy becomes null;

– if the multiplicity of ry is 0..1, then the attribute bx of the tuple tx of the
relation Rx that represents ox becomes null.

The modification of a link of the association axy starting from an object ox

of the class Cx, from the object oy to the object o′y of the class Cy is managed
as follows:

– if the multiplicity of rx is 0..1, then the attribute by of the tuple ty of the
relation Ry that represents oy becomes null;

– if the multiplicity of ry is 0..1, then the attribute bx of the tuple tx of the
relation Rx that represents ox takes its value from the key of the tuple t′y of
the relation Ry that represents o′y.

Arc represented by a different relation If arc Axy is represented by a
relation different from the primary relations of the nodes, then the two roles
of the association correspond to two attributes (say, bx and by) of a different
relation (say, Rxy); these attributes reference the primary relations Ry and Rx

of the two nodes Ny and Nx, respectively.
The creation of a new link of the association axy from an object ox of the

class Cx to an object oy of the class Cy is managed as the insertion of a tuple
txy in the relation Rxy, computed as follows:

– the attribute bx of the tuple txy takes its value from the key of the tuple ty

of the relation Ry that represents oy;

– the attribute by of the tuple txy takes its value from the key of the tuple tx

of the relation Rx that represents ox;
– the other attributes of the tuple txy defaults to null.

The breaking of a link of the association axy from an object ox of the class
Cx to an object oy of the class Cy is managed as the deletion of the tuple txy

that represents the link between the two objects.
The modification of a link of the association axy starting from an object ox

of the class Cx, from the object oy to the object o′y of the class Cy is managed
as the modification of the tuple txy in the relation Rxy that represents the link
between ox and oy, as follows:

– the attribute bx of the tuple txy takes its value from the key of the tuple t′y
of the relation Ry that represents o′y.

5 Correctness of mappings

It turns out that not every mapping that can be described using M2ORM2 is
correct. Intuitively, a M2ORM2 mapping is correct if it supports, in an effective
way, the management of CRUD operations on objects and links by means of the
underlying relational schema. Otherwise, a mapping is incorrect if operations on
objects and links can give rise to anomalies. There are various kinds of anoma-
lies, but only two main causes for them: (i) incorrect correspondences between
elements and (ii) incorrect representation of integrity constraints.

We now present a number of conditions for the correctness of a M2ORM2

mapping. These conditions are necessary : they should hold whenever the cor-
responding operations have to be managed on the basis of the mapping. The
need for these conditions can be verified by means of counter examples and by
referring to the semantics of M2ORM2 described in Sect. 4.

In what follows, consider a node N = (C,R, α), where C = 〈C1, . . . , Cn〉,
R = 〈R1, . . . , Rm〉, C1 is the primary class of the node, and R1 is the primary
relation of the node.

To implement the creation of a new object in the primary class C1 of the
node correctly, the following conditions are necessary:

[C1] If the primary relation R1 of the node has a natural key, then it corresponds
to the key of the primary class C1 of the node; if R1 has an artificial key,
then it is not involved in the attribute correspondence α.

[C2] There are no two attributes of the classes in the node corresponding to a
same attribute of a relation Ri in the node.

[C3] If an attribute of a relation Ri that is the primary relation of the node
or that belongs to mandatory(R1, N) (where R1 is the primary relation of
the node) cannot be null, then either it is the artificial key of Ri, or it is a
reference to another relation Rj ∈ mandatory(R1, N), or it is involved in an
attribute correspondence in α and corresponds to an attribute of a class Cj

of the node that cannot be null, where Cj is the primary class of the node or
belongs to mandatory(C1, N) (where C1 is the primary class of the node).

[C4] Each secondary relation Ri of the node has an artificial key, which is not
involved in the attribute correspondence α.

Condition [C1] ensures that the key of the primary relation R1 of the node has a
unique value. Condition [C2] ensures that each attribute of a relation Ri in the
node has at most one value. Condition [C3] ensures that each non null attribute
of a mandatory relation Ri in the node has a non null value.

To implement the reading of an object of the primary class of the node C1

correctly, the following conditions are necessary:

[R1] The primary relation R1 of the node has a natural key, and the attribute
correspondences let it correspond to the key of the primary class C1.

[R2] There are no two attributes of the relations in the node corresponding to
a same attribute of a class Ci in the node.

[R3] If an attribute of a class Ci that is the primary class of the node or that
belongs to mandatory(C1, N) (where C1 is the primary class of the node)
cannot be null, then it is involved in an attribute correspondence in α and
corresponds to an attribute of a relation Rj that cannot be null, where Rj

is the primary relation of the node or belongs to mandatory(R1, N) (where
R1 is the primary relation of the node).

Condition [R1] ensures that at most one tuple is retrieved from the primary
relation R1. Condition [R2] ensures that each attribute of a class Ci in the node
has at most one value. Condition [R3] ensures that each non null attribute of a
mandatory class Ci in the node has a non null value.

We now consider the update of a non transient attribute a of a class Ci of
the node; we suppose that the attribute a of the primary class C1 is related to
an attribute b of a relation Ri of the node by the attribute correspondences α.
We have the following necessary conditions:

[U1] Attribute b is not part of the key of the primary relation R1 of the node.
[U2] If Ri is the primary class of the node or it belongs to mandatory(R1, N)

(where R1 is the primary class of the node) and b cannot be null, then a

cannot be null as well.
[U3] There cannot be another attribute a′ of a class Cj in the node related to

b by the attribute correspondences α.

If the node N is of type one class/many relations, then the conditions for the
creation of a new object ([C1], [C2], [C3], and [C4]) are also required.

Condition [U1] avoids that the primary key of a relation is changed. Con-
dition [U2] deals with null values. Condition [U3] prevents side effects on the
attributes of the objects.

To implement the deletion of an object of the primary class C1 of the node,
no additional necessary conditions are required. Indeed, if the object has been
created or read, it can also be safely deleted.

Necessary conditions for a correct management of the modification of a link
of an association involved in a node are the same for the creation of a new object
of the primary class of the node.

Before concluding the section, it is worth noting that, in practice (that is, for
eventually implementing a persistence manager based on M2ORM2) sufficient
conditions should be fixed as well, to manage mappings in an effective way. Cur-
rent systems suffer from several limitations, since the conditions they are based
on are very restrictive. One of the main goal of this research is to identify condi-
tions that are as permissive as possible — permissive with respect to significance
of mappings. Please note that we do not state sufficient conditions in this paper.

6 Discussion

In this paper we have presented M2ORM2, a model to describe correspondences
between object schemas and relational schemas. The goal of M2ORM2 is sup-
porting the transparent management of object persistence based on the meet-
in-the-middle approach.

As future work, we plan to implement a Java framework for the management
of persistent objects based on M2ORM2. To this end, a number of object-oriented
techniques should be used, e.g., those in [7].

From a theoretical perspective, we plan to study several extensions to the
model, e.g., the management of generalization/specialization hierarchies, tran-
sient classes and attributes, and of further integrity constraints. We also plan to
study in a more precise way the correctness of M2ORM2 mappings, and specifi-
cally to state sufficient conditions that are as permissive as possible.

References

1. C. Batini, S. Ceri, and S.B. Navathe. Conceptual Database Design, an Entity-
Relationship Approach. Benjamin-Cummings, 1992.

2. K. Beck. EXtreme Programming EXplained: Embrace Change. Addison-Wesley,
1999.

3. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, 1999.

4. L. Cabibbo and R. Porcelli. M2ORM2: A Model for the Transparent Management
of Relationally Persistent Objects. In International Workshop on Database Pro-
gramming Languages (DBPL), pages 166–178, 2003.

5. R.G.G. Cattell et al. The Object Data Standard: ODMG 3.0. Morgan Kaufmann,
2000.

6. R. Elmasri and S.B. Navathe. Fundamentals of Database Systems. Addison Wesley,
2003.

7. M. Fowler. Patterns of Enterprise Application Architecture. Addison Wesley, 2003.
8. I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development Pro-

cess. Addison-Wesley, 1999.
9. Java Data Objects. http://www.jdocentral.com.
10. JDX. http://www.softwaretree.com/.
11. JRELAY. http://www.objectindustries.com/.
12. C. Larman. Applying UML and Patterns. An introduction to object-oriented anal-

ysis and design and the Unified Process. Prentice Hall PTR, 2002.
13. ObJect relational Bridge. http://db.apache.org/ojb/.
14. Torque. http://db.apache.org/torque/.

