
A universal metamodel and its dictionary

Paolo Atzeni(1), Giorgio Gianforme(2), Paolo Cappellari(3)

(1) Università Roma Tre, Italy — atzeni@dia.uniroma3.it
(2) Università Roma Tre, Italy — giorgio.gianforme@gmail.com

(3) University of Alberta, Canada — paolo.cappellari@gmail.com

Abstract. We discuss a universal metamodel aimed at the representa-
tion of schemas in a way that is at the same time model-independent (in
the sense that it allows for a uniform representation of different data mod-
els) and model-aware (in the sense that it is possible to say to whether a
schema is allowed for a data model). This metamodel can be the basis for
the definition of a complete model-management system. Here we illus-
trate the details of the metamodel and the structure of a dictionary for
its representation. Exemplifications of a concrete use of the dictionary
are provided, by means of the representations of the main data models,
such as relational, object-relational or XSD-based. Moreover, we demon-
strate how set operators can be redefined with respect to our dictionary
and easily applied on it. Finally, we show how such a dictionary can be
exploited to automatically produce detailed descriptions of schema and
data models, in a textual (i.e. XML) or visual (i.e. UML class diagram)
way.

1 Introduction

Metadata is descriptive information about data and applications. Metadata is
used to specify how data is represented, stored, and transformed, or may describe
interfaces and behavior of software components.

The use of metadata for data processing was reported as early as fifty years
ago [22]. Since then, metadata-related tasks and applications have become truly
pervasive and metadata management plays a major role in today’s information
systems. In fact, the majority of information system problems involve the de-
sign, integration, and maintenance of complex application artifacts, such as ap-
plication programs, databases, web sites, workflow scripts, object diagrams, and
user interfaces. These artifacts are represented by means of formal descriptions,
called schemas or models, and, consequently, metadata. Indeed, to solve these
problems we have to deal with metadata, but it is well known that applications
solving metadata manipulation are complex and hard to build, because of het-
erogeneity and impedance mismatch. Heterogeneity arises because data sources
are independently developed by different people and for different purposes and
subsequently need to be integrated. The data sources may use different data
models, different schemas, and different value encodings. Impedance mismatch
arises because the logical schemas required by applications are different from

the physical ones exposed by data sources. The manipulation includes designing
mappings (which describe how two schemas are related to each other) between
the schemas, generating a schema from another schema along with a mapping
between them, modifying a schema or mapping, interpreting a mapping, and
generating code from a mapping.

In the past, these difficulties have always been tackled in practical settings by
means of ad-hoc solutions, for example by writing a program for each specific ap-
plication. This is clearly very expensive, as it is laborious and hard to maintain.
In order to simplify such manipulation, Bernstein et al. [11, 12, 23] proposed the
idea of a model management system. Its goal is to factor out the similarities of
the metadata problems studied in the literature and develop a set of high-level
operators that can be utilized in various scenarios. Within such a system, we
can treat schemas and mappings as abstractions that can be manipulated by
operators that are meant to be generic in the sense that a single implementa-
tion of them is applicable to all of the data models. Incidentally, let us remark
that in this paper we use the terms “schema” and “data model” as common
in the database literature, though some model-management literature follows a
different terminology (and uses “model” instead of “schema” and “metamodel”
instead of “data model”).

The availability of a uniform and generic description of data models is a
prerequisite for designing a model management system. In this paper we discuss
a “universal metamodel” (called the supermodel), defined by means of metadata
and designed to properly represent “any” possible data model, together with the
structure of a dictionary for storing such metadata.

There are many proposals for dictionary structure in the literature. The use
of dictionaries to handle metadata has been popular since the early database sys-
tems of the 1970’s, initially in systems that were external to those handling the
database (see Allen et al. [1] for an early survey). With the advent of relational
systems in the 1980’s, it became possible to have dictionaries be part of the
database itself, within the same model. Today, all DBMSs have such a compo-
nent. Extensive discussion was also carried out in even more general frameworks,
with proposals for various kinds of dictionaries, describing various features of
systems (see for example [9, 19, 21]) within the context of industrial CASE tools
and research proposals. More recently, a number of metadata repositories have
been developed [26]. They generally use relational databases for handling the
information of interest. There are other significant recent efforts towards the
description of multiple models, including the Model Driven Architecture (MDA)
and, within it, the Common Warehouse Metamodel (CWM) [27], and Microsoft
Repository [10]; in contrast to our approach, these do not distinguish metalevels,
as the various models of interest are all specializations of a most general one,
UML based.

The description of models in terms of the (meta-)constructs of a metamodel
was proposed by Atzeni and Torlone [8]. But it used a sophisticated graph lan-
guage, which was hard to implement. The other papers that followed the same
or similar approaches [14–16, 28] also used specific structures.

We know of no literature that describes a dictionary that exposes schemas in
both model-specific and model-independent ways, together with a description of
models. Only portions of similar dictionaries have been proposed. None of them
offer the rich interrelated structure we have here.

The contributions of this paper and its organization are the following. In Sec-
tion 2 we briefly recall the metamodel approach we follow (based on the initial
idea by Atzeni and Torlone [8]). In Section 3 we illustrate the organization of
the dictionary we use to store our schemas and models, refining the presentation
given in a previous conference paper (Atzeni et al. [3]). In Section 4 we illustrate
a specific supermodel used to generalize a large set of models, some of which
are also commented upon. Then, in Section 5 we discuss how some interesting
operations on schemas can be specified and implemented on the basis of our
approach. Section 6 is devoted to the illustration of generic reporting and visu-
alization tools built out of the principles and structure of our dictionary. Finally,
in Section 7 we summarize our results.

2 Towards a universal metamodel

In this section we summarize the overall approach towards a model-independent
and model-aware representation of data models, based on an initial idea by
Atzeni and Torlone [8].

The first step toward a uniform solution is the adoption of a general model to
properly represent many different data models (e.g. entity-relationship, object-
oriented, relational, object-relational, XML). The proposed general model is
based on the idea of construct: a construct represents a “structural” concept
of a data model. We find out a construct for each “structural” concept of every
considered data model and, hence, a data model is completely represented by the
set of its constructs. Let us consider two popular data models, entity-relationship
(ER) and object-oriented (OO). Indeed, each of them is not “a model,” but “a
family of models,” as there are many different proposals for each of them: OO
with or without keys, binary and n-ary ER models, OO and ER with or without
inheritance, and so on. “Structural” concepts for these data models are, for ex-
ample, entity, attribute of entity, and binary relationship for the ER and class,
field, and reference for the OO. Moreover, constructs have a name, may have
properties and are related to one another.

A UML class diagram of this construct-based representation of a simple ER
model with entities, attributes of entities and binary relationships is depicted in
Figure 1. Construct Entity has no attribute and no reference; construct Attribu-
teOfEntity has a boolean property to specify whether an attribute is part of the
identifier of the entity it belongs to and a property type to specify the data type
of the attribute itself; construct BinaryRelationship has two references toward
the entities involved in the relationship and several properties to specify role,
minimum and maximum cardinalities of the involved entities, and whether the
first entity is externally identified by the relationship itself.

Fig. 1. A simple entity-relationship model

With similar considerations about a simple OO model with classes, simple
fields (i.e. with standard type) and reference fields (i.e. a reference from a class
to another) we obtain the UML class diagram of Figure 2. Construct Class has
no attribute and no reference; construct Field is similar to AttributeOfEntity but
it does not have boolean attributes, assuming that we do not want to manage
explicit identifiers of objects; construct ReferenceField has two references toward
the class owner of the reference and the class pointed by the reference itself.

Fig. 2. A simple object-oriented model

In this way, we have uniform representations of models (in terms of con-
structs) but these representations are not general. This is unfeasible as the num-
ber of (variants of) models grows because it implies a corresponding rise in the
number of constructs. To overcome this limit, we exploit an observation of Hull
and King [20], drawn on later by Atzeni and Torlone [7]: most known models
have constructs that can be classified according to a rather small set of generic
(i.e. model independent) metaconstructs: lexical, abstract, aggregation, general-
ization, and function. Recalling our example, entities and classes play the same
role (or, in other terms, “they have the same meaning”), and so we can define
a generic metaconstruct, called Abstract, to represent both these concepts; the
same happens for attributes of entities and of relationships and fields of classes,
representable by means of a metaconstructs called Lexical. Conversely, relation-
ships and references do not have the same meaning and hence one metaconstruct
is not enough to properly represent both concepts (hence BinaryAggregationO-
fAbstracts and AbstractAttribute are both included).

Hence, each model is defined by its constructs and the metaconstructs they
refer to. This representation is clearly at the same time model-independent (in
the sense that it allows for a uniform representation of different data models)
and model-aware (in the sense that it is possible to say to whether a schema is
allowed for a data model). An even more important notion is that of supermodel
(also called universal metamodel in the literature [13, 24]): it is a model that has
a construct for each metaconstruct, in the most general version. Therefore, each
model can be seen as a specialization of the supermodel, except for renaming of
constructs.

A conceptual view of the essentials of this idea is shown in Figure 3: the
supermodel portion is predefined, but can be extended (and we will present our
recent extension later in this paper), whereas models are defined by specifying
their respective constructs, each of which refers to a construct of the supermodel
(SM-Construct) and so to a metaconstruct. It is important to observe that our
approach is independent of the specific supermodel that is adopted, as new
metaconstructs and so SM-Constructs can be added. This allows us to show
simplified examples for the set of constructs, without losing the generality of the
approach.

Fig. 3. A simplified conceptual view of models and constructs.

In this scenario, a schema for a certain model is a set of instances of constructs
allowed in that model. Let us consider the simple ER schema depicted in Fig-
ure 4. Its construct-based representation would include two instances of Entity

Fig. 4. A simple entity-relationship schema.

(i.e. Employee and Project), one instance of BinaryRelationship (i.e. Member-
ship) and four instances of AttributeOfEntity (i.e. EN, Name, Code, and Name).
The model-independent representation (i.e. based on metaconstructs) would in-
clude two instances of Abstract, one instance of BinaryAggregationOfAbstracts
and four instances of Lexical. For each of these instances we have to specify
values for its attributes and references, meaningful for the model. So for exam-

ple, the instance of Lexical corresponding to EN would refer to the instance of
Abstract of employee through its abstractOID reference and would have a ‘true’
value for its isIdentifier attribute. This example is illustrated in Figure 5, where
we omit not relevant properties, represent references only by means of arrows,
and represent links between constructs and their instances by means of dashed
arrows. In the same way, we can state that a database for a certain schema is a
set of instances of constructs of that schema.

Fig. 5. A construct based representation of the schema of Figure 4.

As a second example, let us consider the simple OO schema depicted in Fig-
ure 6. Its construct-based representation would include two instances of Class
(i.e. Employee and Department), one instance of ReferenceField (i.e. Member-
ship) and five instances of Field (i.e. EmpNo, Name, Salary, DeptNo, and Sept-

Fig. 6. A simple object-oriented schema.

Name). Alternatively, the model independent representation (i.e. based on meta-
constructs) would include two instances of Abstract, one instance of AbstractAt-
tribute and five instances of Lexical.

On the other side, it is possible to use the same approach based on “concepts
of interest” in order to obtain a high-level description of the supermodel (i.e.
of the whole set of metaconstructs). From this point of view the concepts of
interest are three: construct, construct property and construct reference. In this
way we have a full description of the supermodel, with constructs, properties
and references, as follows. Each construct has a name and a boolean attribute
(isLexical) that specifies whether its instances have actual, elementary values
associated with (for example, this property would be true for AttributeOfAbstract
and false for Abstract). Each property belongs to a construct and has a name
and a type. Each reference relates two constructs and has a name. A UML class
diagram of this representation is presented in Figure 7.

Fig. 7. A description of the supermodel

3 A multilevel dictionary

The conceptual approach to the description of models and schemas presented in
Section 2, despite being very useful to introduce the approach, is not effective
to actually store data and metadata. Therefore, we have developed a relational
implementation of the idea, leading to a multilevel dictionary organized in four
parts, which can be characterized along two coordinates: the first correspond-
ing to whether they describe models or schemas and the second depending on
whether they refer to specific models or to the supermodel. This is represented
in Figure 8.

The various portions of the dictionary correspond to various UML class dia-
grams of Section 2. In the rest of this section, we comment on them in detail.

-

6

models
(M)

metamodels
(mM)

supermodel
(SM)

meta-supermodel
(mSM)

model specific model generic

schema descriptions

model descriptions
(the “metalevel”)

Fig. 8. The four parts of the dictionary

The meta-supermodel part of the dictionary describes the supermodel, that
is, the set of constructs used for building schemas of various models. It is com-
posed of three relations (whose names begin with MSM to recall that we are in
the meta-supermodel portion), one for each “class” of the diagram of Figure 7.
Every relation has one OID column and one column for each attribute and ref-
erence of the corresponding “class” of such a diagram. The relations of this part
of the dictionary, with some of the data, are depicted in Figure 9. It is worth
noting that these relations are rather small, because of the limited number of
constructs in our supermodel.

MSM Construct

OID Name IsLexical

mc1 Abstract false
mc2 Lexical true
mc3 Aggregation false
mc4 BinaryAggregationOfAbstracts false
mc5 AbstractAttribute false
.

MSM Property

OID Name Construct Type

mp1 Name mc1 string
mp2 Name mc2 string
mp3 IsIdentifier mc2 bool
mp4 IsOptional mc2 bool
mp5 Type mc2 string
.

MSM Reference

OID Name Construct ConstructTo

mr1 Abstract mc2 mc1
mr2 Aggregation mc2 mc3
mr3 Abstract1 mc4 mc1
mr4 Abstract2 mc4 mc1
mr5 Abstract mc5 mc1
mr6 AbstractTo mc5 mc1
.

Fig. 9. The mSM part of the dictionary

The metamodels part of the dictionary describes the individual models, that
is, the set of specific constructs allowed in the various models, each one cor-

responding to a construct of the supermodel. It has the same structure as the
meta-supermodel part with two differences: first, each relation has an extra col-
umn containing a reference towards the corresponding element of the supermodel
(i.e. of the meta-supermodel part of the dictionary); second, there is an extra
relation to store the names of the specific models and an extra column in the
Construct relation referring to this extra relation. The relations of this part of
the dictionary, with some of the data, are depicted in Figure 10.

MM Model

OID Name

m1 ER
m2 OODB

MM Construct

OID Name Model MSM-Constr. IsLexical

co1 Entity m1 mc1 false
co2 AttributeOfEntity m1 mc2 true
co3 BinaryRelationship m1 mc4 false
co4 Class m2 mc1 false
co5 Field m2 mc2 true
co6 ReferenceField m2 mc5 false

MM Property

OID Name Constr. Type MSM-Prop.

pr1 Name co1 string mp1
pr2 Name co2 string mp2
pr3 IsKey co2 bool mp3
pr4 Name co3 string . . .
pr5 IsOpt.1 co3 bool . . .
.
pr6 Name co4 string mp1
pr7 Name co5 string mp2
.

MM Reference

OID Name Constr. Constr.To MSM-Ref.

ref1 Entity co2 co1 mr1
ref2 Entity co3 co1 mr3
ref3 Entity co3 co1 mr4
ref4 Class co5 co4 mr1
ref5 Class co6 co4 mr5
ref6 ClassTo co6 co4 mr6

Fig. 10. The mM part of the dictionary

We refer to these first two parts as the “metalevel” of the dictionary, as it
contains the description of the structure of the lower level, whose content de-
scribes schemas. The lower level is also composed of two parts, one referring
to the supermodel constructs (therefore called the SM part) and the other to
model-specific constructs (the M part). The structure of the schema level is, in
our system, automatically generated out of the content of the metalevel: so, we
can say that the dictionary is self-generating out of a small core. In detail, in the
model part there is one relation for each row of MM Construct relation. Hence
each of these relations corresponds to a construct and has, besides an OID col-
umn, one column for each property and reference specified for that construct in
relations MM Property and MM Reference, respectively. Moreover, there
is a relation schema to store the name of the schemas stored in the dictionary
and each relation has an extra column referring to it. Hence, in practice, there
is a set of relations for each specific model, with one relation for each construct

allowed in the model. This portion of the dictionary is depicted in Figure 11,
where we show the data for the schemas of Figures 4 and 6.

Schema

OID Name

s1 ER Schema
s2 OO Schema

ER-Entity

OID Name Schema

e1 Employee s1
e2 Project s1

ER-AttributeOfEntity

OID Entity Name Type isKey Schema

a1 e1 EN int true s1
a2 e1 Name string false s1
a3 e2 Code int true s1
a4 e2 Name string false s1

ER-BinaryRelationship

OID Name IsOptional1 IsFunctional1 . . . Entity1 Entity2 Schema

r1 Membership false false . . . e1 e2 s1

OO-Class

OID Name Schema

cl1 Employee s2
cl2 Department s2

OO-ReferenceField

OID Name Class ClassTo Schema

ref1 Membership cl1 cl2 s2

OO-Field

OID Class Name Type Schema

f1 cl1 EmpNo int s2
f2 cl1 Name string s2
f3 cl1 Salary int s2
f4 cl2 DeptNo int s2
f5 cl2 DeptName string s2

Fig. 11. The dictionary for schemas of specific models

Analogously, in the supermodel part there is one relation for each row of
MSM Construct relation; hence each one of these relations corresponds to
a metaconstruct (or a construct of the supermodel) and has, besides an OID
column, one column for each property and reference specified for that meta-
construct in relations MSM Property and MSM Reference, respectively.
Again, there is a relation schema to store the name of the schemas stored in
the dictionary and each relation has an extra column referring to it. Moreover,
the Schema relation has an extra column referring to the specific model each
schema belongs to. This portion of the dictionary is depicted in Figure 12, where
we show the data for the schemas of Figures 4 and 6, and hence we show the
same data presented in Figure 11. It is worth noting that Abstract contains the
same data as ER-Entity and OO-Class taken together. Similarly, Attribu-
teOfAbstract contains data in ER-AttributeOfEntity and OO-Field.

4 A significant supermodel with models of interest

As we said, our approach is fully extensible: it is possible to add new metacon-
structs to represent new data models, as well as to refine and increase precision of
actual representations of models. The supermodel we have mainly experimented

Schema

OID Name Model

s1 ER Schema m1
s2 OO Schema m2

Abstract

OID Name Schema

e1 Employee s1
e2 Project s1
cl1 Employee s2
cl2 Department s2

Lexical

OID Abstract Name Type IsIdentifier Schema

a1 e1 EN int true s1
a2 e1 Name string false s1
a3 e2 Code int true s1
a4 e2 Name string false s1
f1 cl1 EmpNo int ? s2
f2 cl1 Name string ? s2
f3 cl1 Salary int ? s2
f4 cl2 DeptNo int ? s2
f5 cl2 DeptName string ? s2

AbstractAttribute

OID Name Abstract AbstractTo Schema

ref1 Membership cl1 cl2 s2

BinaryRelationship

OID Name IsOptional1 IsFunctional1 . . . Entity1 Entity2 Schema

r1 Membership false false . . . e1 e2 s1

Fig. 12. A portion of the SM part of the dictionary

with so far is a supermodel for database models and covers a reasonable family
of them. If models were more detailed (as is the case for a fully-fledged XSD
model) then the supermodel would be more complex. Moreover, other super-
models can be used in different contexts: we have had preliminary experiences
with Semantic Web models [5, 6, 18], with the management of annotations [25],
and with adaptive systems [17]. In this section we discuss in detail our actual
supermodel. We describe all the metaconstructs of the supermodel, describing
which concepts they represent, and how they can be used to properly represent
several well known data models.

A complete description of all the metaconstructs follows:

Abstract - Any autonomous concept of the scenario.
Aggregation - A collection of elements with heterogeneous components. It

make no sense without its components.
StructOfAttributes - A structured element of an Aggregation, an Abstract,

or another StructOfAttributes. It could be not always present (isOptional)
and/or admit null values (isNullable). It could be multivalued or not (isSet).

AbstractAttribute - A reference towards an Abstract that could admit null
values (isNullable). The reference may originate from an Abstract, an Aggre-
gation, or a StructOfAttributes.

Generalization - It is a “structural” construct stating that an Abstract is a
root of a hierarchy, possibly total (isTotal).

ChildOfGeneralization - Another “structural” construct, related to the pre-
vious one (it can not be used without Generalization). It is used to specify
that an Abstract is leaf of a hierarchy.

Nest - It is a “structural” construct used to specify nesting relationship between
StructOfAttributes.

BinaryAggregationOfAbstracts - Any binary correspondence between (two)
Abstracts. It is possible to specify optionality (isOptional1/2) and func-
tionality (isFunctional1/2) of the involved Abstracts as well as their role
(role1/2) or whether one of the Abstracts is identified in some way by such
a correspondence (isIdentified).

AggregationOfAbstracts - Any n-ary correspondence between two or more
Abstracts.

ComponentOfAggregationOfAbstracts - It states that an Abstract is one
of those involved in an AggregationOfAbstracts (and hence can not be used
without AggregationOfAbstracts). It is possible to specify optionality (isOp-
tional1/2) and functionality (isFunctional1/2) of the involved Abstract as
well as whether the Abstract is identified in some way by such a correspon-
dence (isIdentified).

Lexical - Any lexical value useful to specify features of Abstract, Aggregation,
StructOfAttributes, AggregationOfAbstracts, or BinaryAggregationOfAbstr-
acts. It is a typed attribute (type) that could admit null values, be optional,
and identifier of the object it refers to (the latter is not applicable to Lexical
of StructOfAttributes, BinaryAggregationOfAbstracts, and AggregationOfAb-
stracts).

ForeignKey - It is a “structural” construct stating the existence of some kind
of referential integrity constraints between Abstract, Aggregation and/or
StructOfAttributes, in every possible combination.

ComponentOfForeignKey - Another “structural” construct, related to the
previous one (it can not be used without ForeignKey). It is used to specify
which are the Lexical attributes involved (i.e. referring and referred) in a
referential integrity constraint.

A UML class diagram of these (meta)constructs is presented in Figure 13.
We summarize constructs and (families of) models in Figure 14, where we

show a matrix, whose rows correspond to the constructs and columns to the
families we have experimented with.

In the cells, we use the specific name used for the construct in the family (for
example, Abstract is called Entity in the ER model). The various models within
a family differ from one another (i) on the basis of the presence or absence of
specific constructs and (ii) on the basis of details of (constraints on) them. To
give an example for (i) let us recall that versions of the ER model could have
generalizations, or not have them, and the OR model could have structured
columns or just simple ones. For (ii) we can just mention again the various
restrictions on relationships in the binary ER model (general vs. one-to-many),
which can be specified by means of constraints on the properties. It is also
worth mentioning that a given construct can be used in different ways (again,
on the basis of conditions on the properties) in different families: for example, a
structured attribute could be multivalued, or not, on the basis of the value of a
property isSet.

Fig. 13. The Supermodel

Fig. 14. Constructs and models

The remainder of this section is devoted to a detailed description of the
various models.

4.1 Relational

We consider a relational model with tables composed of columns of a specified
type; each column could allow null value or be part of the primary key of the
table. Moreover we can specify foreign keys between tables involving one or more
columns. Figure 15 shows a UML class diagram of the constructs allowed in the

Fig. 15. The Relational model

relational model with the following correspondences:

Table - Aggregation.
Column - Lexical. We can specify the data type of the column (type) and

whether it is part of the primary key (isIdentifier) or it allows null value
(isNullable). It has a reference toward an Aggregation.

Foreign Key - ForeignKey and ComponentOfForeignKey. With the first con-
struct (referencing two Aggregations) we specify the existence of a foreign key
between two tables; with the second construct (referencing one ForeignKey
and two Lexicals) we specify the columns involved in a foreign key.

4.2 Binary ER

We consider a binary ER model with entities and relationships together with
their attributes and generalizations (total or not). Each attribute could be op-
tional or part of the identifier of an entity. For each relationship we specify
minimum and maximum cardinality and whether an entity is externally identi-
fied by it. Figure 16 shows a UML class diagram of the constructs allowed in the
model with the following correspondences:

Fig. 16. The binary ER model

Entity - Abstract.
Attribute of Entity - Lexical. We can specify the data type of the attribute

(type) and whether it is part of the identifier (isIdentifier) or it is optional
(isOptional). It refers to an Abstract.

Relationship - BinaryAggregationOfAbstracts. We can specify minimum (0 or
1 with the property isOptional) and maximum (1 or N with the property is-
Functional) cardinality of the involved entities (referenced by the construct).
Moreover we can specify the role (role) of the involved entities and whether
the first entity is externally identified by the relationship (IsIdentified).

Attribute of Relationship - Lexical. We can specify the data type of the at-
tribute (type) and whether it is optional (isOptional). It refers to a Bina-
ryAggregationOfAbstracts

Generalization - Generalization and ChildOfGeneralization. With the first
construct (referencing an Abstract) we specify the existence of a generaliza-
tion rooted in the referenced Entity; with the second construct (referencing
one Generalization and one Abstract) we specify the childs of the general-
ization. We can specify whether the generalization is total or not (isTotal).

4.3 N-ary ER

We consider an n-ary ER model with the same features of the aforementioned
binary ER. Figure 17 shows a UML class diagram of the constructs allowed in the

Fig. 17. The n-ary ER model

model with the following correspondences (we omit details already explained):

Entity - Abstract.
Attribute of Entity - Lexical.
Relationship - AggregationOfAbstracts and ComponentOfAggregationOfAbstr-

acts. With the first construct we specify the existence of a relationship;
with the second construct (referencing an AggregationOfAbstracts and an
Abstract) we specify the entities involved in such relationship. We can specify
minimum (0 or 1 with the property isOptional) and maximum (1 or N with
the property isFunctional) cardinality of the involved entities. Moreover we
can specify whether an entity is externally identified by the relationship
(IsIdentified).

Attribute of Relationship - Lexical. It refers to an AggregationOfAbstracts.
Generalization - Generalization and ChildOfGeneralization.

4.4 Object-Oriented

We consider an Object-Oriented model with classes, simple and reference fields.
We can also specify generalizations of classes. Figure 18 shows a UML class dia-
gram of the constructs allowed in the model with the following correspondences
(we omit details already explained):

Fig. 18. The OO model

Class - Abstract.
Field - Lexical.
Reference Field - AbstractAttribute. It has two references toward the referenc-

ing Abstract and the referenced one.
Generalization - Generalization and ChildOfGeneralization.

4.5 Object-Relational

We consider a simplified version of the Object-Relational model. We merge the
constructs of our Relational and OO model, where we have typed-tables rather
than classes. Moreover we consider structured columns of tables (typed or not)
that can be nested. Reference columns must be toward a typed table but can be
part of a table (typed or not) or of a structured column. Foreign keys can involve
also typed tables and structured columns. Finally, we can specify generalizations
that can involve only typed tables. Figure 19 shows a UML class diagram of the
constructs allowed in the model with the following correspondences (we omit
details already explained):

Table - Aggregation.
Typed Table - Abstract.
Structured Column - StructOfAttributes and Nest. The structured column,

represented by a StructOfAttributes can allow null values or not (isNullable)

Fig. 19. The Object-Relational model

and can be part of a simple table or of a typed table (this is specified by its
references toward Abstract and Aggregation. We can specify nesting relation-
ships between structured columns by means of Nest, that has two references
toward the top StructOfAttributes and the nested one.

Column - Lexical. It can be part of (i.e. refer to) a simple table, a typed table
or a structured column.

Reference Column - AbstractAttribute. It may be part of a table (typed or
not) and of a structured column (specified by a reference) and must refer to
a typed table (i.e. it has a reference toward an Abstract).

Foreign Key - ForeignKey and ComponentOfForeignKey. With the first con-
struct (referencing two tables, typed or not, and a structured column) we
specify the existence of a foreign key between tables (typed or not) and
structured column; with the second construct (referencing one ForeignKey
and two Lexicals) we specify the columns involved in a foreign key.

Generalization - Generalization and ChildOfGeneralization.

4.6 XSD as a data model

XSD is a very powerful technique for organizing documents and data, described
by a very long specification. We consider a simplified version of the XSD lan-
guage. We are only interested in documents that can be used to store large

amount of data. Indeed we consider documents with at least one top element
unbounded. Then we deal with elements that can be simple or complex (i.e.
structured). For these elements we can specify whether they are optional or
whether they can be null (nillable according to the syntax and terminology of
XSD). Simple elements could be part of the key of the element they belong to
and have an associated type. Moreover we allow the definition of foreign keys
(key and keyref according to XSD terminology). Clearly, this representation is
highly simplified but, as we said, it could be extended with other features if there
were interest in them.

Figure 20 shows a UML class diagram of the constructs allowed in the model
with the following correspondences (we omit details already explained):

Fig. 20. The XSD language

Root Element - Abstract.
Complex Element - StructOfAttributes and Nest. The first construct repre-

sent structured elements that can be unbounded or not (isSet), can allow
null values or not (isNullable) and can be optional (isOptional). We can
specify nesting relationships between complex elements by means of Nest,
that has two references toward the top StructOfAttributes and the nested
one.

Simple Element - Lexical. It can be part of (i.e. refer to) a root element or a
complex one.

Foreign Key - ForeignKey and ComponentOfForeignKey.

5 Operators over schema and models

The model-independent and model-aware representation of data models and
schemas can be the basis for many fruitful applications. Our fist major applica-
tion has been the development of a model-independent approach for schema and
data translation [4] (a generic implementation of the modelgen operator, accord-
ing to Bernstein’s model management [11]). We are currently working on addi-
tional applications, towards a more general model management system [2], the
most interesting of which is related to set operators (i.e. union, difference, inter-
section). In this section we discuss the redefinition of these operators against our
construct-based representation. Let us concentrate on models first. The starting
point is clearly the definition of an equality function between constructs. Two
constructs belonging to two models are equal if and only if they correspond to
the same metaconstruct, have the same properties with the same values, and, if
they have references, they have the same references with the same values (i.e. the
same number of references, towards constructs proved to be equal). Two main
observations are needed. First, we can refer to supermodel constructs without
loss of generality, as every construct of every specific model corresponds to a
(meta)construct of the supermodel, as we said in Section 2. Second, the defi-
nition is recursive but well defined as well, since the graph of the supermodel
(i.e. with constructs as nodes and references between constructs as edges) is
acyclic; this implies that a partial order on the constructs can be found, and
all the equality check between constructs can be performed traversing the graph
accordingly to such a partial order.

The union of two models is trivial, as we have simply to include in the result
the constructs of both the involved models. For difference and intersection, we
need the aforementioned definition of equality between constructs. When one
of these operators is applied, for each construct of the first model, we look for
an equal construct in the second model. If the operator is the difference, the
result is composed by all the constructs of the first model that has not an equal
construct in the second model; if the operator is the intersection, the result is
composed only by the constructs of the first model that has an equal construct
in the second model.

A very similar approach can be followed for set operators on schemas, which
are usually called merge and diff [11], but we can implement in terms of union
and difference, provided they are supported by a suitable notion of equivalence.
Some care is needed to consider details, but the basic idea is that the operators
can be implemented by executing the set operations on the constructs of the
various types, where the metalevel is used to see which are the involved types,
those that are used in the model at hand.

6 Reporting

In this section we focus on another interesting application of our approach,
namely the possibility of producing reports for models and schemas, again in

a manner that is both model-independent and model-aware. Reports can be
rendered as detailed textual documentations of data organization, in a readable
and machine-processable way, or as diagrams in a graphical user interface. Again,
this is possible because of the supermodel: we visualize supermodel constructs
together with their properties, and relate them each other by means of their
references.

In this way, we could obtain a “flat” report of a model, which does not
distinguish between type of references; so, for example, the references between
a ForeignKey and the two Aggregations involved in it would be represented as a
reference from a Lexical towards an Abstract. This is clearly not satisfactory. The
core idea is to classify the references in two classes: strong and weak. Instances
of constructs related by means of a strong reference (e.g. an Abstract with its
Lexicals) are presented together, while those having a weak relationship (e.g.
a ForeignKey with the Aggregations involved in it) are presented in different
elements.

In rendering reports as text, we adopt the XML format. The main advantage
of XML reports is that they are both self-documenting and machine processable
if needed. Constructs and their instances can be presented according to a partial
order on the constructs that can be found since, as we already said in the previous
section, the graph of the supermodel (i.e. with constructs as nodes and references
between constructs as edges) is acyclic.

As we said in Section 2, a schema (as well as a model) is completely repre-
sented by the set of its constructs. Hence, a report for a schema would include
a set of construct elements. In order to produce a report for a schema S we can
consider its constructs following a total order, C1, C2, ..., Cn, for supermodel con-
structs (obtained serializing a partial order of them). For each construct Ci, we
consider its occurrences in S, and for each of them not yet inserted in the report,
we add a construct element named Ci with all its properties as XML attributes.
Let us consider an occurrence oij of Ci. If oij is pointed by any strong reference,
we add a set of component elements nested in the corresponding construct ele-
ment: the set would have a component element for each occurrence of a construct
with a strong reference toward oij

. If oij
has any weak reference towards another

occurrence of a construct, we add a set of reference elements: each element of
this set correspond to a weak reference and has OID and name properties of the
pointed occurrence as XML attributes. As an example, the textual report of the
ER schema of figure 4 would be as follows:

<schema name="ERsimple" model="binaryER">
<constructs>
<ER-Entity OID="e1" name="Employee">
<components>
<ER-AttributeOfEntity OID="a1" name="EN" isKey="true"

type="int"></ER-AttributeOfEntity>
<ER-AttributeOfEntity OID="a2" name="Name" isKey="false"

type="string"></ER-AttributeOfEntity>
</components>

<ER-Entity OID="e2" name="Project">
<components>
...

</components>
<ER-BinaryRelationship OID="r1" name="Membership"

isOptional1="false" isFunctional1"false" ...\>
<references>
<entity1 OID="e1" name="Employee"/>
<entity2 OID="e2" name="Project"/>

</references>
</constructs>

</schema>

As we already said, a second option for report rendering is through a visual
graph. A few examples, for different models are shown in Figures 21, 22, and 23.

Fig. 21. An ER schema

The rationale is the same as for textual reports:

– visualization is model independent as it is defined for all schemas of all mod-
els in the same way: strong references lead to embedding the “component”
construct within the “containing” one, whereas weak references lead to sep-
arate graphical objects, connected by means of arrows;

Fig. 22. An OO schema

Fig. 23. An XML-Schema

– visualization is model aware, in two sense: first of all, as usual the specific
features of each model are taken into account; second, and more important,
for each family of models it is possible to associate a specific shape with
each construct, thus following the usual representation for the model (see for
example the usual notation for relationships in the ER model in Figure 21.

An extra feature of the graphical visualization is the possibility to represent
instances of schemas also by means of a “relational” representation that follows
straightforward our construct-based modeling.

7 Conclusions

We have shown how a metamodel approach can be a the basis for a number
model-generic and model-aware techniques for the solution of interesting prob-
lems. We have shown a dictionary we use to store our schemas and models, a
specific supermodel (a data model that generalizes all models of interest modulo
construct renaming). This is the bases for the specification and implementa-
tion of interesting high-level operations, such as schema translation as well as
set-theoretic union and difference. Another interesting application is the devel-
opment of generic visualization and reporting features.

Acknowledgement

We would like to thank Phil Bernstein for many useful discussions during the
preliminary development of this work.

References

1. F. W. Allen, M. E. S. Loomis, and M. V. Mannino. The integrated dictio-
nary/directory system. ACM Comput. Surv., 14(2):245–286, 1982.

2. P. Atzeni, L. Bellomarini, F. Bugiotti, and G. Gianforme. From schema and model
translation to a model management system. In Sharing Data, Information and
Knowledge, BNCOD 25, LNCS 5071, pages 227–240, 2008.

3. P. Atzeni, P. Cappellari, and P. A. Bernstein. A multilevel dictionary for model
management. In ER Conference, LNCS 3716, pages 160–175, 2005.

4. P. Atzeni, P. Cappellari, R. Torlone, P. A. Bernstein, and G. Gianforme. Model-
independent schema translation. VLDB J., 17(6):1347–1370, 2008.

5. P. Atzeni and P. Del Nostro. Management of heterogeneity in the semantic web.
In ICDE Workshops, page 60. IEEE Computer Society, 2006.

6. P. Atzeni, S. Paolozzi, and P. D. Nostro. Ontologies and databases: Going back
and forth. In ODBIS (VLDB Workshop), pages 9–16, 2008.

7. P. Atzeni and R. Torlone. A metamodel approach for the management of multiple
models and translation of schemes. Information Systems, 18(6):349–362, 1993.

8. P. Atzeni and R. Torlone. Management of multiple models in an extensible database
design tool. In EDBT Conference, LNCS 1057, pages 79–95. Springer, 1996.

9. C. Batini, G. D. Battista, and G. Santucci. Structuring primitives for a dictionary
of entity relationship data schemas. IEEE Trans. Software Eng., 19(4):344–365,
1993.

10. P. Bernstein, T. Bergstraesser, J. Carlson, S. Pal, P. Sanders, and D. Shutt. Mi-
crosoft repository version 2 and the open information model. Information Systems,
22(4):71–98, 1999.

11. P. A. Bernstein. Applying model management to classical meta data problems. In
CIDR Conference, pages 209–220, 2003.

12. P. A. Bernstein, A. Y. Halevy, and R. Pottinger. A vision of management of
complex models. SIGMOD Record, 29(4):55–63, 2000.

13. P. A. Bernstein and S. Melnik. Model management 2.0: manipulating richer map-
pings. In SIGMOD Conference, pages 1–12, 2007.

14. J. Bézivin, E. Breton, G. Dupé, and P. Valduriez. The ATL transformation-
based model management framework. Research Report 03.08, IRIN, Université
de Nantes, 2003.

15. K. T. Claypool and E. A. Rundensteiner. Sangam: A framework for modeling
heterogeneous database transformations. In ICEIS (1), pages 219–224, 2003.

16. K. T. Claypool, E. A. Rundensteiner, X. Zhang, H. Su, H. A. Kuno, W.-C. Lee, and
G. Mitchell. Sangam - a solution to support multiple data models, their mappings
and maintenance. In SIGMOD Conference, page 606, 2001.

17. R. De Virgilio and R. Torlone. Modeling heterogeneous context information in
adaptive web based applications. In ICWE Conference, pages 56–63. ACM, 2006.

18. G. Gianforme, R. D. Virgilio, S. Paolozzi, P. D. Nostro, and D. Avola. A novel
approach for practical semantic web data management. In KES (2), LNCS 5178
Springer, pages 650–655, 2008.

19. C. Hsu, M. Bouziane, L. Rattner, and L. Yee. Information resources management in
heterogeneous, distributed environments: A metadatabase approach. IEEE Trans.
Software Eng., 17(6):604–625, 1991.

20. R. Hull and R. King. Semantic database modelling: Survey, applications and re-
search issues. ACM Computing Surveys, 19(3):201–260, Sept. 1987.

21. B. K. Kahn and E. W. Lumsden. A user-oriented framework for data dictionary
systems. DATA BASE, 15(1):28–36, 1983.

22. W. C. McGee. Generalization: Key to successful electronic data processing. J.
ACM, 6(1):1–23, 1959.

23. S. Melnik. Generic Model Management: Concepts and Algorithms. Springer-Verlag,
2004.

24. P. Mork, P. A. Bernstein, and S. Melnik. Teaching a schema translator to produce
O/R views. In ER Conference, LNCS 4801, pages 102–119. Springer, 2007.

25. S. Paolozzi and P. Atzeni. Interoperability for semantic annotations. In DEXA
Workshops, pages 445–449. IEEE Computer Society, 2007.

26. E. Rahm and H. Do. On metadata interoperability in data warehouses. Technical
report, University of Leipzig, 2000.

27. R. Soley and the OMG Staff Strategy Group. Model driven architecture. White
paper, draft 3.2, Object Management Group, November 2000.

28. G. Song, K. Zhang, and R. Wong. Model management though graph transforma-
tions. In IEEE Symposium on Visual Languages and Human Centric Computing,
pages 75–82, 2004.

